will remove any chromium salts atill remaining in it, and will also press down the loose flm uniformly upon the glass surface. Finally, the plate is allowed to dry in a perpendicular position. Further treatment of the plate with varnish follows as a matter of course.
The image upon the collodion film is very thin; but you need be under no apprehension of its tearing while in the water, when it may be easily manipulated. I have to do with filma of this kind measuring three feet square.-J. B. Obernetter.
New Antidote for Arsenic.-The only antidote for araenic heretofore known has been hydrated peroxide of iron, which must be freshly made by mixing carbonate of soda or potash with a solution of either sulphate (copperas) of iron or muriate. A French experimenter, M. Carl, says that sugar mixed with magnesia serves as an antidote for arsenious acid.

In Europe the multiplication of photo prints is extensively done by mechanical means, with printing ink, and the copies, equal or superior to silver prints, are supplied at half the equal or superior
cost of the latter.

Frientifir American.

MUNN \& CO., Editors and Proprietors poblisied weekly at
NO. 37 PARK ROW, NEW YORK

> | O. D. MONY. | A. E. BEACE. |
| :--- | :--- |

HEMME。

One copy, one yoar...

8300
150
2500
5
50
VOLUME XXX, No. 26. [New Series.] Twenty-ninth Year.
NEW YORE, SATURDAY, JUNE 27, 1874.
Contenta:

Clustrated articles are marsed with an asterits	
Bleachiou, improvements in....... 402 Lead poison,	
area	
ds.et	
Excavalionfor East river bridge 408	
Gold fich, treatment of............. 402 Tura	

THE END OF VOLUME XXX

The thirtieth volume of the present series of the Scien. tific American closes with the present issue, and, completed, joins its predecessors as another milestone, recording the progress made by mankind in the path of Science during the six months which have just passed. It is hardly necessary to point out that, in the pages now finished, it has been our endeavor, as it will be in those to come, to popularize scientific knowledge, and to make the same generally available to the masses; not aiming to supply information valuable alone to the engineer, to the ctemist, or indeed exclusively to any profession or calling, but ratioer to glean from the whole broad field of Science and Art the richest sheaves of genius, and to present, winnowed therefrom, the kernels of wisdom, unmired with the chaff of technicality and abstruseness. That such a course has met the public approval, our increasing circulation and the many letters of which we are constantly in receipt, offering us pleasant wishes of en couragement, are the best and most flattering evidence.
In glancing back over the contents of the past volume, we feel that we may confidently assert that in no other periodical now extant is there to be found a wider range of topics, treated in popular and readable form, the perusal of which will add more largely to the stock of valuable knowledge of any reader.
In the pages now closed we have presented 258 illustra. ted subjects, in many cases with not merely a single cut, but with a series of engravings. These embrace the most recent mechanical inventions, patented in this country and abroadnew steam engines and boilers-new weapons of war-new tools for every variety of industrial employment-new household implements-new machinery of every kind for especial purposes-illustrations of new scientific experi-ments-views of new buildings, bridges, and monumentspictures of rare and new plants, fossils, and animals-of queer freaks of Nature in the animal and mineral world-
lucid diagrams, explanatory of mathematical demonstrations, lucid diagrams, explanatory of mathemat
As for miscellaneous information, we would refer the reader to the columns of fine type, attached to this number, which form the index, in order to gain an idea of the number and variety of the matters he has examined.
No great discoveries have been made during the past aix
stopping, as we now do, for a momentary breathing apell, we can look back and see a notable advance. Professor Thurston has sent as a large amount of important and valuable news regarding the behavior of metals under stress, and how to test them-facts of the liveliest interest to every engineer and mechanic. Professor Orton has continued his letters, telling us about the little known resources of Central South America. In astronomy, we have presentedour monthly notes, regarding positions of planets, times of phenomena, etc. abstracts of Professor Proctor's excellent lectures during his late visit to this country, and also an account of Professor Wright's discovery of the cause of the zodiacal light. We have also noted the discovery of new planets and cometa號 San Francisco, for a gigantic telescope, and illustrated an ingenious plan for the manufacture of that great iastrument the device of Mr. Daniel Chapman. Our abstracts from the proceedings of the British Association, the French Academy of Sciences, and our own scientific associations, have been very full and accurate, while reducing the new topics dis cussed for ready comprehension by every one. Engineering subjects have been so extensively treated that it is hardly pos sible to particularize. We have illustrated the 1,000 foot tower proposed for the coming centennial, called attention to new processes of tannel boring, bridge building, and railrqad construction, mentioned some important works in hydraulic engineering in the Weat, and, in a multiplicity of articles from the pens of expert writers, considered topics of a timely and lively interest to the profession. Chemica matters have recsived their full share of attention, and so also
the important subjects of electricity and magnetism, in which notable advances have been made.
With the end of this volume many subscriptions expire which we hope to see apeedily renewed. In accordance with our rule, the paper is not sent after the subscribed-for term has expired; so that those who have failed to remark the notice on the wrappers of the copies received lately will be warned, by the cessation of our visits, that the timg has come for them once more to express their appreciation of our efforts by sending us their substantial support.

HOW TO ATTAIN HIGH TEMPERATURES

In his recent interesting address before the Société des Ingénieurs Civils, M. Jordan spoke at some length of the methods now adopted of attaining high temperatures in me tallurgical operations, and of the bearing of chemical principles and recent discoveries upon the subject. The learned engineer speaks of the "duel," as he terms it, between the fire on the one hand and the refractory materials used in the arts on the other, and recognizes the serious difficultie which impede the effort to utiiize high temperatures, when it is possible to attain them.
The siemens regenerative furnace and its modifications represent the most successful means yet in general use for producing extremely high temperatures, and the difficulty most frequently met is that of finding fire brick or other ma terial capable of withstanding the heat of the ignited gases We have known of instances in which the lining of steel melting furnaces has been melted down like wax before thi tremendous heat. Assuming, however, that we may expec to find sufficiently refractory materials to permit the utilization of still higher temperatures, the problem, to determin how to reach a higher limit, presents itself.
Under ordinary conditions, we cannot much exceed the temperature of a steel melting furnace, since dissociation occurs at a temperature supposed to be in the neighborhood of $4,500^{\circ}$ Fah., for oxygen and hydrogen ; consequently all combustion must be checked at some lower point on the scale, so long as no external force aids that of chemical affinity. The temperature of dissociation of carbonic acid is even lower than that for hydrogen and oxygen, and is shown to be not far from $2,500^{\circ}$ Fah. Finally the presence of nitrogen in atmospheric air reduces the maximum temperature attainable, by furnishing a mass of gas which, while itself adding nothing to the supply of heat, abstracts (from the heat supplied by combustion of carbon and hydrogen) the larger amount required for its own elevation to the temperature of the furnace.
Elevation of the limit to increase of temperature of fur naces may be obtained by elevating the temperature of dissociation, and this, it has been found, may be done by producing combustion under pressures exceeding that of the at mosphere. Mr. Bessemer, the well known inventor who so nearly antedated our countryman Kelly in the invention of the pneumatic process of manufacture of iron and steel which is generally known as the Bessemer process, has patented a method of increasing the pressure under which such operations occur. In the ordinary pneumatic process, this in the small area of the opening by which the gases leave th converter, and it is stated that the pressuse within the con verter sometimes becomes double that of the external atmos phere. We may doubt if the increase ever becomes so great as this; yet there can be no doubt that it is sufficiently great to have an important influence in elevating the limit of dis sociation and in giving the very high temperature which holds nearly pure iron within the converter in a condition of fiuidity never observed elsewhere.
It is readily seen that the conclusions of M. Jordan, in the address to which we alluded above, aye justified both by Science and by practical experience. He ad vises: The choice of a combustible which maj be consumed in a bath of metal purnishing a non-volatile residue withoutinjuring (eans denaturer) the metal, and the adoption of a form, of furnace which, heated by ges or otherwise, may be worked with in internal pressure of meveral atmospheres. He refers to the
marvelous discoveries, recently made, relative to tempera y bodies as direction of attaining high temperatares.
The problem presented is as interesting and attractive as it is important ; and the inventor of new methods or of per fected apparatus, and the discoverer of more refractory mate rials than those now used, will aid greatly in its solution Powerful intellects and ingenious mindsare at work upon it and we hope that our readers will be able to find in our columns evidence that the ingenuily which has made our people famous as a nation of mechanics, and the growth of Science which is gradually becoming so noticeable among us, have assisted to a valuable extent in effecting so important an advance in this direction. Any improvement or discovery which assists in the production and the economical application of high temperatures aids every branch of indus ry, and promotes our material welfare in an inconceivable number of ways.

\triangle CURIOUS PROBLEM.

In our queries of last week's issue a correspondent, B. F B., says: "There is a problem, which some one has found in a work published many years since, which is as follows A man, at the center of a circle 560 yards in diameter, starts in pursuit of a horee running around its circumference at the rate of one mile in two minutes; the man goes at the rate of one mile in six minutes, and runs directly toward the horse in whatever direction he may be. Required the distance each will run before the man catches the horse, and what figure the man will describe.' I hardly think it admits of a solution under the above conditions ; but were they reversed, that is, if the man were running at the rate of one mile in two minutes, and the horse one mile in six minutes, what would the answer be?"
This problem gives rise to an interesting investigation of curve, which at first sight appears to be similar to the spi ral of Archimedes, but on further examination proves to be totally different. The spiral of Archimedes is the track of a point which moves with uniform velocity along the radius from the center to the circamference, while, at the same ime, the end of the radius travels round the circumference. In this problem, however, the point moving from the center does not move uniformly in the direction of the radius, but more and more obliquely toward a uniformly progressing point in the circumference, giving rise to an intricateapplica tion of the differential calculus, which finaliy proves that the man will never reach the horse, but that the curve described by him will, after three revolutions of the horse, be nearly dentical with a circle, the circumference of which he will approach more and more, and of which the radius is one hird of that in which the horse moves. The most interest ing fact revealed, however, is that, if the velocity of the man is half that of the horse, he will, after two revolutions, be near the circumference of a circle of half the radius of the outer one; and when he moves with one fourth the velocity he will, after four revolutions, be very near a circle of one ourth the size, and so on.
In order not to burden our readers with extended calcula tions in the field of the higher algebra, we have solved the problem in the graphic method. In our first figure we hav

divided the circumference of the circle into sixteen equal parts, $0,1,2,3,4$, etc., and taken one third of such a part and set it out on the radius from the center, 0 to 1 . While he horse has moved along the circumference from 0 to 1 , the man will have traveled from the center 0 to 1 ; while the horse is traveling from 1 to 2 , the man will have traveled along the line 1, 2, 2; while the horsetravels from 2 to 3, the man will travel in the direction 2, 3, 3, and so on ; the only differ ence between our engraving and the reality being that the hort lines representing the road traveled by the man will be slightly curved, instead of atraight as we have represented them. By making these lines smaller, we may come suff ciently near to the reality, but the final result will not essen tially differ. If the reader follows the differeat tracings for hree revolutions, as represented here, he will see that finally the man will walk in a circle one third the size of that i^{n} which the horse moves, and will constantly see the horse in direction tangential to the circle in which he walks; and therefore he never can reach it if he always moves directly ward the horse.
It is quite otherwise when the problem is reversed, and

