Sirmifir Smerim

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEELY
NO. 37 PARK ROW, NEW YORK.
o. D. munn. A. E. BEACH.

One cony, one year.
Owe cony, six months

8300 150 150 2500 250

VOLUME XXX, No. 4. [New Series.] Twenty-ninth Year NEW YORK, SATURDAY, JANUARY $24,1874$.

the dtilization of iron pyrites.

The great number of specimens of this material sent to the office of the Scientific American for examination sug geeto a few words as to the characteristics and utilization of a very abundant and useful, but hitherto, in this country, much neglected mineral. That we have not p ut this impor tant compound of sulphur and 1ron, which in Europe forms an important article of commerce, to more profitable account can be attributed only to our infancy in the art of manufacturing chemistry. We are still dependent upon foreign sulphur for our oil of vitriol, when stores of iron pyrites, contaiuing not only sulphur but other valuable constituents, lie at our own doors. Pyrites is a term applied to various metalic compounds of sulphur, but the most abundant and well known are those of iron and copper. It is of iron pyrites or sulphide of iron that we propose to speak here, as mineral worthy attention and study.
It was not until 1835 that the English, who used immense quantities of sulphur in the manufacture of oil of vitriol for the production of carbonate of soda from common salt, suddenly found their supplies of sulphur cut off, by an almost prohibitive duty laid on the exportation of the article by the King of Sicily, from which country most of the crude brimstone on commerce is obtained. The only avaiable substitute was the subject of our article; and it was soon put to such useful account that, in 1861, statistics show that no less than 264,000 tuns were consumed in Eng land. The amcunt used now must be vastly in excess of this, probably not less than 500,000 tuns per year.
Iron pyrites, though occurring under a variety of forms well known to the mineralogist, is still soon readily recognized, even by the inexperienced, from certain characteristic tests. How many unfortunate dupes has the bronze yel low variety deceived, in the hope that they had struck solid gold, when a few drops of hot nitric acid in the hands of the chemist, or a simple blow pipe test with charcoal, would zoon have dispelled their illusion! And yet gold is not al ways absent. The auriferous pyrites of California, South
America, and जiberia, have been profitably worked for gold. America, and Niberia, have been profitably worked for gold.
The valuable sulphur, however, in the roasting was driven off, as sulphurous acid, into the air to poison the surround ing atmosphere. Improvements are of slow growth. In our search after one valuable material, to which our atten tion is directed, we are apt to overlook equally valuable on 5 s, until necessity or profit compels us to take account of them. It is but a year or two since the immense copper smelting works at Swansea, Wales, where copper is extracted from copper pyrites, have attempted to utilize the escaping sulphurous acid gas from the roasting ores. These fum ss, that for generations settled down upon the surrounding country like a blight, have now been turned into a valuable commercial product.
A very common form of pyrites is that of a bright yellow mineral, which is a true bisulphide, containing iron 46.03 and sulphur $53 \cdot 97$ parts in 100 . Iron pyrites is frequently, however, of a dark or bronze color, and sometimes resembles bell metal in its luster, this variety consisting of a mixtur of protos ulphide and bisulphide of iron. There is also a
white variety called white pyrites, which, from its form of crystalization, is termed cockscomb pyrites. Magnetic pyrites also occurs. It is of a deep color and not very abundant. We pass over the numerous compounds formed by the combination and intermisture of other minerals, observing that when the propo tion of corper is considerable, the ore is called copper pyrites, and is distinguished by its brass yallow col
Iron pyrites is so hard that it will strike fire with steel,
whence its name, from the Greek word for fire. It was once used in the old fashinned musket, instead of fint, for this purpose. This is an easy and inespensive test for thoga who would confound it with gold. Gold is too soft to atrike as much as that of pyrites. In the utilization of iron pyrites for its sulphur, the ore is either roasted in close vessels without access of atmospheric air, when a certain proportion of flowers of sulphur sublimes; or more ordinarily it is
burned in the air, for the production of sulphurous acid in burned in the air, for the production of sulphurous acid in the manufacture of oil of vitriol. This is done in peculiariy slaped kilns; and when once ignited, the ore keeis up its most favorable conditions, two or three per cent of sulphur remains undecomposed. But by pulverizing the ore and roasting on the floor of a reverberatory furnace, not ouly is all the sulphur expelled, but the residue is in a suitable condition for the extraction of its copper, and the utilization of the remaining red oxide of iron. In England, the pyrites found in the coal beds (and called "brasses"), as well as that from Wicklow in Ireland, is largely burnt for the produc. tion of sulphurous acid gas in the manufacture of sulphuric acid. The ore after burning can be utilized as a common red pigment; but where the pyrites contains from one to thres per cent of copper, as it frequently does, it is returned after burning to the copper smelter. It is this small proportion of copper that makes iron pyrites so ecouomical a eource of sulphur to the oil of vitriol manufacturer, the Spanish pyrites on this account being of late largely imported and used. Ores of this character are utilized at presest in England to their fullest extent, their sulphur being first ex. tracted in the manufacture of sulphuric acid, then tixeir cop,per; and finally the red residue of oxide of iron is sold to the iron manufacturer for smelting. In spite of the abundance of iron pyrites in the United States, we know ond
one establishment in this country where it is partially utilized in the manufacture of sulphuric acid.
Another important manufacture, in which pyrites may Another important manufacture, in which pyries may
sometimes be economically used, is that of sulphate of iron or copperas. When pyrites is exposed to the influence of air and moisture, it undergoes decomposition. The two constituents of the pyrites, sulphur and iron, absorb oxygen, becoming converted respectively into sulphuric acid and oxide of iron; these from their chemical affinity unite and form sulphate of iron or copperas. In the manufacture of copperas, the ore is first stacked in large heaps on a clay Hoor or uther waterproof foundation. It is then roasted to hasten its decomposition, and afterwards moistened with water from time to time as required. The resulting solu tion of sulphate of iron is then caught in suitable vessel, concentrated, and crystalized. In the South Lancashire district in England, over 80 tuns of copperas per week are thus produced; and in Stafford, Vt., copperas lias been macie in this way for at least half a century.
We have spoken of the "brasses," or yellow pyrites of the coal measures. These are readily decomposable; and during decomposition, so much heat is sometimes liberated as to inflame the remaining pyrites and finally set the coal on fire. When this happens, the workmen are compelled,at great expense and loss of time, to flood the mice to put a stop to the contlagration. The water pumped from coal mines containing iron pyrites is sometimes so strongly charged with the acid sulphate of iron, that the iron pumps used for its removal are rapidly corroded.
There are undoubtedly many localities in this country where the pyrites is sufficiently abundant and readily decom posable for the economical manufacture of copperas, a salt which is largely used in dyeing, as a disinfectant, and for the manufacture of ink and Prusi:in blue. Where the pyrites contains a small proportion of copper, it may be more enomically utilized, in the way already shown, for the pro duction of sulphuric acid.

THE INFLDENCE OF CARGOES OF MACHINERY AND hardware on ships' compasses

In order to determine the local deviation of a ship's com pass, due to the materials entering into the vessel's compo sition affecting the needle, it is usual, before proceeding to sea for the first time and at certain intervals thereafter, to swing ship and compare the indications of a standard compass, located in a position out of the sphere of attraction, with those of the ordinary steering instruments in the binnacle. By this means a correction for every point is found, which must be allowed for in steering a course per the binnacle ompass
W nile there is little question but that every captain of a sea-going steamer is in posseession of the important data
thus obtained, there is in our minds considerable doubt whether a fimilar allowance is made for the nature and storage of the cargo. A hold full of hardware would undoubtedly affect the compasses, and cases, of arms, for ex ample, or any other articles of i ron or stecl, carelessly left near the binnacle, mightthrow the ship miles off her course and be productive of just such a disaster as that of the At . steaming betaptain of an English vessel, the Duke of Argyll, porary informs us, found that a bos containing sis sabres and three scabbards, placed at a distance of 10 feet away, exercised a sensible influence on the needle, which, when the disturbing cause was removed, oscillated from side to position. Another instance is on record of a ship being thrown some distance from her proper position through the careless placing under the compasses of a case containing a couple of small sewing machines and a few packets of needlea.

These instances show that serious consequences may be due to indiscriminate stowage of cargo composed of objects of iron or steel. In fact every shipper of hard ware or machinery, or passenger having in his possession such articles, shouid, for his individual as well as for the general interest., advise the captain and, besides, have the cases conspicuously marked as to contents, so that every precaution may lee taken to avoid their influence upon the compass. It can hardly be expected that a merchant vessel will awing ship every time that she goes to sea, but at least the danger of a guide, upon which the safety of the vessel de pends, becouning unreliable will be materially lesiened by a careful and intelligent disposition of the metallic portion of the cargo.

NEW IRON ALLOYS.

new process of manufacture of alloys of iron with man ganese, titanium, tungsten, and silicon, and of the aoglomeration of these substances for treatment in a special fur nace and in movable crucibles, has recently been patented in Belgium.
Up to the present time, as our readers are doubtless a ware, but one of these alloys has been to any extent industrially manufactured and employed. This is ferro manganese which contains twenty-five to thirty per cent of manganese, with from 70 to 75 per cent iron and from 5 to 6 per cent carbon. In Frauce and Germany, this alloy has attained some inportance, and is stated to admit of the manufacture of certain qualities of cast iron with a regularity and surety not given ly any other process. It ha, heretofore been produced either by the Prieger crucible system or by the Henderson process, both leing based upon the simultaneous reduction in presence of finely divided clarcoal of a mixture of the ores, pulverized, of iron and manganese. The presence of irou in the mixture determines the complete reduction of the oxide of manganese, and is indispensable to such reduction, a fact evidenced by the difficulty always evcountered in obtaining metallic manganese duriug laboratory researches, and by the large expenditure of time and fuel usually required in effecting the reduction of the oxide. On account of the pul. verulent state of the mixure, and of the poverty of the batch, which should contain an excess of charcoal, these two pro cesses are able to produce in a given apparatus but small ruautities daily of the allny, and with an enormous consumption of fuel. The difficulty seems to have been to find a system which would auswer all industrial requirements, work continuously, effect the reduction of the oxides successively and not simultaneously, and finally cause their complete fusion. A vertical apparatus, analogous to a high blast furnace, it would appear, might answer the require, ments, and it is stated that iu certain lecalities, where ore as been found containing the proper proportion of irna and manganese, two emeltings have been roduced, contain:ng 15 per cent of the last mentioned metal. Unfortunat l y, however, such ores are very rare, for it is a necessity that they should be almost absolutely free from silex. Moreover, it is difficult to pass into a high furnace material reduced to dust. The operation is productive of accidents, while it is hardly possible, subsequently, to preserve a regular working. Beyund this, the interior surface of the apparatus, incesantly in contact with the semi-reduced pulverized oxides which the blast drives into the very joints, becomes at. tacked with great rapidity.
The new proiess to which we refer in our initial paragraph and for the following description of which we are indebted to the Chronique de l'Indust ie, appears to be based on a system of agglomeration, which permits of the introduction of the oxides no longer in a state of powder, but in the form of small bricks or lumps, containing the elements of the alloy to be produced. Many attempts, it may here be remarked, have already been made to agglomerate the rubbish of iron ore, which, in certain districts, exists in profusion, and which in its natural state is useless: but none have given satisfactory results. Lime, pitch, and fatty earth, lave been successively employed, forming briquettes, which, though appearing of sufficient solidity when cold, disaggre. gated completely in the fire, or con'ained vitrifiable ele ments in such quantities that the ore became impoverished to an inadmissible degree. From the description of the new process, we learn that, if metal in granulated form, in the shape of filings, of iron or steel turnings, of epoagy iron coarsely pulverized, or of any other débris of iron or steel in an analogous state of division, be mixed with ores containing manganese, tungsten, titanium, or a combination of these metals, or with quartz: the ores or quartz being finely pulverized and introduced in suitable proportions for the alloy: if this mixture be completely and regularly moistened with an ammoniacal solution, or with water slightly acidulated, and tinally compressed in a mold of iron, a strong develop. ment of heat is produced; and at the end of several hours, if the mold be opened a very hard compact mass will be found, which can be broken by the hammer into fragments of desired size. These pieces resist red heat perfectly, and do not commence to disaggregate until the point of fusion of pig iron. Their proper treatment in a high blast rurnace affords the means, it is stated, of obtaining alloys containing iron and manganese, in all proportions ranging from 25 to 75 per cent of the latter metal, also combinations of iron and silicon, up to 25 per cent of silicon, fnd finally alloys of iron and tungsten or titanium, of even triple alloys of the different metals. These results are, however, olitained only at high temperatures, with a hot blast at strong pressure, and it is stated that the apparatus ordinarily rapidly deteriorates at its lower portion. To avoid this last mentioned defect, a furnace of especial construction is employed. The shait is formed of refractory brick as hard as possible and
in which the aluminous element predominates. The hearth is of lime, magnesia or pure alumina, and the crucible is of carbon lime or magnesia. The latter portion is made in a single piece, by molding a mixture of pare graphite, gas carbon, or pure coke, in a cylindrical shaft or mold of bloom p late, and raising the whole in temperature to nearly a dark red heat for some hours. A very hard compact mass ! without fissures or joints is thus $0^{\text {i f fained }}$
The hearth is enclosed i_{s} a conical sheet iron shaft, secured by dowels to the pig iron plate which carries the tunnel. The crucible is movable, and simply rests against the ower part of the hearth. It is held in place by small blocks. The entire arrangement is such that the working parts of the apparatus can be casily renewed or repaired in a shor time. The blast is heated to at least $\% 20$ Fah. and its pres sure equals from $50 \pi_{\text {to }} \mathrm{j} \cdot 85$ inches of mercury.

AUGUSTE DE LA RIVE.

This distinguished philosopher, who was among the fore most of European saciens for more than half a century, died on the 29th of November, at Marseil es, France. He was on his way to one of the numerous health resorts of the South of France, but was unable to reach it.
Among De la Rivers earliest in vestigations are to be found some important researches on the specific heat of many sim ple and compound gases, and here emmemerl his facis , and his influence in the Academy of (ienera, of which he was, up to the day of his death, the gruiding spirit. The science of electricity was scarcely in existence at this time (1625), and ts rapid development during the past ifo years has received much impulse from the labors of De la Rive, whose zyal in investigation was indonitable. In 1840 , he discovered the value of the voltaic currentin depositing grold on silver and brass, and at once published it, decliving to make any profit from the invention. For this, the French Institute aworded him their premium of $\$ 600$.
De la Rive was a man ot almost universal culture, and his society was sought by literary men, politicians, and artists, as well as by his fellow scientists. The Swiss Confederation ntrusted him with the dejicate mission of laying before the British Government the danger that Awitzerland was ex posed, to by the absorption of Savoy and Nice into France, and he had the satisfaction of obtaining from Lord Palmersion a declaration that any attemp: on the part of France against the independence of Sspitzerland or Belgium would be con sidered a casus belli by England.
The labors of be la live were universally recognized as of the highest value and honors and distinctions from scientific bodies in all parts of the world were confereft upon hime He died in the 73d year of his age.

DEATH IN THE SCHOOL ROOM.

Despite the frequent casualties due to imperfect ventila tion, together with tl:e generation of noxious grses in large ly populated buildings, though assisted by the oft repeated counsels of the best sanitary authorities as to the proper mode of remedying the evil, our progress in learning how to afford a constant supp'y of pure freeh air is, at best, sad ly discouraging. The New York World, with commendable enterprise, has recently employed Dr. Endemann, of the Board of Hear th of this city, to make a careful chemica examination of the concition of the atmosphere in our pub ic schools: and the results of that gentleman's invertiga tions, as published with much detail in the above men tioned journal point to a state of affairs that is simply dis graceful.
Graham and Liebig have pointed out that the mean amount of oxyren in the atmosphere is $20 \cdot 9$ volumes per cent, lear. ing a balance of $79 \cdot 1$ nitrog \uparrow n, carbonic acid, and other constituents. The normal quantity of carbonic acid gas is, how ever, very small, and is estimated by le Saussure at 4 parts in 10,000 . Dr. Varkes considers that an increase of this pro-
portion to 6 Farts in 10,000 , or 0.06 of 1 per cent, is the highest permissible impurity. In acalyzing the samples of air, Dr. Endemanu used Pettenkoffer's method, by which the air is introduced into a glass globe, together with a solution of caustic baryta of definite strength. The alkalinity of the baryta solution is diminished in proportion to the amount of carbonaty of baryta formed, and will be neutralized by a proportionally less quantity of a given solution of oxalic acid, thus furnishing the elemerts of an accurate calculation of the amount of carbonic acid in the air contained in the globe. A measured amount of lime water of known strength may be used instead of the caustic baryta solution. The effect of the carbonic acid is then to neutralize and pre cipitate a quantity of lime in the form of chalk, and the ox alic acid determines the proportion of lime subsequently re maining. The difference in the quantity of lime before and after the action upon the air enables the operator to calca late the existing ratio of carbonic acid.
Carbonic acid is the product of perfect combustion and of the breathing of animala, the oxygen in the latter cafe uniting with carbon in the system; and the air expired contains about 4. per cent of carbonic acid gas. This, however, in ope: atmosphere. soon diffuses itself, but, if confined incircumscribed quarters, contaminates the air to such an extent that, if atmosphere containing one two-hundredth part of it be breathed, headache and lassitude result. Such a proportion is, loowever, far from fatal, for Berzelius points out that five or six per cent may be inhaled with safety, and that life may continue for some time in an aimosphere conta ning thirty per cent. This latter assertion, we imagine, m ist be based on an extreme case, as it is generally conceded the t twenty five per cent of carbonic acid is sufficient to fatise sperdy death. Dr. Endemann, in his report, exempli fies the mortal effects of the gas in a statement that children
reathe about fourteen cubic feet of air per hour, and this/tional buildings. To architects and builders generally, the air, when exhaled, will contain 430 times the normal amount feet square by 11 feo persons be placed in a mom, say be hermetically closed, so that there could be no circulation, in about two hours and a half all the air would be inhaled d probably not a soul would be living.
Space necessarily forbids our following the carefully pre pared details of the report before us, but the citation of a few cases will serve to show the flagraut neglect which must characterize the sanitary reguiations of our schools
(1) Rooms 18 by 16 feet: 43 scholars: temperature, 62° Fah. : carbonic acid in 10,000 parts, 26% or 6.6 times the normal amount. The air was described by the inmates as generally oppressive. (2) Large class room, 20×18 feet: Odor very foul ; 47 scholars; 4 times the normal amount. (3) Clers roul ; 47 scholar, 65° timperature; ir amount as coustantly bad, aud very correctly, as analysis showed 8.1 times the normal quatity of carbonic acid. In the next wo tests, this proportion is 7.5 and 5 times.
The annexed engraving is a specimen of the heating and ventilating arrangement in the well known 12th street school, an establishment accommodating 1,200 fenale scholars. is the register, and l the ventilator. The heat,entering, roasts

he back of the teacher at d, ascends, and immediately escapes at b, or, in cace the window is open, diverges into anther current, p. The cold, heavy carbonic gas is, as is evient, totally unaffected by the draft, and settles down upon the children at e. Mr. Lewis W. Ieeds made a report re garding this school some time since, which, for some occult eason, the Board of Education saw fit to suppress. He pointed out the difficulties above indicated, and also ex olained a neat arrangement of the janitors, in converting the fresh air ducts to the furnaces into hen roosts, partitionng the same off, so that the air supply was obstructed; but copious odor of poultry was added to the hot current. Fowl"air, he very truly remarks.
Example 6 consists in analyses made in a room heated by steam; teacher and children all complaining. The temperature was 60°, and $8 \cdot 3$ times the normal proportion of carboncacid was indicated. Passing over succeeding testr, none f which show a larger percentage of carbonic acid than last $\mathrm{m} \in \mathrm{n}$ tioned, we notice repeated cases of the most dense ig norance displayed in the steam heating arrangement. In one school the ventilators were shut, choked by rust, and the janitor had no conception of their use. In another the steam heaters were arranged after the fashion indicated in the next

engraving. The current of air from the heater, ", escapes hrough the opened window, while the cold air from the lat er pours down. There is a constant circulation, as indica ed by the arrows, at the sides of the room, while the center of the ayartment becomes packed with foul air.
There is no necessity of entering into further minutice. In this city there are 59 grammar schools, 42 primary schools, nd 6 schools for colored children, and the number of pupils thus subject to the dangers we have noted is estimated t from 80,000 to 100,000 . There is unquestionably a deided need for simple and efficacious plans of ventilation which may be promptly put in practice in these institutions at no very large expense. Dr. Findemann suggests the fol owing system:
Here the warm fresh air, flowing in at the register, a

ascends to the top of the room. The windows being closed, cools gradually and descends, returning to the ventilator, which is either below or on a level with the register, where it is drawn off and escapes through the flue.
The New York World has done good work in thus exposng the shameful condition of our schools, and parents would do well to profit by the warning. It supplies the explanaion of many a pale fuce and aching head, if not of severe maladies, engendered by a system of slow poisoning. Other cities may take the hint, and investigate their own educa
subject exnressly addresses itself for a sueedy and efficient solution.

TO OUR FRIENDS

In dealing with our legions of friends, it is our earnest de sire to give satisfaction to every one of them. But should any suppose that we have orerlook.d their requests or alighted their interests, we hope they will at all times promptly inform us. 了ostal cards only cost a penny. Speak plainly, and do not hevitate to complain.
Our mail writers and folders are under special injunctions to write our subacribers names upon the envelopes legibly, and fold each paper neatly. We shall be glad to be informed if anybody receives slovenly work from this office.
At the beginning of the year, many thousands of subscrip tions are renswed, new clubs formed, etc. If any person fails to receive the paper, or any premium to which he is en titled, we will thank him to inform us promptly.
If, by any chance, any editor or publisher, who by any agreement is to receive our paper, should fail to receive it, we shall be glad to be informed.
Persons who have written to us upon business or sent en quiries for the parer which have not been answered, are requested to repeat their enquiries. Letters sometimes fail to reach us. Be particular to mention the State in which you live. In some cases we are perplexed to know where to direct, when no State is given and there are many post offices of the same name

SCIENTIFIC AND PRACTICAL INFORMATION.

Fog sichness among evghinil cattle

The recent heary fogs about London and its vicinity have been productive of an unusually large outbreak of sickness among the cattle gathered at the Sinithield Club show. The sufferings of the animals are described as very great, and are so clearly traced to the peculiar state of the weather as to excite apprehension that some similar malady may attack the stock on this side of the water, if the dense mists, which have prevailed to such an extraordinary degree during the present winter, continue. The Filld says that, on the third day of the show, which opened with every appearance of a successful exhibition, and with a fine variety oi prize cattle, ninety of the animals were removed, seemingly choking, and it was found necessary to slaughter fifty immediately. The illness was not confined to the single locality, liut affected the horned cattle in the markets and in the suburbs; so that it was not, as has been suggested, due to foul air or lack of ventilation in the Smithfield Club building. Sheep and pigs, moreover, were not affected. The treatment used was an abundant supply of pure air and a sedative tincture of aconit.e. The sickness lasted for about five days, until the dissipation of the fog.
new oeservations of stellar motion.
Dr. H. Vogel, at the new observatory at Rotbkamp, near Kiel, Germany, has recently made some researches into the movements of certain stars with relation to the earth by observing the position of the rays of their spectra. The stars thus examined are $\alpha L y r c e$ and α Aquilce. It appearsthat $\alpha \boldsymbol{L y}$. $r c e$ is approaching the sun at the rate of 52 miles per second, a result which accords with previous observations made by Huggins, in which the speed was estimated at between 45 and 54 miles. α Aquiles is moving insimilar direction at the rate of 48 miles per second. Dr. Vogel applied his method to the constellation of Orion some time ago, and determined that it receded from the sun at a speed of about 16 miles per second.

decorating wool Ey printing.

Mr. Thomas Whitburn, at a recent meeting of the English Society of Arts, described a process, recently patented by Lim, adapted to express, on flat surfaces of wood, effects of light figures on a dark ground, or of dark figures on a light ground, or of Gigures light and dark in parts on a ground intermediate in shade. The designs or patterns are engraved in the ordinary way on box wood, and, from the blocks, the wood is imprinted on a common hand printing press with printer's ink. The process is capable of being used with two or more colors, and is designed for the ornamentation of door panels, furniture, etc.

XEW PIIOTOGRAPHIC PROCESG.
We have heretofore mentioned a recent improvement in dry plate photography which conrists in using gelatin instead of the ordinary collodion. The nitrate of silver, for sensitizing the gelatin, is mixed with the gelatin solution. Thee only drawback to th:is new process was the fact that the gelatin solutions could not be long preserved, especially in warm weather. This difficulty has been lately overcome by Mr. Burgess of England, who prepares the censitive gelatin solution in any quaintity that may be desired, and, after preparation, deficcates or dries the same by spreading the solution on glass plates. The dritd film is then broken up into small bits and packed away in dried condition for use. Thus prepared, it will always keep good and only requires to be dissolved in water, to form an excellent sensitized solution.

The Alignment of the Hoosac Tunnel.-Mr. Charles Fosdick, of Fitchburg, Mass., writes to say that the credit of the calculations in boring the Hoosac ti.nnel and the almost perfect alignment is due to Mr. Frank D. Fisher, the firs: assistant of Mr. B. D. Frost, the chief engineer. Mr. Fisher is a native of Massachusetts, and was educated at the I^{\prime} ‘i. tute of Terhnology in Bo:ton

