in which the aluminous element predominates. The hearth is of lime, magnesia or pure alumina, and the crucible is of carbon lime or magnesia. The latter portion is made in a single piece, by molding a mixture of pare graphite, gas carbon, or pure coke, in a cylindrical shaft or mold of bloom plate, and raising the whole in temperature to nearly a dark red heat for some hours. A very hard compact mass! without fissures or joints is thus 0^{i} tained.
The hearth is enclosed i_{s} a conical sheet iron shaft, secured by dowels to the pig iron plate which carries the tunnel. The crucible is movable, and simply rests against the lower part of the hearth. It is held in place by small blocks. The entire arrangement is such that the working parts of the apparatus can be casily renewed or repaired in a shor time. The blast is heated to at least $; 20$ Fah. and its pres sure equals from 507 to $5 \cdot 85$ inches of mercury.

AUGUSTE DE LA RIVE.

This distinguished philosopher, who was among the fore most of European saverns for more than half a sentury, died on the 29th of November, at Marseil es, France. He was on his way to one of the numerous health resorts of the South of France, but was unable to reach it.
Among De la lave's earliest investigations are to be found some important researches on the specific heat of many sim ple and compound gases, and here emmemerl his facis , and his influence in the Academy of (ienera, of which he was, up to the day of his death, the gruiding spirit. The science of electricity was scarcely in existence at this time (1625), and ts rapid development during the past ifo years has received much impulse from the labors of De la Rive, whose zfal in investigation was indonitable. In 1840 , he discovered the value of the voltaic currentin depositing grold on silver and brass, and at once published it, decliving to make any profit from the invention. For this, the French Institute aworded him their premium of $\$ 600$.
De la Rive was a man ot almost universal culture, and his society was sought by literary men, politicians, and artists,as well as by his fellow scientists. The Swiss Confederation ntrusted him with the dejicate mission of laying before the British Government the danger that Awitzerland was ex posed, to by the absorption of Savoy and Nice into France, and he had the satisfaction of obtaining from Lord Palmersion a declaration that any attemp: on the part of France against the independence of Sspitzerland or Belgium would be con sidered a casus belli by England.
The labors of le lat live were universally recognized as of the highest value and honors and diftinctions from scientific bodies in all parts of the world were confereft upon him He died in the 73 d year of his age.

DEATH IN THE SCHOOL ROOM.

Despite the frecuent casualties due to imperfect ventila tion, together with tl:e generation of noxious grses in large ly populated buildings, though assisted by the oft repeated counsels of the best sanitary authorities as to the proper mode of remedying the evil, our progress in learning how to afford a constant supp'y of pure fresh air is, at best, sadly discouraging. The New York World, with commendable enterprise, has recently employed Dr. Endemann, of the Board of Hear th of this city, to make a careful chemica examination of the concition of the atmosphere in our pub ic schools: and the results of that gentleman's invertiga tions, as published with much detail in the above men tioned journal point to a state of affairs that is simply dis graceful.
Graham and Liebig have pointed out that the mean amount of oxyren in the atmosphere is $20 \cdot 9$ volumes per cent, lear. ing a balance of $79 \cdot 1$ nitrogen, carbonic acid, and other constituents. The normal quantity of carbonic acid gas is, how ever, very small, and is estimated by le Saussure at 4 parts in 10,000 . Dr. Varkes considers that an increase of this pro-
portion to 6 Farts in 10,000 , or 0.06 of 1 per cent, is the highest permissible impurity. In acalyzing the samples of air, Dr. Endemanu used Pettenkoffer's method, by which the air is introduced into a glass globe, together with a solution of caustic baryta of definite strength. The alkalinity of the baryta solution is diminished in proportion to the amount of carbonaty of baryta formed, and will be neutralized by a proportionally less quantity of a given solution of oxalic acid, thus furnishing the elements of an accurate calculation of the amount of carbonic acid in the air contained in the globe. A measured amount of lime water of known The effect of the carbonic acid is then castic baryta solution. The effect of the carbonic acid is then to neutralize and pre cipitate a quantity of lime in the form of chalk, and the ox alic acid determines the proportion of lime subsequently re maining. The difference in the quantity of lime before and after the action upon the air enables the operator to calca late the existing ratio of carbonic acid.
Carbonic acid is the product of perfect combustion and of the breathing of animala, the oxygen in the latter cafe uniting with carbon in the system; and the air expired contains about 4. per cent of carbonic acid gas. This, however, in ope: atmosphere. soon diffuses itself, but, if confined incircumscribed quarters, contaminates the air to such an extent that, if atmosphere containing one two-hundredth part of it be breathed, headache and lassitude result. Such a proportion is, lowever, far from fatal, for Berzelius points out that five or six per cent may be inhaled with safety, and that life may continue for some time in an aimosphere conta ning thirty per cent. This latter assertion, we imagine, m ist be based on an extreme case, as it is generally conceded the t twenty five per cent of carbonic acid is sufficient to calise speedy death. Dr. Enderann, in his report, exempli-
lreathe about fourteen cubic feet of air per hour, and this air, when exhaled, will contain 430 times the normal amount 8 feet square by 11 persons be placed in a som, say be hermetically closed, so that there could be no circulation, in about two hours and a half all the air would be inhaled ad probably not a soul would be living
Space necessarily forbids our following the carefully pre. pared details of the report before us, but the citation of a few cases will serve to show the flagraut neglect which must characterize the sanitary reguiations of our schools
(1) Rooms 18 by 16 feet: 43 scholars: temperature, 62° Fah.: carbonic acid in 10,000 parts, 261 , or 66 times the normal amount. The air was described by the inmates as generully oppressive. (2) Large class room, 20x 18 feet: Odor very foul ; 47 scholars; 4 times the normal amount. (3) Class room on top floor: 65° temperature; air described as coustantly bad, aud very correctly, as analysis showed $8 \cdot 1$ times the normal quatity of carbonic acid. In the next wo tests, this proportion is 7.5 and 5 times.
The annexed engraving is a specimen of the heating and ventilating arrangement in the well known 12 th street school, an establishment accommodating 1,200 feniale scholars. is the register, and l the ventilator. The heat,entering, roasts

he back of the teacher at d, ascends, and immediately escapes at b, or, in cace the window is open, diverges into anther current, p. The cold, heavy carbonic gas is, as is evient, totally unaffected by the draft, and settles down upon the children at e. Mr. Lewis W. Leeds made a report re garding this school some time since, which, for some occult eason, the Board of Education saw fit to suppress. He pointed out the difficulties above indicated, and also ex plained a neat arrangement of the janitors, in converting the fresh air ducts to the furnaces into hen roosts, partitionng the same off, so that the air supply was obstructed; but copious odor of poultry was added to the hot current. Fowl"air, he very truly remarks.
Example 6 consists in analyses made in a room heated by steam; teacher and children all complaining. The temperature was 60°, and $8 \cdot 3$ times the normal proportion of carboncacid was indicated. Passing over succeeding testr, none f which show a larger percentage of carbonic acid than last $\mathrm{m} \in \mathrm{n}$ tioned, we notice repeated cases of the most dense ig norance displayed in the steam heating arrangement. In ne school the ventilators were shut, choked by rust, and the janitor had no conception of their use. In another the steam heaters were arranged after the fashion indicated in the next

engraving. The current of air from the heater, ", escapes hrough the opened window, while the cold air from the lat er pours down. There is a constant circulation, as indica ed by the arrows, at the sides of the room, while the center of the apartment becomes packed with foul air.
There is no necessity of entering into further minutice. In his city there are 59 grammar schools, 42 primary schools, nd 6 schools for colored children, and the number of pupils thus subject to the dangers we have noted is estimated t from 80,000 to 100,000 . There is unquestionably a deided need for simple and efficacious plans of ventilation which may be promptly put in practice in these institutions at no very large expense. Dr. Fndemann suggests the fol owing system:
Here the warm fresh air, flowing in at the register, a

ascends to the top of the room. The windows being closed, it cools gradually and descends, returning to the ventilator, which is either below or on a level with the register, where it is drawn off and escapes through the flue.
The New York World has done good work in thus exposing the shameful condition of our schools, and parents would do well to profit by the warning. It supplies the explanaion of many a pale fuce and aching head, if not of severe maladies, engendered by a system of slow poisoning. Other maladies, engendered by a system of slow poisoning. Other
cities may take the hint, and investigate their own educa.
tional buildings. To architects and builders generally, the subject ex nressly addresses itself for a sueedy and efficient solution.

TO OUR FRIENDS

In dealing with our legions of friends, it is our earnest de sire to give satisfaction to every one of them. But should any suppose that we have overlook.d their requests or lighted their interests, we hope they will at all times promptly inform us. Postal cards only cost a penny. Speak plainly, and do not hevitate to complain.
Our mail writers and folders are under special injunctions o write our subarribers names upon the envelopes legibly, and fold each paper neatly. We shall be glad to be informed if anybody receives slovenly work from this office.
At the beginning of the year, many thousands of subscrip tions are renewed, new clubs formed, etc. If any person fails to receive the paper, or any premium to which he is en titled, we will thank him to inform us promptly.
If, by any chance, any editor or publisher, who by any agreement is to receive our paper, should fail to receive it, we shall be glad to be informed.
Persons who have written to us upon business or sent en quiries for the parer which have not been answered, are requested to repeat their enquiries. Letters sometimes fail to reach us. Be particular to mention the State in which you live. In some cases we are perpiexed to know where to direct, when no State is given and there are many post offices of the same name

SCIENTIFIC AND PRACTICAL INFORMATION.

fog sichness among evghinil cattle

The recent heary fogs about London and its vicinity have been productive of an unusually large outbreak of sickness among the cattle gathered at the Sinithield Club show. The sufferings of the animals are described as very great, and are so clearly traced to the peculiar state of the weather as to excite apprehension that some similar malady may attack the stock on this side of the water, if the dense mists, which have prevailed to such an extraordinary degree during the present winter, continue. The Filld says that, on the third day of the show, which opened with every appearance of a successful exhibition, and with a fine variety oi prize cattle, ninety of the animals were removed, seemingly choking, and it was found necessary to slaughter fifty immediately. The illness was not confined to the single locality, liut affected the horned cattle in the markets and in the suburbs; so that it was not, as has been suggested, due to foul air or lack of ventilation in the Smithfield Club building. Sheep and pigs, moreover, were not affected. The treatment used was an abundant supply of pure air and a sedative tincture of aconit.e. The sickness lasted for about five days, until the dissipation of the fog.
new oeservations of stellar motion.
Dr. H. Vogel, at the new observatory at Rotbkamp, near Kiel, Germany, has recently made some researches into the movements of certain stars with relation to the earth by observing the position of the rays of their spectra. The stars thus examined are $\alpha L y r c e$ and $\propto x$ Aquilue. It appearsthat $\alpha \boldsymbol{L y}$. $r c e$ is approaching the sun at the rate of 52 miles per second, a result which accords with previous observations made by Huggins, in which the speed was estimated at between 45 and 54 miles. α Aquiles is moving insimilar direction at the rate of 48 miles per second. Dr. Vogel applied his method to the constellation of Orion some time ago, and determined that it receded from the sun at a speed of about 16 miles per second.

decorating wool ey printing

Mr. Thomas Whitburn, at a recent meeting of the English Society of Arts, described a process, recently patented by Lim, adapted to express, on flat surfaces of wood, effects of light figures on a dark ground, or of dark figures on a light ground, or of Gigures light and dark in parts on a ground intermediate in shade. The designs or patterns are engraved in the ordinary way on box wood, and, from the blocks, the wood is imprinted on a common hand printing press with printer's ink. The process is capable of being used with two or more colors, and is designed for the ornamentation of door panels, furniture, etc.

XEW PIIOTOGRAPHIC PROCESG.
We have heretofore mentioned a recent improvement in dry plate photography which conrists in using gelatin instead of the ordinary collodion. The nitrate of silver, for sensitizing the gelatin, is mixed with the gelatin solution. Thee only drawback to this new process was the fact that the gelatin solutions could not be long preserved, especially in warm weather. This difficulty has been lately overcome by Mr. Burgess of England, who prepares the censitive gelatin solution in any quaintity that may be desired, and, after preparation, deficcates or dries the same by spreading the solution on glass plates. The dritd film is then broken up into small bits and packed away in dried condition for use. Thus prepared, it will always keep good and only requires to be dissolved in water, to form an excellent sensitized solutlon.

The Alignment of the Hoosac Tunnel.-Mr. Charles Fosdick, of Fitchburg, Mass., writes to say that the credit of the calculations in boring the Hoosac ti.nnel and the almost perfect alignment is due to Mr. Frank D. Fisher, the firs: assistant of Mr. B. D. Frost, the chief engineer. Mr. Fisher is a native of Massachusetts, and was educated at the I^{\prime} ‘i. tute of Terhnology in Bn:ton.

