Srientifit Gmmerican.

MUNN \& CO., Editors and Proprietors. poblibied weekly at

NO. 37 PARK ROW, NEW YORK

0. d. MUNN. A.e. BEACB.

25RME。

One copy, one jear.
300

25
50
50
50

volume ixx, No. 24. [New Series.] Tweenty-ninth Year. NEW YORK, SATURDAY, JUNE 13. 1874.

eletation of the elabtic limit by btrebs.
The Scientific American first published, on page 336,vol ume XXIX, the novel and unexpected discovery by Proferso Thurston of the "Elevation of the Elastic Limit by Stress,' as the discoverer has since called it, which was commonicated to the American Society of Civil Engineers, in a note published in the transactions of the Society for November, 1873.

The Journal of tre Franklin Institute, in the last month's issue, contains an interesting statement of the results of experiments made subsequently by Commander Beardslee, United Slates Navy, at the Washington navy yard, independently and by a different form of apparatus, which led to the re-discovery of the same important fact. The editor of the Journal presents the paper as furnishing " most con 310 sive confirmation of the discovery of Professor Thurston."
In these experiments of Commander Beardslee, the iron was generally of poor quality, the tests were made by tensile strain, and the results were recorded from observation instead of by automatic registry, all of which circumstances differ from those of the earlier researches, and the confirmation which is given of the phenomenon referred to is thus rendered the more conclusive. Samples were taken in pairs and sabjected to a strain which exceeded the elastic limit. One was removed from the machine and laid aside ; the companion specimen was left under the loal in the testing machine. In the former case, four tests gave an average increase, in sizteen hours, of 10.00 per cent. The latter method, with six apecimens, gave an average of 11.30 per cent, or, leaving ont one exceptional result, $12 \cdot 20$ per cent. These specimens were of \downarrow square inch section. With smaller pieces of $\frac{1}{}$ square inch section, the same treatment gave,
by the two method $: 8 \cdot 20$ and $13 \cdot 40$ per cent, respectively. by the two method ; $8 \cdot 20$ and $13 \cdot 40$ per cent, respectively.
The (at first sigh!) very singular fact, that an increase of resistance*should be developed when the specimen is taken out of the machine after giving a set, is, we presume, readily explained by the fact that the set, produced by the refusal of some of the particles to return to their original positions, holds other groups of particles separated, and, as explained by the discoverer, allows a flow to take place, relieving internal strain, and permitting nearly all portions of the piece to act together in resisting external force. The set thus holds the piece under strain somewhat as does the mashine.
The subject loses neither interest nor importance by investigation, and we shall hope to learn more of its practical bearings. We have already given much of our space to the discussion of these new facte relating to the strength of materials, and shall from time to time endeavor to present our readers with the latest results of research in this field. There is no subject which is of more direct importance to every mechanicand engineer than that of the strength of the matorials upon which he is compelled to rely in all his con structions.

There are many facts atill unknown to the public, or to the engineering profession even, and of which no knowledge can be gained by reference to books. For example, one of these is the resistance of iron to compression at different temperatures.
Many of our readers can undoubtedly furnish facts of interest and importance; and we hope that those who find themselves in possession of such facts, which have evidently escaped the observation of acknowledged authorities, will assist their brother workreen by sending them to usfor publication.

THE GEOLOGICAL SURVEY OF JAPAN.
We have received from our countryman, Mr. 3. S. Lyman, who was appointed, by the government of Jepan, Director of the Survey, a preliminary report conta
some of the results of the first season's work in Yesso.
It is a pamphlet of 46 pages, excellent in typography and appearance, published and printed in English by the Kaitakushi at Tokei. The work, according to the instructions of the Hon. K. Kuroda, Jikuwan of the Kaitakushi, was conof the Hon. K. Kuroda, Jikuwan of the Kaitakushi, was con-
fined to the four southwesternmott provinces, Oshima, fined to the four southwesternmost provinces, Oshima,
Shiribets, Iburi, and Ishcari, about one third of the island. A number of fossils were collected at several places, but they were too few to justify the employment, at least for the present, of a foreign palæontologist. Besides Mr. H. S. Munroe, an American, Professor Lyman was assisted by eleven natives. They are not only the first Japanese but the first Aslatics to undertake the studyand practice of geology; and although the training of native geologists in India has been begun nearly at the rame time, Professor Lyman trusts that the Japanese will continue to take the lead, and that Japen will become in a few years independent of foreign countries in this direction.
In determining the importance of the points to be more carefully surveyed, regard was had chiefly to their mining value, and many places were visited where valuable minerals had been supposed to exist, but where they proved to be deficient either in quaptity or quality.
Along the principal and many of the smaller rivers are rich alluvial plains, which would be admirable farming sites, were it not for the lack of roads at the present time The soil indeed seems to be very good, even on the uplande, and supports a rich growth of wild plants. The chief ex ception is in the neighborhood of Tarumai volcano, which
so recently as the first of March, 1887, was in active eruption; and where for many miles around, even the low plains by the seashore have been so covered with pumice as very much to lessen their fertility. Yet even here a rich black soil, in some places eix feet thick, exists ar the depth of volcanoes that beow the surface of the ground. The mostly along the shores of Volcano Bay and the adjoining coast. Besides these,there are many more that seem to have long been quite extinct. The highest, most aymmetrical, and beautiful of them all, is Shiribets Mountain, perhaps 6,000 feet high above the sea, and almost a regular cone. The useful minerals of chief importance in the field gone over are : Coal, iron sand, sulphur, limestone, gold, and rock tar and mineral springs ; and traces of silver, lead, zinc, manganese, and copper.
The Kayanoma coal field covers abjut half a equare mile, and has six workable coal beds from three to eight feet in thickness. The coal is what is strictly called brown coal probably of tertiary age, though closely resembling bituminous coal in its appearance and in many of its qualities. Of ron, the whole amount of pure ore in the principal workable deposits is perbape 125,500 tuns, containing 91,000 tans of iron. Only 5,500 tuns of the ore (containing 4,000 tuns of iron) are of the easily smelted kind. The sulphur occur mostly within the craters of now inactive volcanoes. Ho sulphur fumes rise through small crevicesand deposit yellow sulphur on the cold surface of the ground, forming a crust more or less impure, with a mixture of partially decomposed rocks. The shape of such deposits is extremely iriegular and often inaccessible in many parts; so that the precise ex tent can hardly be measured except very roughly. The whole quantity of sulphur to be got from the places thus far visited is possibly five hundred tuns. The gold occurs in the form of small grains and scales in alluvial gravel. No gold-bearing quartz has been discovered. The amount of gold in all the fields surveyed would seem to be less than two millions and a half of dollars, and in none of them to ba abundant enough to give much encouragement to work. ing. The oil is all black, and so very thick as to deserve better the name of tar; moreover it has not as yet been found in noteworthy amount. Mineral springa are abundant; and of the twenty one which were examined, thirteen were sulphur springs with temperature from coldness up to boil ing; six iron springs, from 27° to 91°; one cold spring, with copperas; and two nearly pure springs, 30° and 50° hot.
Though scanty, these details are sufficient to interest us in the future development of Japan, and it cannot be long before representatives of our commerce will follow where
those who have represented our Science have alreaty led the way.

THE INCREABED U8ES OF THE MEMBERS

We doubt if the human body hae ever in any instande an tained the acme of its possible development; and by this we mean that while certain sets of muscles or organs have, in individual cases, become subjected to the will so as to per form feats impossible save through education, we do not believe that the being ever lived who could controlevery member so as to cause it to operate to the extent of its capabili tien. Whether in future agee such a condition will mark
higher atage in the devalopmont of the reen : whother, an th
human mind expands, or, as the saying is, the "world grows wiser," it is reserved for physical culture to keep pace with such mental growth : is a subject for speculation, which, in iew of the doctrines of evolution and the constant approach of organic epecies toward more perfect individualism, is by no means devoid of present interest.
We have discussed at some length the question of the use of the loft hand, and we have pointed out that, by a mistaken notion, children are taught to discard the use of the mem ber, and hence to lose balf the powers which Nature intended they should have when she formed the body as it is. We have also suggested that, so far from restraining the infant from using its left hand, its tendency to employ both members indiscriminately should be encouraged. Now. we propose to advance a step further, and to ask why should not a child be taught to utilize both hands at once, and at differ ent occupations. The idea may seem somewhat chimerica at first, but it is not without the bounds of prasibility. The reader has doubtless seen jugglers who, in performing their dexterous tricks, become so expert that, without any apparent difficulty, they can keep balf a dozen knives or balls constantly in the air or in each hand. The falling and rising of these objects are not uniform, and hence to all in tents the performer accomplishes a totally different result with each momber. In aimilar manner great pianists-Ru binstein is a very striking exaniple in point-use either hand upon the keys with equal dexterity and both together in playing music of tremendous difficulty which $r \in q u i r e s$ power of perception and a control of the muscles of each in dividual finger which is simply wonderful. Again, an or ganist, in performing upon a grand instrument, has several thinge to think of at once: both hands on the keyboard, both feet on the pedals, with stops on either side. couplers and the separate devices for crescendo and other accidental effect are to be looked after. Here are four members of the body acting different parts at the same time.
We could multiply instances of this kind with little trou ble, all going to show that, even when advanced in life, it is possible to educate a certain set or even sets of muscles to perform hitherto unnatural work. Cases there are where men, on being disabled in the arms, have had resourse to their toes, and used those members for writing and even handling tools. We have visited the studio of quite a celebrated French artist whose exquisite paintings were entirely produced with brushes handled in the above manner. But while an individual member, or even the body, may be educated to perform feats apparently impossible, it requires a higher order of training to compel the members to perform different operations at once-a training, we think, only to be fully imparted in beginning at the earliest years, but still fully possible. With our dual brains, the right lobe is now the most developed, and with it the dexter side of the body. Let means be taken to develop the left side equally, and the body is symmetrical in its powers. Each side, governed by both brains, will be capable of work for which now, when controlled by, say, three quarters of the brain power, it is inadequate.
We need not point out the advantages to a person who can thus use both hands in connection with the brain. We have known an artist who could draw tivo different pictures at once; and in a former article, we alluded to a very emi nent professor of natural history who, while watching a specimen through the microscope, sketches with one hand while writing with the other. Now, if a person advanced in life can become so elucated, how much easier it would be to impress the same on the plastic mind of a child. Once taught, the person could write upon two different subjects at once, could make two copies at the same time, could write up two sets of books, could make stenographic notes and write them out in long hand simultaneously, and per form in brief a variety of operations productive of lucrative results. Moreover, he would do each understandingly, and not semi-automatically with one hand. Nine tenthe of ordi nary pianists who have to "learn a plece" play the treble with their brains aad the bass with their muscles. The left band learns certain fixed skips and jumps by practice, and performsthem automatically at certain times, while the right hand carries the expression as weil as the air of the composition, and is much more directly under the control of the performer.
We began by speaking of a possible future of the race Is it then improbable that at some time man may have every faculty educated to its utmost, and thus become raised oo a creature mentally and physically infinitely the superior of such as we now are, as much beyond us as we are beyond the monkey? Traits developed in the parent may be trans mitted to the child and there intensified, and thus an ap proach to human perfection ultimately attained. But meanwhile, who is to begin? To whom among the scores of thousands who will peruse these lines-who may perchance give them a second thought-will it occur that the idea may be carried into practice with the very yellow-haired young ster, perhaps at this moment clambering upon his knee?

THE NEW THEORY OF GUANTIVALENCE
The theory of quantivalence, by which the modern chem. istry differs so radically from the acience laid down in the old text books, thus far used and still taught in most of our scientific institutions, is based on close comparisons concerning the nature of divers chemical combinations; and these have taught that each elementary atom posserses a certain definite number of bonds, by which alone it can combine with other atoms.
There are two material conceptions by which we may assist our imagination to realize this abstract idea: One is to imegine the bonds as heocs attached to the stome, by which:
the combinations are held together, so that, for instance, the hydrogen has one hook, oxygen two. nitrogen three, carbon four, phosphorus five, manganese six, etc. A combination of two or more atoms is called a molecule; and in the molecule of a compound, every atomic hook is attached to an other hook, either of another atom or of itself. The other
material conception reslizing this idea is that of regarding material conception reslizing this idea is that of regarding
these atomic bonds as poles of a magnet, with the difference that, unlike a magnet, which has only two poles, the different elementary atoms poseses one, two, three, four, or more attracting poles, by which they have the capacity of uniting other atoms to themselves, so forming the compound molecule, having totally different properties from the component atoms: so different, indeed, that every chemica compound is to all intents and purposes a body totally dif ferent from the elements of which it is made up.
Chemists have agreed to dietinguish the elementary substances (by their capacities for combining with one, two, three, four, five, six, or more atoms of other elements) as univalent, bivalent, trivalent, quadrivalent, quinquivalent, eexivalent, etc., or otherwise as monads, diads, triads, tetrads, pentade, hezads, etc., and to accept a modification of the ex isting chemical symbols by representing the bonds, hooks, or poles, by as many dashes. After this idea, the univalent elementary atoms are written with one dash, in front, over, or under the eymbol, thus: $\mathrm{H}-, \mathrm{Cl}-\mathrm{F}-\mathrm{K}-, \mathrm{Na}-\mathrm{Ag}-$,
meaning that hydrogen, chlorine, fluorine, potassium, sodium meaning that hydrogen, chlorine, fluorine, potassium, sodium
and silver, are univalent ; in other worde that, when each is and silver, are univalent; in other worde that, when each is
combined with a single atom of another element, its chemical affinities will be satisfied. The bivalent atome are written thus: $-\mathrm{O}-,-\mathrm{s}-,-\mathrm{Ca}-,-\mathrm{Mg}-,-\mathrm{Hg}_{-},-\mathrm{Zn}-$; or $\mathrm{o}=, \mathrm{s}=, \mathrm{Ca}=, \mathrm{Mg}=, \mathrm{Hg}=, \mathrm{Zn}=$, meaning that oxygen, sulphur, calcium, magnesium, mercury, and zinc are bivalent, and thus will combine with two univalent atoms, or one bivalent atom. So oxygen will combine with two hydrogen atoms to form water. This is expresesed in the ordinary way bf $\mathrm{H}_{2} \mathrm{O}$, bat after the new method by $\mathrm{H}-\mathrm{O}-\mathrm{H}$, ordinary way be $-\mathrm{H}_{2} \mathrm{O}$, but after the new method by $\mathrm{H}-\mathrm{O}-\mathrm{H}$,
indicating how the oxygen atom has two bonds, while each indicating how the oxygen atom has two bonds, while each
hydrogen atom is only attached by one bond. On the other hand, one atom of oxygen will combine with one of zinc, thus: $\mathrm{Zn}=0$, both being bivalent, having two bonde, and in the same manner one atom of hydrogen will combine with only one of chlorine, thus: $\mathrm{H}-\mathrm{Cl}$, both being univalent, Among the principal trivalent atoms, we will mention nitrogen, phosphorus, arsenic, antimony, boron, and gold, and their symbols may be written:

In each of these elements, every atom will combine with three of hydrogen, chlorine, or three other univalent atoms, or one bivalent and one univalent, or one trivalent atom For instance: $\mathrm{H}-\mathrm{N}_{-\mathrm{H},}^{-\mathrm{H}}$ or $\mathrm{Cl}-\mathrm{N}=\mathrm{O}$, or $\mathrm{Au}-\mathrm{P}$.
Finally we will mention a few quadrivalent substances: Carbon, silicon, tin, platinum, of which the atoms are represented thus: $=\mathrm{C}=,=\mathrm{Si}=,=\mathrm{Sn}=,=\mathrm{Pt}=$, or,

and the quadrivalent elements will combine with four univalent or two bivalent atoms. or with one trivalent and one univalent; so we have the combinations $\mathrm{CH}_{4}, \mathrm{CO}_{2}$ and Sn Si , expressed thus:

$$
\underset{\mathrm{H}-\mathrm{C}}{-\mathrm{H}}-\mathrm{H}=\mathrm{C}=\mathrm{O} \text {, and } \mathrm{Sn} \equiv \mathrm{Si} .
$$

It is especially in the organic compounds, in which carbon plays the most essential part (in fact so much that this element has been called the great organizer), that the law of quantivalence finds the most extensive application. It ought to be stated here that this quantivalence of the atoms is not
tota:ly invarialle; but it is remarkable that, if variations tota:ly invariable; but it is remarkable that, if variations take place, they are according to a law which allows a quada quantivalence expressed by an even number will always be even, and one expressed by an odd number will always be odd. Atoms of the first clase are called artiads, of the the second (with odd numberr), periseads ; and this classification appears to rest on a fundamental law.
This is a short explanation of the fact that a definite quantivalence of the atoms of each elementary substance is one of its most important inherent properties; and it is therefore the most distinctive feature in which the new school differs fiom the old. It is the chief cause of the recent revolution in chemical science. The old fashioned authors and teachers did not question how the elementary substances were united in a compound; but now it is con
sidered of the utmost importance to investigate and deter sidered of the utmost importance to investigate and deter-
mine the exact manner in which the atoms are united in mine the exact manner in which the atoms are united in
order to builà a molecular structure. It has long since been order to build a molecular structure. It has long since been
suspected that the quality of a chemical compound depends as much on the manner of structure of its molecules from the atoms as in the nature of the atoms themselves; and now it has been proved that a compound may be totally changed by simply changing the relative position of the
atoms in regard to the nucieus of the molecule, which itself atoms in regard to the nucieus of the molecule, which itself may change without any alteration in the number or qual ity of the individual atome.
It ought to be considered that the above is not merely the expression of an hypothesie, but is the result of actual expe riment. Not a shade of doubt clings to it, notwithatanding that the actual view of the atoms constituting a molecule ie
far beyond the range of the most powerful microscope far beyond the range of the most powerful microscope
Novertheless, although it has beon proved that the melecule
of nitro-giycerin, consisting of 20 atoms, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$, cannot be larger than the twenty-five millionth part of an inch, we are now almost as positive about the internal structure, position, and arrangement of its atoms as we are of the struc ture, position,
tary syatem.
The theory that heat is a mere mode of wiotion, residing in the molecules or atoms of bodies, may be considered to be as firmly established as any in the field of Science; and the theories that rise and descent of temperature are nothing but increase and decrease of this molecular motion, and that the absolute zero point of temperature, that of 480° below the zero of Fahrenheit, corresponds with absolute molecular reat, are necessary consequences of this theory. Every substance must be composed of moving molecules, of which the atoms themselves are in constant motion; every complex molecule therefore resembles a planetary system, not only in the arrangement of its different members, but even in the motion of its atoms, which is rotary as well as progressive.
It is, indeed, a grand idea that the same force which, on the infinitesimally small scale is called chemical affinity, and holds the different constituent atoms of matter in well bsl. anced and unalterable groups, so securing the stability of compounde, prevails also throughout the immense distances of the heavenly bodies, wherein we call it gravitation, which constellations and galaxies.

FARMER8' HEALTH.

The State Board of Health of Massachusetts are doing ad mirable work. Their fourth annual rep. rt, publighed las year, was a model volume of ite kind, and copious reproductions from its pages found place in our columns. Its succes sor, now beforeus, is every whit as valuable. It is not a dry mass of undigested statistics, nor a bundle of official plati tudes which nobody understands and no one takes the trou ble to read; but a series of papers, plain, practical, and full of common sense on sanitary questions which are of the nearest importance to every one. Wecommend the work as exemplifying what a report addressed to the people should be; and it seems to us that an immense amount of good would be done if the generalgovernment, among the tuns of documents supplied to our representatives for distribution to their constituents, would provide similar volumes on simila their constinuente, would provide similar vo
subjecte, and compiled in a similar manner.
Some papers in the book before us, we have already embo. died in articles on these topics. At the present time we de sire to direct attention to the very important subject of the sanitary condition of farmers, who, though popularly considered the healthiest people in the world, have, it appeara, yet something to learn tending towara their improvement and to the prevention of dangers incidental to their calling. The basis of the views presented is the opinions of the country doctors all over Massachuserts, and upon their com.
dation could be obtained. A papir based bined experionce cannot be otherwise than instructive. The farmers in the above State constitute one eighth of the infarmers in the above state constitute one eight of the in-
duetrial population, a less proportion than in the Weatern duatrial population, a less proportion than in the Weatern
Statee, as in Illinois the farmers with the farm laborers Statef, as in Illinois the farmers with the farm laborers
make up one half of all persons having occupations ; sothat no further argument is necessary to prove that their sanitary welfare is that of a very large proportion of the entire population of the country.
The first question considered is that of longevity. A table collated over twenty-eight years shows the average age of farmers at death to be $65 \cdot 13$ years, figures far in advance of all other callings, and greatly exceeding the lifetime of active mechanics (not in s appear next on the list. The opinions of the physicians
consulted also go to show that the farmer's chances of long consulted also go to show that the farmer's chances of long
life are somewhat greater than those of any other clase. As regards general health, there appear to be divided viewa, the large mf jority of doctors, however, holding that farmere and their families enjoy better health then most people, while a respeetable minority advocate the reveres. This to impair the health and ehorten the lives of the agricultaral classes. First of these is overwork, that is, not the nature but the amount of labor performed, comblined with expoenre to the weather. Labor carried too far orhauste and enfeebles the frame. Daring a short season, however, when the year's operations are crowded into a space of five months,
and when wages are high, overwork on the part of the farmer is too common. In spring he works at the plow from morning until night, to hurry through the planting; in summer, prodgies of mowing and pitching of hay are done, which too frequently tend to cause serrous rupture or other physical injury. In winter, there is a continual series of hard work in hauling wood and doing similar exhausting labor, causing sudden changes of temperature in the body. The resalt of the whole is that rheumatism becomes by far the most prevalent disease. Again, farmers' wives work even harder han their husbands, and, it is said, are the most likely to be overburdened. The remedy for such excess of labor on the
part of farmers and their families is a better comprehension of sanitary laws. It should be understood that it is not true conomy to lay up money when the process of accumulating it makes the farmer's wife an invalid, and necessitates the expenditure of a much larger sum for sickness. More laborsaving machinery should be introduced. For small farme, where the more expensive machinery is not available, cheapor substitutes would doubtiess be invented, were inventive genius turned that way through the liberality of agricultural ocieties
It in a nomowhat aingular fact that farmera live no little upoz their own produotiona. They eotal their tront vogiti
bles, fruits, eggs, and poultry to the market, and live themselves upon salt pork, pies, and saleratus bread. The reportant that good cooking should be cultivated. It is actu ally easier to cook well than badly, provided the work is not done in a hurry. In the bad cookery, the overwork is again raceable, and it is the very pressure of labor which causes he preparation of the food to be done in any way so long the materials are rendered eatable. A pork diet is not healthy. The meat is slow of digestion; it contains an excess of fat ; it may, if improperly cooked, produce trichiniasis and tapeworm, and it increases the liability to consumption and scrofula. Farmers should live on plenty of fresh meat, use less tea, avoid frying as a means of preparation, eschew pies and cake in excess, and provide for their own tables an abun dance of vegetables and fruits, with wholesome, well kneaded yeast bread.
As a rule, it is said, farm honses are very badly located worse so than city residences. Farmers should comprehend the necessity of choosing a dry and airy locality, and the dangers resulting from living on damp soil or in a low, shutin situation. Where the house is placed low, house draine are sluggish and imperfect, and fogs are frequent; when shut an by higher ground, the air is stagnant, and the effluvia from the house and outbuildings are not blownaway. Too many rees conduce to dampness and shut out the sunlight.
Uncleanliness of surroundings is a prolific cause of disease Typhoid fever and summer bowel diseases abound in the vicinity of putrescent animal matters, which poison both air and waters. Faulty drains and neglected privies are the most dangerous, while foul cellars and barnyards are also deleterious. No farmhouse should be without a commodi ous covered cesepool several rods from the house, on lower ground, if possible, and connected with the kitchen sink by a well constructed covered drain. In default of a brick cesspool, an inverted hogshead will do, if the soil be porous, but a barrel never; it is too small to be of any use. The drain should then be kept free, so that the cesspool can be so used that not a drop of dishwater, alops, or any kitchen refuse whatevershall find its way out upon the surface of the ground from the back door or window. Everything should oo into the cesspool, except what the pigs can consume, and he back of the house should rival the front in cleanliness and tidiness. Privies should be thoroughly disinfected by the combined use of earth and copperas. The latter can be bought for from two to five cente a pound, and it should be kept constantly on hand. The place should be perfectly inwinters, otherwise the disinfection is not accomplished. I will be found a coset Ahould be used to the compost heap. Baddrinking water is another cause of aickness. As a rulf, well receives drainage from a superficial area, whose dia meter is from one to three times the depth of the well, vary ing with the character of the soil. To keep the latter area in a thoroughly purified condition is a good and safe rule to follow. A well, for example, twenty feet deep should have no privy, pig pen, barnyard, drain, nor should slops or garbage be thrown upon the surface, within thirty feet of it in any direction.

Mr. Salem H. Wales, after a connection with this paper more than twenty years, withdrew bome three years ago, and was appointed by the mayor one of the Commissioners of Public Parks in this city. Mr. Wales was subsequently chosen President of the Board by his colleaguer, which office he held to the satisfaction of the public until a few daysago. In a pithy letter to the mayor, resigning his office, Mr. Wales animadverte very pointedly to the acts of our city comptroller, for interfering with the Park Commiesion in the appointment of its employees. On Wednesday evening, the 26ih ult., a score and more of Mr. Wales' friends gave him a complimentary dinner at the Union League Club; and on the following Saturday he sailed, with a member of hia family, for Europe, for a few montha' reet and recreation on the continent. His friends every where will join us in wishing him a pleasant voyage, improved health, and a afo return.

Ifolating Matielal for Steam Pifes.-The committee for the trin and inspection of boilers of the State of SareAnhalt, Germany, recommend the followisg composition for the above purpose : 132 pounds limestone, 885 pounds coal, 275 pounds clay, and 830 pounds sifted coal ashes. This is finely pulverized and mixed with 660 pounds of water, 11 pounds sulphuric acid at 50° B., and 160 pounds of calves' hair or hog bristles. The compound is applied to the pipes in coats of 0.4 inch thickness, repeated until a thickness of an
inch and a half ts obtained, when a light covering of oil inch and
is given.
The spring or summer soeson opened with unusually hot weather in Europe, but soon afterwards severe cold seems
to have set in. The sudden change is accounted for by M. De Fonvielle, a French savant, by the fact that the earth is passing behind a ring of asteroids, which absorb a portion of the sun's warmth, due to us while it remains above the horizon. The temperature will not resume its ascensional movement until the annual rotation ahall have carried our ephere from the shadow of the multitude of small plants which is always projected on the same point of our orb.
M. Pasteur, the distinguished French chemist, has recenty been awarded the sum of $\$ 2,400$ by the National Assembly of France in recognition of his eminent services and discovories.
The man who has thoroughly mastered a scientific priand: ple holde a keg which opois many locke.-Tyndall.

