the combinations are held together, so that, for instance, the hydrogen has one hook, oxygen two, nitrogen three, carbon four, phosphorus five, manganese six, etc. A combination of two or more atoms is called a molecule; and in the molecule of a compound, every atomic hook is attached to an other hook, either of another atom or of itself. The other material conception realizing this idea is that of regarding these atomic bonds as poles of a magnet, with the difference that, unlike a magnet, which has only two poles, the different elementary atoms possess one, two, three, four, or more attracting poles, by which they have the capacity of uniting other atoms to themselves, so forming the compound mole cule, having totally different properties from the com ponent atoms: so different, indeed, that every chemica compound is to all intents and purposes a body totally dif ferent from the elements of which it is made up.
Chemists have agreed to distinguish the elementary substances (by their capacities for combining with one, two, three, four, five, six, or more atoms of other elements) as univalent, bivalent, trivalent, quadrivalent, quinquivalent, sexivalent, etc., or otherwise as monads, diads, triads, tetrads, pentads, herads, etc., and to accept a modification of the ex isting chemical symbols by representing the bonds, hooks, or poles, by as many dashes. After this idea, the univalent elementary atoms are written with one dash, in front, over, or under the aymbol, thus: $\mathrm{H}-, \mathrm{Cl}-\mathrm{F}-, \mathrm{K}-, \mathrm{Na}-\mathrm{Ag}-$ meaning that hydrogen, chlorine, fluorine, potassium, sodium and silver, are univalent ; in other words that, when each is combined with a single atom of another element, its chemical affinities will be satisfied. The bivalent atoms are written thus:-0-, $-\mathrm{S}-,-\mathrm{Ca}-,-\mathrm{Mg}-,-\mathrm{Hg}-,-\mathrm{Zn}-$; or $\mathrm{O}=, \mathrm{S}=, \mathrm{Ca}=, \mathrm{Mg}=, \mathrm{Hg}=, \mathrm{Zn}=$, meaning that oxygen, sulphur, calcium, magnesium, mercury, and zinc are bivalent, and thus will combine with two univalent atoms, or one bivalent atom. So oxygen will combine with two hydrogen atoms to form water. This is expressed in the ordinary way by $-\mathrm{H}_{2} \mathrm{O}$, bat after the new method by $\mathrm{H}-\mathrm{O}-\mathrm{H}$, indicating how the oxygen atom has two bonds, while each hydrogen atom is only attached by one bond. On the other hand, one atom of oxygen will combine with one of zinc, thus: $\mathrm{Zn}=0$, both being bivalent, having two bonds, and in the same manner one atom of hydrogen will combine with only one of chlorine, thus: $\mathrm{H}-\mathrm{Cl}$, both being univalent,
Among the principal trivalent atoms, we will mention nitrogen, phosphorus, arsenic, antimony, boron, and gold, and their symbols may be written :

In each of these elements, every atom will combine with three of hydrogen, chlorine, or three other univalent atoms, For instance: $\mathrm{H}-\mathrm{N}_{-}-\mathrm{H}$, or $\mathrm{Cl}-\mathrm{N}=\mathrm{O}$, or $\mathrm{Au} — \mathrm{P}^{\text {P }}$

Finally we will mention a few quadrivalent substances : Carbon, silicon, tin, platinum, of which the atoms are represented thus: $=\mathrm{C}=,=\mathrm{Si}=,=\mathrm{Sn}=,=\mathrm{Pt}=$, or,
 univalent or two bivalent atoms. or with one trivalent and one univalent; so we have the combinations $\mathrm{CH}_{4}, \mathrm{CO}_{2}$ and Sn Si, expressed thus:

$$
\stackrel{\mathrm{H}-\mathrm{C}-\mathrm{H}}{\mathrm{H}-\mathrm{O}=\mathrm{C}=\mathrm{O}, \text { and } \mathrm{Sn} \equiv \mathrm{Si} .}
$$

It is especially in the organic compounds, in which carbon plays the most essential part (in fact so much that this element has been called the great organizer), that the law of quantivalence finds the most extensive application. It ought to be stated here that this quantivalence of the atoms is not tota:ly invarialle; but it is remarkable that, if variations take place, they are according to a law which allows a quadrivalent atom to become bivalent or sexivalent, so that a quantivalence expressed by an even number will always be even, and one expressed by an odd number will alwaye be odd. Atoms of the first class are called artiads, of the the second (with odd numberp), perissads ; and this classificaion appears to rest on a fundamental law
This is a short explanation of the fact that a definite quantivalence of the atoms of each elementary substance in one of its most important inherent properties; and it is therefore the most distinctive feature in which the new school differs from the old. It is the chief cause of the recent revolution in chemical science. The old fashioned authors and teachers did not question how the elementary substances were united in a compound; but now it is con sidered of the utmost importance to investigate and deter mine the exact manner in which the atoms are united in order to build a molecular structure. It has long since been suspected that the quality of a chemical compound depends as much on the manner of structure of its molecules from the atoms as in the nature of the atoms themselves; and now it has been proved that a compound may be totally changed by aimply changing the relative position of the atoms in regard to the nucieus of the molecule, which itsel may change without any alteration in the number or qual ity of the individual atoms.
It ought to be considered that the above is not merely the expression of an hypothesis, but is the result of actual experiment. Not a shade of doubt clings to it, notwithstanding that the actual view of the atoms constituting a molecule i Nevertheleas, although it hee been proved that the molocul
of nitro-giycerin, consisting of 20 atoms, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$, can not be larger than the twenty-five millionth part of an inch we are now almost as positive about the internal structure position, and arrangement of its atoms as we are of the struc ture, position, and arrangement of the bodies in our plane lary ayatem.
The theory that heat is a mere mode of motion, residing in the molecules or atoms of bodies, may be considered to be as firmly established as any in the field of Science; and the theories that rise and descent of temperature are nothing but increase and decrease of this molecular motion, and that the absolute zero point of temperature, that of 460° below the zero of Fahrenheit, corresponds with absolute molecular rest, are necessary consequences of this theory. Every substance must be composed of moving molecules, of which the atoms themselves are in constant motion; every complex molecule therefore resembles a planetary system, not only in he arrangement of its different members, but even in the motion of its atoms, which is rotary as well as progressive It is, indeed, a grand idea that the same force which, on the infinitesimally small scale is called chemical affinity, and holds the different constituent atoms of matter in well bal. anced and unalterable groups, so securing the stability of compounds, prevails also throughout the immense distances of the heavenly bodies, wherein we call it gravitation, which secures the stability of the systems of worlds which make up constellations and galaries.

FARMERS' HEALTH.

The State Board of Health of Massachusetts are doing ad mirable work. Their fourth annual rep, rt, published las ear, was a model volume of its kind, and copious reproduc tions from its pages found place in our columns. Its successor, now beforeus, is every whit as valuable. It is not a dry mass of undigested statistics, nor a bundle of official platitudes which nobody understands and no one takes the trou ble to read; but a series of papers, plain, practical, and full of common sense on sanitary questions which are of the nearest importance to every one. We commend the work as exemplifying what a report addressed to the people should be; and it seems to us that an immense amount of good would be done if the generalgovernment, among the tuns of documents supplied to ou r representatives for distribution to their constituents, would provide similar volumes on simila subjects, and compiled in a similar manner.

Some papers in the book before us, we have already embo. died in articles on there topics. At the present time we de sire to direct attention to the very important subject of the sanitary condition of farmers, who, though popularly considered the healthiest people in the world, have, it appears, yet something to learn tending towara their improvement and to the prevention of dangers incidental to their calling. The basis of the views presented is the opinions of the country doctors all over Massachusette, and no better foundation could be obtained. A papir based upon their combined experience cannot be otherwise than insiructive. The farmers in the above State constitute one eighth of the in dustrial population, a less proportion than in the Weatern Stater, as in Illinois the farmers with the farm laborers make up one half of all persons having occupations; sothat no further argument is necessary to prove that their sanitary welfare is that of a v
lation of the country.
The first question considered is that of longevity. A table collated over twenty-eight years shows the average age of farmers at death to be $65 \cdot 13$ years, figures far in advance of all other callings, and greatly exceeding the lifetime of active mechanics (notin appear next on the list. The opinions of the phyeicians consulted also go to show that the farmor's chances of long
life are somewhat greater than those of any other class. As life are somewhat greater than those of any other class. As
regards general health, there appear to be divided views, the large mejority of doctors, however, holding that farmers and their families enjoy better health then most people, while a respeetable minority advocate the reverse. This leads to a more direct examination of the causes which tend to impair the health and ehorten the lives of the agricultaral classes. First of these is overwork, that is, not the nature but the amount of labor performed, comblned with exposare to the weather. Labor carried too far orhauste and enfeebles the frame. During a short season, however, when the y ear's operations are crowded into a space of five months,
and when wages are high, overwork on the part of the farmer is too common. In spring he works at the plow from morning until night, to hurry through the planting; in summer, prodigies of mowing and pitching of hay are done, which too frequently tend to cause serious rupture or other physical injury. Inwinter, there is a continual series of hard work in hauling wood and doing similar exhausting labor, causing sudden changes of temperature in the body. The resalt of the whole is that rheumatism becomes by far the most prevalent disease. Again, farmers' wives work even harder han their husbands, and, it is said, are the most likely to be overburdened. The remedy for such excess of labor on the part of farmers and their families is a better comprehension of sanitary laws. It should be understood that it is not true oconomy to lay up money when the process of accumulating it makes the farmer's wife an invalid, and necessitates the expenditure of a much larger sum for sickness. More laborsaving machinery should be introduced. For small farme, where the more expensive machinery is not available, cheapor substitutes would doubtless be invented, were inventive genius turned that way through the liberality of agricultural ocieties
It is a nomewhat aingular fact that farmors live so little upon their own prodeotiona. They eoted khoir trenl veguti
bles, fruits, eggs, and poultry to the market, and live themselves upon salt pork, pies, and saleratus bread. The re portant that good cooking should be cultivated. It is actu ally easier to cook well than badly, provided the work is not done in a hurry. In the bad cookery, the overwork is again raceable, and it is the very pressure of labor which cause he preparation of the food to be done in any way so long the materials are rendered eatable. A pork diet is not ealthy. The meat is slow of digestion ; it contains an excess of fat ; it may, if improperly cooked, produce trichiniasis and tapeworm, and it increases the liability to consumption and scrofula. Farmers should live on plenty of fresh meat, use ess tea, avoid frying as a means of preparation, eschew pies and cake in excess, and provide for their own tables an abundance of vegetables and fruits, with wholesome, well kneaded, yeast bread.
As a rule, it is said, farm houses are very badly located worse so than city residences. Farmers should comprehend he necessity of choosing a dry and airy locality, and the dangers resulting from living on damp soil orin a low, shut n situation. Where the house is placed low, house draine are sluggish and imperfect, and fogs are frequent; when shut a by higher ground, the air is stagnant, and the effluvia from he house and outbuildinge are not blownaway. Too many rees conduce to dampness and shut out the sunlight.
Uncleanliness of surroundings is a prolific cause of disease Typhoid fever and summer bowel diseases abound in the vicinity of putrescent animal matters, which poison both air and waters. Faulty drains and neglected privies are the most dangerous, while foul cellars and barnyards are also deleterious. No farmhouse should be without a commodi ous covered cesepool several rods from the house, on lowe ground, if possible, and connected with the kitchen sink by a well constructed covered drain. In default of a brick cess pool, an inverted hogshead will do, if the soil be porous, but a barrel never; it is too small to be of any use. The drain should then be kept free, so that the cesspool can be so used that not a drop of dishwater, slops, or any kitchen refuse whatevershall find its way out upon the surface of the ground from the back door or window. Everything should go into the cesspool, except what the pigs can consume, and the back of the house should rival the front in cleanliness and tidiness. Privies should be thoroughly disinfected by the combined use of earth and copperas. The latter can be bought for from two to five cents a pound, and it should be kept constantly on hand. The place should be perfectly in odorous, otherwise the disinfection is not accomplished. In winter the earth closet should be used indoors, and the waste will be found a most valuable addition to the compost heap. Baddrinking water is another cause of sickness. As a rulf well receives drainage from a superficial area, whose diameter is from one to three times the depth of the well, vary ing with the character of the soil. To keep the latter area i thoroughly purified condition is a good and safe rule to follow. A well, for example, twenty feet deep should have no privy, pig pen, barnyard, drain, nor should slops or gar bage be thrown upon the surface, within thirty feet of it in any direction.

Mr. Salem H. Wales, after a connection with this paper more than twenty years, withdrew some three years ago, and was appointed by the mayor one of the Commissioners of Public Parks in this city. Mr. Wales was subsequently chosen President of the Board by his colleaguer, which office he held to the satisfaction of the public until a few days ago. In a pithy letter to the mayor, resigaing his office, Mr. Wales animadverts very pointedly to the acts of our city comptroller, for interfering with the Park Commission in the appointment of its employees. On Wednesday evening, the 26 th ult., a score and more of Mr. Wales' friends gave him a complimentary dinner at the Union League Club; and on the following Saturday he sailed, with a member of hia family, for Europe, for a few months' reat and recreation on the continent. His friends every where will join us in wishreturn.

Ibolating Material for Steam Pipes.-The committee for the trial and inspection of boilers of the State of SaxeAnhalt, Germany, recommend the followisg composition for the above purpose: 132 pounds limestone, 385 pounds coal, 275 pounds clay, and 830 pounds sifted coal ashes. This in finely pulverized and mixed with 660 pounds of water, 11 pounds sulphuric acid at $50^{\circ} \mathrm{B}$., and 160 pounds of calves' hair or hog bristles. The compound is applied to the pipes in coats of 0.4 inch thickness, repeated until a thickness of an inch and a half is obtained, when a light covering of oil is given.
The spring or sommer sosson opened with unusually hot weather in Europe, but soon afterwards severe cold seems to have set in. The sudden change is accounted for by M. De Fonvielle, a French savant, by the fact that the earth is passing behind a ring of asteroids, which absorb a portion of the sun's warmth, due to us while it remains above the horizon. The temperature will not resume its ascensional movement until the annual rotation shall have carried our ephere from the shadow of the multitude of small plantes which is always projected on the same point of our orb.
M. Pasteur, the distinguished French chemist,has recenty been awarded the sum of $\$ 2,400$ by the National Assembly of France in recognition of his eminent services and discovories.

THE man who has thoroughly mastered a scientific priadple holde a keg which opens many lockn.-Tyndall.

