Srientifit Gmmerican.

MUNN \& CO., Editors and Proprietors. poblibied weekly at

NO. 37 PARK ROW, NEW YORK

. D. MUNN.
 A.e. beace.

One copy, one jear.

25RME

8300
Clus rates $\left\{\begin{array}{l}\text { Over ten coples, same rate, each............ } 25 \\ 20 \\ 50\end{array}\right.$
volume ixx, No. 24. [New Series.] Twenty-ninth Year. NEW YORK, SATURDAY, JUNE 13. 1874.

eletation of the elabtic limit by btrebs.
The Scientific American first published, on page 336,vol ume XXIX, the novel and unexpected discovery by Proferso Thurston of the "Elevation of the Elastic Limit by Stress,' as the discoverer has since called it, which was commonica ted to the American Society of Civil Engineers, in a note published in the transactions of the Society for November, 1873.

The Journal of tre Frankilin Institute, in the last month's issue, contains an interesting statement of the results of experiments made subsequently by Commander Beardslee, United Slates Navy, at the Washington navy yard, independently and by a different form of apparatus, which led to the re-discovery of the same important fact. The editor of the Journal presents the paper as furnishing " most con 310 sive confirmation of the discovery of Professor Thurston."
In these experiments of Commander Beardslee, the iron was generally of poor quality, the tests were made by tensile strain, and the results were recorded from observation instead of by automatic registry, all of which circumstances differ from those of the earlier researches, and the confirmation which is given of the phenomenon referred to is thus rendered the more conclusive. Samples were taken in pairs and sabjected to a strain which exceeded the elastic limit. One was removed from the machine and laid aside ; the companion specimen was left under the loal in the testing machine. In the former case, four teats gave an average increase, in sizteen hours, of 10.00 per cent. The latter method, with six apecimens, gave an average of 11.30 per cent, or, leaving ont one exceptional result, $12 \cdot 20$ per cent. These specimens were of \downarrow square inch section. With smaller pieces of $\frac{1}{}$ square inch section, the same treatment gave,
by the two method $: 8 \cdot 20$ and $13 \cdot 40$ per cent, respectively. by the two method ; $8 \cdot 20$ and $13 \cdot 40$ per cent, respectively.
The (at first sigh!) very singular fact, that an increase of resistance*should be developed when the specimen is taken out of the machine after giving a set, is, we presume, readily explained by the fact that the set, produced by the refusal of some of the particles to return to their original positions, holds other groups of particles separated, and, as explained by the discoverer, allows a flow to take place, relieving internal strain, and permitting nearly all portions of the piece to act together in resisting external force. The set thus holds the piece under strain somewhat as does the mashine.
The subject loses neither interest nor importance by investigation, and we shall hope to learn more of its practical bearings. We have already given much of our space to the discussion of these new facte relating to the strength of materials, and shall from time to time endeavor to present our readers with the latest results of research in this field. There is no subject which is of more direct importance to every mechanicand engineer than that of the strength of the matorials upon which he is compelled to rely in all his con structions.

There are many facts still unknown to the public, or to the engineering profession even, and of which no knowledge can be gained by reference to books. For example, one of these is the resistance of iron to compression at different temperatures.
Many of our readers can undoubtedly furnish facts of incerest and importance; and we hope that those who find themselves in possession of such facts, which have evidently escaped the observation of acknowledged authorities, will assist their brother workreen by sending them to usfor publication.

THE GEOLOGICAL SURVEY OF JAPAN
We have received from our countryman, Mr. 3. S. Lyman, who was appointed, by the government of Jepan, Director of the Survey, a preliminary report containing nome of the results of the first season's work in Yesso.
It is a pamphlet of 46 pages, excellent in typography and appearance, published and printed in English by the Kaitakushi at Tokei. The work, according to the instructions of the Hon. K. Kuroda, Jikuwan of the Kaitakushi, was confined to the four southwesternmost provinces, Oshima, Shiribets, Iburi, and Ishcari, about one third of the island. A number of fossils were collected at several places, but they were too few to justify the employment, at least for the present, of a foreign palæontologist. Besides Mr. H. S. Munroe, an American, Professor Lyman was assisted by eleven natives. They are not only the first Japanese but the first Aslatics to undertake the studyand practice of geology; and although the training of native geologists in India has been begun nearly at the rame time, Profersor Lyman trusts that the Japanese will continue to take the lead, and that Japen will become in a few years independent of foreign countries in this direction.
In determining the importance of the points to be more carefully surveyed, regard was had chiefly to their mining value, and many places were visited where valuable minerals had been supposed to exist, but where they proved to be deficient either in quaptity or quality.
Along the principal and many of the smaller rivers are rich alluvial plains, which would be admirable farming sites, were it not for the lack of roads at the present time The soil indeed seems to be very good, even on the uplande, and supports a rich growth of wild plants. The chief er ception is in the neighborhood of Tarumai volcano, which
ao recently as the first of March, 1867, was in active eruption; and where for many miles around, even the low plaing by the seashore have been so covered with pumice as very much to lessen their fertility. Yet even here a rich black soil, in some places oix feet thick, exista at the depth of only about a foot below the surface of the ground. The volcanoes that atill have active sulphur vapors seems to be mostly along the shores of Volcano Bay and the adjoining coast. Besides these,thare are many more that seem to have long been quite extinct. The highest, most symmetrical, and beautiful of them all, is Shiribets Mountain, perhaps 6,000 feet high above the sea, and almost a regular cone. The useful minerals of chief importance in the field gone over are : Coal, iron sand, sulphur, limestone, gold, and rock tar and mineral springs; and traces of silver, lead, zinc, manganese, and copper.
The Kayanoma coal field covers abjut half a equare mile, and has six workable coal beds from three to eight feet in thickness. The coal is what is strictly called brown coal, probably of tertiary ago, though closely resembling bitumin ous coal in its appearance and in many of its qualities. Of ron, the whole amount of pure ore in the principal workable deposits is perbape 125,500 tuns, containing 91,000 tans of iron. Only 5,500 tuns of the ore (containing 4,000 tuns of iron) are of the easily smelted kind. The sulphur occur mostly within the craters of now inactive volcanoes. Ho sulphur fumes rise through amall crevicesand deposit yellow sulphur on the cold surface of the ground, forming a crust more or less impure, with a mirture of partially decomposed rocks. The shape of such deposits is extremely iriegular and often inaccessible in many parts; so that the precise ex tent can hardly be measured except very roughly. The whole quantity of sulphur to be got from the places thus far visited is possibly five hundred tuns. The gold occurs in the form of small grains and scales in alluvial gravel. No gold-bearing quartz has been discovered. The amount of gold in all the fields surveyed would seem to be less than two millions and a half of dollars, and in none of them to be abundant enough to give much encouragement to work ing. The oil is all black, and so very thick as to deserve better the name of tar; moreover it has not as yet been found in noteworthy amount. Mineral springa are abundant; and of the twenty one which were examined, thirteen were sulphur springs with temperature from coldness up to boil ing; six iron springs, from 27° to 91°; one cold spring, wit copperas; and two nearly pure springs, 30° and 50° hot.
Though scanty, these details are sufficient to interest us in the future development of Japan, and it cannot be long before representatives of our commerce will follow where
those who have represented our Science have alreaty led the way.

THE INCREABED U8ES OF THE MEMBERS

We doubt if the human body has ever in ang instande a tained the acme of its possible development; and by this we mean that while certain sets of muscles or organs have, in individual cases, become subjected to the will so as to per form feats impossible save through education, we do not believe that the being ever lived who could controlevery member so as to cause it to operate to the extent of ite capabili tien. Whether in future agee such a condition will mark
higher atage in the devalopmont of the reen : whother, an th
human mind expands, or, as the saying is, the "world grows wiser," it is reserved for physical culture to keep pace with such mental growth : is a subject for speculation, which, in iew of the doctrines of evolution and the constant approach of organic epecies toward more perfect individualism, is by no means devoid of present interest.
We have discussed at some length the question of the use of the left hand, and we have pointed out that, by a mistaken notion, children are taught to discard the use of the mem ber, and hence to lose balf the powers which Nature intended they should have when ahe formed the body as it is. We have also suggested that, so far from restraining the infant from using its left hand, its tendency to employ both members indiscriminately should be encouraged. Now. we propose to advance a step further, and to ask why should not a child be taught to utilize both hands at once, and at differ ent occupations. The idea may seem somewhat chimerica at first, but it is not without the bounds of prasibility. The reader has doubtless seen jugglers who, in performing their dexterous tricks, become so expert that, without any apparent difficulty, they can keep balf a dozen knives or balls constantly in the air or in each hand. The falling and risng of these objects are not uniform, and hence to all in tents the performer accomplishes a totally different result with each momber. In aimilar manner great pianists-Ru binstein is a very striking exaniple in point-use either hand upon the keys with equal dexterity and both together in playing music of tremendous difficulty which $r \in q u i r e s$ power of perception and a control of the muscles of each in dividual finger which is simply wonderful. Again, an or ganist, in performing upon a grand instrument, has several thinge to think of at once: both hands on the keyboard, both feet on the pedals, with stops on either side. couplers and the separate devices for crescendo and other accidental effect are to be looked after. Here are four members of the body acting different parts at the same time.
We could multiply instances of this kind with little trou ble, all going to show that, even when advanced in life, it is possible to educate a certain set or even sets of muscles to perform hitherto unnatural work. Cases there are where men, on being disabled in the arma, have had resourse to their toes, and used those members for writing and even handling tools. We have visited the studio of quite a celebrated French artist whose exquisite paintings were entirely produced with brushes handled in the above manner. But while an individual member, or even the body, may be educated to perform feats apparently impossible, it requires a higher order of training to compel the members to perform different operations at once-a training, we think, only to be fully imparted in beginning at the earliest years, but still fully possible. With our dual brains, the right lobe is now the most developed, and with it the dexter side of the body. Let means be taken to develop the left side equally, and the body is symmetrical in its powers. Each side, governed by both brains, will be capable of work for which now, when controlled by, say, three quarters of the brain power, it is inadequate.
We need not point out the advantages to a person who can thus use both hands in connection with the brain. We have known an artist who could draw tiwo different pictures at once; and in a former article, we alluded to a very emi nent professor of natural history who, while watching a specimen through the microscope, sketches with one hand while writing with the other. Now, if a person advanced in life can become so elucated, how much easier it would be to impress the same on the plastic mind of a child Once taught, the person could write upon two different subjects at once, could make two copies at the same time, could write up two sets of books, could make stenographic notes and write them out in long hand simultaneously, and per form in brief a variety of operations productive of lucrative results. Moreover, he would do each understandingly, and not semi-automatically with one hand. Nine tenthe of ordi nary pianists who have to "learn a plece" play the treble with their brains aad the bass with their muscles. The left band learns certain fixed akips and jumps by practice, and performsthem automatically at certain times, while the right hand carries the expression as weil as the air of the composition, and is much more directly under the control of the performer.
We began by speaking of a possible future of the race Is it then improbable that at some time man may have every faculty educated to its utmost, and thus become raised oo a creature mentally and physically infinitely the superior of such as we now are, as much beyond us as we are beyond the monkey? Traits developed in the parent may be trans mitted to the child and there intensified, and thus an ap proach to human perfection ultimately attained. But meanwhile, who is to begin? To whom among the scores of thousands who will peruse these lines-who may perchance give them a second thought-will it occur that the idea may be carried into practice with the very yellow-haired young ster, perhaps at this moment clambering upon his knee?

THE NEW THEORY OF GUANTIVALENCE.
The theory of quantivalence, by which the modern chem. istry differs so radically from the acience laid down in the old text books, thus far used and still taught in most of our scientific institutions, is based on close comparisons concerning the nature of divers chemical combinations; and these have taught that each elementary atom posserses a certain definite number of bonds, by which alone it can combine with other atoms.
There are two material conceptions by which we may assist our imagination to realize this abstract idea: One is to imadne the boads as heois attached to the stoma, by which.

