MAY'S PATENT BUTTER WORKER.

Our illustration refresents a new butter worker, by the aid of which, the inventor claime, two or three men can work, rework, color, and pack ready for shipment from two to four chousand pounds of buster per day. The machine, it is stated, will work all colors of either soft or hard butter, mixing the same so thorougtly as to cause it to appear fresh ly cburned. The sour milk and water are removed, and the butter, being solidified and condensed, is greatly improved, both in quality and in capability of preservation.

The cylindrical vessel shown is secured to the platform, and within it rotates a central shaft, A. On the inside of the body, and attacbed to the shaft, are placed, one above anothe r , a series of horizontal and rounded arms, B, each pair of which is located at an augle to the couple next above or below. Across the interior of the vessel, and on opposite sides, are secured the stationary chord pieces, C, also made rounded. The shaft is jour naled to the diametrical board, D, and power is applied to its upper extremity by means of a sweep, as shown. The vessel has at the bottom a discharge orifice, E , which is cut obliquely in order to allow the butter to escape freely, as the lower pair of rotary arms carry it around.
The mode of operation consists in placing the lbutter in the receptacle, where it is successively worked by the arms and bars until it reaches the Bottom, whence it emerges by the aperture above meferced to. It will be noticed that the entire wrikiog parts of the machine are of wood, and that me metal comes at any time in contact with the battor.
Patented, through the Scientific American Pat ent Agency, March 10, 1874. For further information address the inventor, Mr. Alexander May, No. 419 West Market street, Louisville, Ky.

The Amorican Tin Ware Trade.
For a long time past one of the best customers of the British maker for tin and terne plater bas been the United States of America. At one time we were sending to that country great consignments of tin plate goods in varied shapes and of different values; lately the Americans have learned themselves to use up the tin plates, and now we have them shipping tin plate wares to this country, made from the tin plates with which we have supplied them. In America itself it was at one time thought an extraordinary thing for the Western and Southern States to send into the Northern States articles for which they had before been indebted exclusively to the lat ter. It was only a few months before that, in conversing with a manufacturer in the Western S ates of hardware goods a^{2} n ne time obtained by the new world almosi solely from Birmingham, we were assured by the American that he should soon be forwarding this same claes of goods to com pete with those of the Birmingham district in their home market. The gooas were not those which bave tin plates fortheir fabric; but what the tin plate makers of the United Scates aredoing would seem to imply that his assurance was something more than empty boasting. The United States manufacturer displays an amount of ingenuity ia invention which is but seldom seen in England, and the handicrafts men in the new world, unlike those of the old, are ready to adapt themselves to a new pattern so soon as it can be shown that it is at all probable to be a success. The American tin plate goods that are now being offered in Birmingham and South Staffordshire are described as simply marvelous, botb as to the price of the articles and the ing?nuity displayed in their construction. Surely there is something very wrong in this conntry when the Americans, after buying our tin plates and paying heavier wages for the manufacture of the article, are able to offer it here at prices much under those at which we can produce it. -The Engineer

DR. MAREY'S CHRONOGRAPH

The use of the tuning fork for the measuremen of very short intervals of time presents certain ad. vantages which have led to its extended employ ment in recent chronograpbic apparatus. Our illus tration represents a new instrument of this descrip tion, which is an improvement on a device of M. Mercadier, or rather is an attacbment to the latter for the purpose of ensuring greater accuracy. M. Mercadier's invention is shown in the upper portion of the engraving, and consists of a tuning fork horizontally placed. One branch is attracted by an by an electromagnet. Its movement toward the core. however, breaks the current, causing the arms to spring back. This phenomenon is repeated indefinitely, throwing the branch into very rapid vibrations, each of which causes the contact of a platinum wire with a small platinum disk communicating with the battery. Suitable registering devices were connected with this instrument which it is unnecessary here to describe, as Dr. Marey found that its employment was frequently ditficult on account of the extremely small amplitude of the vibrations. In order to remedy this defect, the above inventor places, in the curcuit of the tlectromagnet of the tuning fork, a second electromagnet which naturally becomes magnetized or demagnetized coincidently with the first. The second coil has a single bobbin and attracts its armature a hundred times per second. The armature moves in a plane parallel to the polar face. and is
carried by a spring. In order to obtain an absolute unison between the two vibrations, the spring is regulated to proper length by means of a delicate screw. The armatury being attracted laterally, its sudden stoppage is avoided, and a much larger amplitude is obtained; and by means of a piece of quill, forming a prolongation, it traces curves correspond ing to bundredths of seconds on a blackened surface. The electromagnet is carried, as shown in the principal figure, in a handle through which paeses the conducting wires establishing the communication with the battery and tuning fork. These wires, which for convenience are united in a

MAY'S PATENT BUTTER WORKER

single cord, may be of suitable length to allow of using the instrument in any portion, for instal ce, of a rocm
If it be desired to measure the exact period of revolution of a pulley and its variations of velocity during its rotation, the faca of the wheel is covered with lampblack, and the quill point of the chronograph brought in con act therewith. The tracing will show the angular movement during ϵ acb one hundredth of a second, enabling the builder, for example, of a machine requiring delicacy of construction, to detect errors which otherwise might escape his notic". By the same means, suitably arranged, Dr Marey is enabled to govern the movement of an escaprment, and hence to regulate accu rately the operation of a train of wheels, an application of value in telegraphic instruments.

Rattlesnakes and Tarantulas in Colorado.
The Rocky Mountain Miner and Mechanic, publisbed at Denver, under the head of "Cyclupæaia Colorado," devotes a column or two to describing some of the natural products of that wonderful region. In the last number, the editor peaks of rattlesnakes as venomous serpents, to be found in all parts of Colorado.
He says: " It is popularly supposed that the age of the nake can be estimated by the number of rattles; but thi is a mistake, for though these may increase with age, their fragility is such that many may be lost by accident; and

DR. MAREY'S CHRONOGBAPH.
would be incorrect to conclude from these that the snake was nother more nor less than twenty years old. As the been generally
varn animals and man of its vicinity; but it is more likely that its use is to startle the creatures, upon which it preys, from their retreat, and bring them within the reach of its spring; or some other purpose for its own welfare rather han tbe safety of man. Dangerous as they are, they rarely attack man unless provioked, and are fortunately sluggish in their movements, unable to spring except from a coil, and are dipabled by slight blowis. They are viviparous, the eggs being retained until hatched, and the young expelled alive In winter they retire to holes in the ground, and there re main torpid, eeveral interlaced with each other. They are unable to climb trees in pursuit of prey, and do not follow a retreating animal that has escaped thi ir spring. The most common of the rattlesnake tribe found in Colorado, the prairie rattlesnake (c. tergeminus), is a little over two feet long; it is cinorous above, with a tripl series of dark brown epsts, and a double serie of dusky spots below; it is fond of hiding in the holes of the prairie dog.
From the same source and under the same heading, we learn something of the tarantula or tarentula, " which," the writer says, " is a terrestrial hunting or wolf spider, belonging to the genus lycosa, the l. tarantula (Laur.) It is the largest of spiders, measuring $1 \frac{1}{2}$ to 2 inches in the length of the body; the color is ashy brown above, marked with gray on the thorax, and with triangular spots and curved streaks of black bordered with white on the abdomen; below saffrón colored, with a trans verse black band. It received its popular name from being common in the vicinity of Tarants, in South Italy. It makes no webwandering for prey which it runs down with great swiftness, and hiding in holes in the ground and crevices lined with its silk; there is one spiracle on each side, one pulmonary sac, and eight eyes; it is very active and fierce and the females defend their young and eggs with self sacrificing bravery. Its bite is sup posed to be highly poisonous. The l. Carolinen sis (Bosc) is called tarantula in the Southern Scates; it attains a length of 2 inches, with an extent of legs of 4 ; it is mouse-colored above, with white sides and whitish dots and lines on the abdouen; below, blackish; legs whitish tipped with black. It makes deep excavations in the ground, which it lines with silk; the females carry their young on the back, giving them a hideous aopearance, if covered with warts; the young run off in all direction if the mother be disturbed. Its poison is active. Both sinds are found in Colorado, but the latter are the most nu merous. A favorite haunt is the hole of the prairie dog, where the rattlesnake, the tarantula, and the dog maygenrally be found sociably living together.
[It would seem from the above that the attractions of Colorado are not strictly confined to its grand scenery or its agricul:ural and mineral products, but that the naturalist may there find specimens venomous enough to gratify the ambition of the most entbusiastic stud+nt of Nature.-EDs.]

Expansion of Steam.

At a rec ${ }^{\circ}$ nt meeting of the South Midland Institute, Mr. Barnard Walker said that the su bject of economizing fuel in the production of motive power, or, in other words, the principal points in the construction of steam engines, on which epended tbeir wastefulness, was one of great importance, and nowhere more so than in that district. Profespor Joule had calculated that the best engines at present in existence did not render available more than from one tenth to one twelfth of the motive force stored up in the fuel. Rememoering that the ordinary steam engines used in manufacto. ies, in mines, and on railwaye, consumed at least four times more fuel than if they had been made according to well known scientific principles, the national loss thus arising must strike every one as enormous, but the loss was far greater by the use of ill constructed engines. In this part of the country, in the past, consequent on low priced fuel, this matter had been disregarded. Now, however, with costly fuel, it behoved every one to consider the avoidance of wapte. From considerable acquaintance with the kind of steam engine used in England, he assumed that few were taking less than from $7 \frac{1}{2}$ to $10 \frac{1}{2}$ lbs. of coal per horse power per hour. Those of the best construction, however, were being worked with as low a consumption an $1 \frac{1}{2}$ lbs. to 2 lbs. of fuel. Mr. Walker thought aimple, plain, easily managed engines, that, with ordinary care, would not require more than $2 \frac{1}{2}$ lbs. to 3 lbs. of slack per horfe power per hour, could be made. After pointing out the importance of all those numerous items included under the head of "good wornmanship," and appealing to the members to detail the results of their observations as to the perfection being attained in these respects, he drew attention to the great saving that was being effected by what was termed working steam er gines expanaively, and the principles therein involved. Mr. Walker then showed cog.nt reasons for expect. ing better results from double than single cylinder engines. The drawback to their employment appeared chiefly due to their greater first cost and expense of maintenance, but in very many-nay, most-cases, the saving of fuel thereby gained far more than compensated for the interest on first coast and amount of repairs.

