SCIENTIFIC AND PRACTICAL INFORMATION.

blact phosphoris.

The essential feature of this body, says M. Blondlot, is hat in a atate of fusion it does not differ from normal phosphorus. At the moment of solidification, howerer, it suddenly becomes black. On re-fusing, it again turns white, and so indefinitely.

SIMPLE LEVELING INBTRUMENT
M. Goulier proposes for the above a pendulum hung by a double point, which carries, rigidly attached, a collimator formed of a small tube hermetically closed at one extremity by a piece of ground glass. At the other end is a converging lens, 18 inches in diameter and 54 inch focus. The radiging lens, u of the exterior face of the lens should be six or seven us of the exterior face of the lens should be six or seven
times less than that of the interior face. At the principal times less than that of the interior face. At the principal
focus is a diapbragm pierced with a hole 0.06 inch in diameter, across which is a thread of black cotton. By suitable construction, the pendulum being at rest, the plane passing through the thread and the optical center of the lens is horizontal. On looking through the lens, the observer sees the thread as a horizontal line, which marks on the field the intersection of borizontal plane through the instrument. By placing the eje in proper position, the thread and exterior objects may be seen at the same time, and the mark on a levobjing rod may be adjusted to coincide with the thread, so obeling rod may b

dangers of methylic alcohol

Serious maladies, says the Lyons Médical, have been engendered among the workmen in two industrial establishments by the employment of methylic alcohol, that is, wood naphtha, or alcohol derived from wood. The material is used in the finishing of felt bats and of silk fabrics. Its action is directly upon the mucous membrane exposed to its emanations, and also, through the nervous system, upon the entire organization.
The effect is first noticed upon the ocular conjunctiva, which becomes inflamed and injected, producing a sensation of sand in the eyes. A copious flow of tears and extreme sensibility to light (photophobia) follow, incapacitating the sufferer for work. Further symptoms include intense corsza and inflammation of the pharynx and bronchial tubes, together with trouble of the digestive organs. Severe headaches and feelings of heaviness and depression are always present. The rigor of the malady depends upon the extent to which the person is exposed to the alcoholic fumes. The workman who finishes the bottom of a hat is attacked more severely than the one who prepares the rim. It has also been noticed that cabinet makers who use the material in varnish are frequently attacked with tetanic convulaions of the fingers, unknown previous to the employment of the al cohol.

THE COMMERCE OF THE WORLD.

Les Mondes says that the eleven principal nations of the world, Great Britain, United States, France, Germany, Belgium, Austria, Russia, Italy, Spain, Holland, and Sweden, than twenty years. The foreign trade of these countries amounted in 1855 to $\$ 4,251,700,000$, and in 1872 to $\$ 9,272$,amounted in 1855 to $\$ 4,251,700,000$, and in 17 years an increase of $\$ 5,034,300,000$, 000,000 , showing in 17 years an increase of $\$ 5,034,300,000$,
or $118 \cdot 5$ per cent. The increase in population during the above period is $40,177,000$ souls, or 14.8 per cent; and during the firstmentioned year the commerce per capita was $\$ 15.62$, in the last year $\$ 29.76$, or an increase of $\$ 14.14$ to each person.
Mr. Gladatone, we notice, recently atated that during the
last half century Great Britain had accumnlated more wealth than during the entire period of her history. The figures above given would seem to prove this view.

The Warmth of Clothing.

In a careful siudy of the subject of the warmth of clothing, recently published, Dr. Max von Pettenkofer has pointed out that the permeability of stuffs to air is a condition of their warmth. The London Medical Record gives the following abstract: Of equal surfaces of the following materials, he found that they were permeated by the following relative quantities of air, the most porous, flannel such as is used ordinarily for clothing, being taken at 100:-Flannel. 100; linen of medium fineness, 58 ; silk, 40 ; buckskin, 58 ; tanned leather, 1; chamois leather, 51. Hence if the warmth of cloth depends upon the degree in which it keeps out the air from our bodies, then glove kid must be 100 times warmer than flannel, which every one knows is not the lact. The whole question, then, is resolved into that of ventilation. If several layers of the same material be placed together, and the air be allowed to permeate through them, the ventilation through the second layer is not much less than through the first, since the meshes of the two form a syatem of conmovement of the air through these is effected merely by the resulting friction. Tbrough our clothing, then, passes a stream of air, the amount of which, as in ventilation, depende upon the size of the meshes, upon the difference of temperaure between the external and internal atmosphere, and upon the velocity of the sarrounding air. Our clothing, then, is required, not to prevent the admission of the air, but to regulate the same so that our nervous system shall be sensible of no movement in the air. Further, our clothes, at the same time, regulate the temperature of the contained air, as it passes through them, so that the temperature of the air between the clothing and the surface of our bodies averages 84° to 86° Fab. The hygroscopic property of differentmaterials used for clothing essentially modifies their functions. This propertyvaries
with the different materialn: wool, for inatance, takes up
more water than linen, while the latter takes up and gives off its watery contents more rapidly than the former. The more the air is displaced by water from the clothes, the less will be their power of retaining the heat; in other worde, they conduct the heat more readily, and hence we are quickly chilled by wet garmente.

Transparent Photographe.

A laundress's flat iron is, perhaps, the most converient thing that can be made available for mounting the print upon the glass-using a piece of bibulous paper between the iron and the print to absorb the superfluous parafin. Such a mounting may be very usefully employed for securing the soft effect produced by placing a second picture behind the transparency.
In this method of manipulating it will be necessary to melt the paraffin, and perhaps the following mixture may be utilized with advantage, as it is fluid at ordinary temperatures, or, if not so, the warmth of the hand will render it liquid. or, if not so, the warmth of the hand will render it liquid.
The small quantity of Canadian balsam is introduced for the purpose of making the print more adhesive to the glass; but we really bave grave doubts as to its proving of any great ad vantage in practice, because even this substanceis, to a certain extent, amenable to the action of the light and oxygen: Paraffin 2 drachms, benzole 5 fluid drachms, Canadian balsam half a fluid drachm.
The paratin should be melted, removed some distance from the light, and four fluid drachms of the benzole added during the light, and four fluid drachms of the benzole added during agher drachm of benzole, and the whole is then to be mixed to gether. Paratin and Canadian balsam do not mix very well; but with interposition of the reenstruam, benzole, they seem to blend perfectly.
The advantages of such a mirture as the above are that it can be applied cold with a brush, and that it drya perfectly in a very short time if the benzole be of good quality. To perfect the adbesion, however, we would recommend that the warm iron should be passed over the surface after it is quite dry. Such an operationalso ensures the volatilization of any traces of the benzole that might remain. The same solution might, perhaps, be used with advantage to preserve prints from atmospheric influence.-Britrsh Journal of Pho tography.

Tranemission of Pow er by Wire Ropes.
At a meeting of the Institution of Mechanical Engineers, London, Mr. Morrison described the mode of transmission in troduced by the Brothers Hirn, and now extensively used at Schaffhausen, on the Upper Rhine. It appeared that they first used flat metallic bands to transmit the power; but these being found oljectionable, round wire rope was subsequently adopted instead. The rope is usually made of fine steel wire as it must be very tough and flexible. This wire rope, which is about 1 inch in diameter, and contains 72 strands, is run at a high velocity, over pulleys of large diameter. The
total loss of power by friction, etc., was stated to be $2 \frac{1}{4}$ per cent, and it appeared that, of 120 horse power existing at the motor wheel, 100 horse power was utilized at 2,200 yards distance; hut it could not be elicited in the discussion how these figures had been arrived at. It was also estimated that iron shafting, capable of transmitting the same power, would involve the use of 3,000 tuns of material. Various maarials were tried for facing the grooves of the pulleys, such
asper, leather, etc., as there either was excessive wear in the groove, or the facing destroyed the rope. The best ar rangement was found to be a dovetail groove, filled in with gutta percha, in which the rope soon made a channel for itself, after which the wear was not excessive. The pulleys run at the rate of 50 miles per hour, and the ropes last rom $1 \frac{1}{3}$ to 2 years.
Dr. C. W. Siemens, F. R. S., remarked that there was no doubt that, by running ropes at from 30 to 60 miles per hour over pulleys, a large a
with but little waste.
Mr. Willism Smith said that in 1837, soon after his father had invented wire rope, it was used very similarly, and in 1839 and 1840 it was introduced on the Regent's canal for towing barges through the tunnel beneath the Harrow road, and it was also taken $3 \frac{1}{2}$ or 4 miles along the bank of the canal. The bargeman simply threw a catch line over the anning wire, and let go when necessary. It was tested gainst the screw, duck foot propeller, and others, but wae ar application of the principle; the fly rope of an ordinary opery was an illustration, but that had long since been ob olete. He would like to know whether the paper claimed as a novelty, the introduction of endless wire ropes for trans mitting power to a distance; if so, he doubted whether the claim could be substantiated. If the novelty merely consisted in the ronning of the ropee at a bigh velocity, which Was all he could see in it, there might be something in the claim.

IT appears from the soundings made by the Challenger ex pedition, from both the New York and the Halifar sectiode that the true Gulf Stream or Florida carrent is a limited
river of superheated water, of which the breadth is about sirty miles near Sandy Hook, while near Halifax it has sepa rated into divergent atreams forming a sort of delta; ite depth (as determined by the use of the current drag) being nowhere more than 100 fathoms. This river rests upon the emarkable stratum of 60° to 65°, the thickness of which distinguishes the Western from the Eastern Atlantic bewoen Bermuda and Azores, while at leas than double th epth of that layer we come into what is clearly polar

Permanence or the Hydrocarbon Gas.
A very natural doubt has existed in the minds of some of our beat gas engineers whether the hydrocarbon gas could have the ame permanence under the influence of low temperatures as ordinary coal gas. Considering the ease with which air or even poor coal gas which has been naphthalized parts with an important portion of its illuminants at a low temperature, it has been argued that the non-luminous substratum of combustible gases, got from water by the hydrocarbon process, would in like manner part company with the illuminants derived from the bituminous coal distillation as soon as the mixture should be powerfully refrigerated. Experiment, before which all preconceived notions must bow, completely dieproves this hypothesis, and we are able to declare most positively, say Professors Silliman and Wurtz, that the hydrocarbon gas is far more permanent under the inHuence of extreme cold than any coal gas we have been able o put to the same severe test.
The results of many careful experiments by these gentlemen show a loss of from 10 to 40 per cent of illuminating power for street gas under the influence of cold, and no loss for hydrocarbon gas.

THe policy of the Russian Government is to compel all its subjects to worship under the forms of the Greek Church, otherwise to leave the country. A large and flourishing body of Russian Baptists, known as Mennonites, have been obliged to leave, and are now coming to this country. They have purcbased large tracts of lands in Nebraska and Kansas. The advance guard, 185 in number, arrived here a few days ago with $\$ 60,000$ in coin. The total number to be expected is about 25,000 . They are industrious, reliable peo ple, and will be gladly welcomed here. All despots who have similar good people to spare will please ship them to the United States. We have eight billions of acres of good lands in reserve, from which they may choose homes.
MM. Crouzet and Colombat bave just brought before the no tice of the Paris Academy a method for rendering ehips insubmersible through a new application of compressed air They propose that the hull be divided into two parts by a bridge across at the water line, in such a was that air cannot penetrate from the lower to the upper part. If a hole be made in a hull through a collision, the water will immediately enter; but it will not wholly fill the lower compartment, for the inclosed air, not baving any outlet, will be compressed, and will ere long equilibrate the external force. From this moment the ship will cease to sink. It will, in fact, be in the position of a diving bell.

Phosphords as a Core for Cataract.-Dr. Combas gives a case of a girl, aged twenty-four, of nervous, lymphaic temperament, suffering from capsulo-lenticular cataract hardly able to discern light from darkness; suffered frequent headaches. Two or three drops of phosphorized oil were dropped into the eye daily, and frictions of the same used over the forehead. After four montbs of this treatment, which was used perseveringly, the pye improved, colors could be distinguished, and the opacity of the lens so far diminished that it could not be discerned at a distant of two or three paces.
M. Alvergnat has devised an ingenious apparatus which hows that an electric current will not pass equally well in wo directions. Two glass tubes are connected together at the ends by arched pieces, and in one the points of a number of small glass pipes are turned in the opposite direction from those in the other tube. The current instantly passes through the tube in which the points are apex toward the negative poles. The tubes are filled with hydrogen, showing the oscillation of the luminous zones with great clearness.

AN old and dirty sponge may ba cleaned by first soaking it for some hours in a solution of permanganate of potars, then queezing it, and putting it into a weak solution of hydrochloric acid-one part acid of commerce to ten parts water.

decibions of the codits.

United States Circait Conrt--District of New Jermey. [In equity.-Before Nixon, Judge.-Dectided A pril, 1874.]

