Cbutcgyoufluce.

sOLAR ATTRACTION AND THE EARTH'S ORBITAL
 \section*{CENTRIPUGAL FORCE.}

To the Ebditor of the Scientifle American:

The accompanying illustration represents an instrumen constructed for the parpose of proving, by actual practical test, that the sun's attractive energy is balanced by the cen trifugal force called forth by the earth's orbital motion roand the sun. I desire it to be distinctly underatood, however, that my intention is not to demonstrate what astronomers proved centuries ago, namely, that solar attraction is connteracted by the centrifugal force resulting from the orbital motion of the earth round the luminary. Léon Foucault, in his colebrated experiment of ewinging a pendulum from the dome of the Panthéon in Parie, simply intended to furnieh ocular proof of the correctness of the assumption that our planet rotates round an axis at right angles to the equator. So with regard to the instra ment under consideration: the object is simply to furnish ocular proof of the correctuess of the assumption that the sun's attractive energy is counteracted by the centrifugal force developed by the orbital motion of the earth round the sun. The readeris aware, from pre vious statements in these columns, tha my acheme consists in presenting a highly polished iron globe, floating on the surface of mercary, to the sun at the moment of rising or setting, the terree trial attraction being then exerted at right angles to the line of solar attrac tion, hence incapatele of interfering with its action. From previous statements the reader is also a ware that experiments conducted with the new jnstrament to sunrise and sunset, have established the fact that, although a tractive force of a few grains is capable of moving the polished iron globe over the sarface of the mercury, yet no movement whatever takes place when it is sabjected to the pull exerted by the attraction of the an pull exerted by the attraction of the sun as stated. A briel doacription will su fice to explain the nature of the ingtra ment. The illustration represents a
section through the center of the iron globe and the circular cistern which con tains the mercury. Two spheroidal
cavities, it will be seen, are formed in the globe, the upper cavity being empty while the lower one is filled with a metal of mach greater apecific gravity than iron, the object being to retain the vertical axie of the floating globe in a fixed position. Δ movable ring is applied at the apper part of the mercarial cistern, admitting of a free rotary motion while the cistern remains stationary. To the said ring an angular bracket is eecured, supporting the central colamn of a delicate chemical balance. Obviously this arrangement admits of the scale beam being torned in such a direction that it points toward the rising or setting sun, without disturbing the mercurial cistern or ite contents. The lower end of the vertical index of the scale beam is connected with the floating iron globe by means of a straight ateel wire, ae shown in the illustration; this wire extending beyond the verticalaxis of theglobe, a mall counter weight being applied at the extreme end of the extension in order to relieve the balance from disturbing influence. To prevent dust from lodging on the mercury, a glass shade covers the cistern, reating in a groove at the apper part of the rotating ring, the shade also preventing currents of air from agita ting the sensitive globe during experiments. Sach is the nature of the instrament constructed for comparing the energy of solar attraction and orbital centrifugal force,which Dr. Vander Weyde says he has "disposed of" by his discovery that a " floating object is identical with a lever acale as the liquid balances the floating body," and because (see his commanication inserted May 23) he understands the in strument " only too well, so well indeed as to know that oven the attraction of the rising and setting moon can never affect such an arrangement." I will not detain the reader by demonstrating the absurdity of mixing ap questions concerning lunar attraction with a question relating solely to the comparative energy of the earth's orbital centrifagal force and solar attraction. I deem it necessary, however, to point out briefly the atter fallacy of Dr. Vander Weyde's stated objections. It requires but a slight acquaintance with dynamice to perceive that his firat objection has absolately no bearing on the question. Of course, the weight of the floating iron globe is balanced by the weight of the liquid metal which sapports it ; but how can the pull exerted by the rising sun on the iron globe be affected by the earth' attraction because the weight of the globe is balanced by the weight of the fluid mass which it displaces? The second objection arged by Dr. Vander Weyde, that my instrument is incapable of showing that solar attraction balances the earth's orbital centrifugal force because the instrument is not affected by the rising and setting moon, scarcely needs refutation. It will sulfice to state that, when the floating iron globe is presented to the rising sun, the mercary which supports the globe remains perfectly level, because the centrifugal force which acte on the fluid metal exactly balances the sun's attractive energy. But, in presenting the instrament to the riaing moon, the unbalanced pall exerted by its
attraction on the mercury will produce an inclination of the surface of the latter in a direction opposite to the aatellite. Obviously, that inclination will bring the floating globe under the infuence of terrestrial attraction to an extent ex actly balancing the lunar attraction. Having called the reader's attention to Dr. Vander Weyde's objections, it would be inconsistent not to notice the commanication from Mr. Hago Bilgram, pablished in the Scientific American of May 23, concerning my demonstration on page 291, carrent volume. Mr. Bilgram says: "Thongh Captain Ericeson in his communication of March 14 proved to be master of the subject, he evidently overlooked one point." This "over looked" point your correspondentthue adverts to: "Though solar attraction does balance the orbital centrifugal force while the sun is rising, it will not do so three houre after wards." Now, the sole object of my demonstration was to wards." Now, the sole object of my demonstration was
prove that such is the fact, my figures showing that,althoug
is made, lunar attraction w!ll sensibly affect the equilibrium of the mercury in the cisterns. The relative energy of terrestrial and lunar attraction at the earth's surface being in the mean ratio of 320,602 to 1 , a difference of level in the cisterns amounting to 0.000748 of an inch takes place under he stated conditions. Consequently this difference calls for a correction, after the adjusticent at noon, readily effected by turning one of the micrometric acrews through an arc of 8° 40', the pitch being thirty-two threads per inch. The per ectly level state of the mercury in the cistern of the solar attraction instroment having been established by such ac curate means, the absence of any motion of the floating globe when sabjected to the pall of the rising and setting sun furnishes positive ocular demonstration of the fast that the un's attractive energy exerted on the mass of the iron globe is exactly balanced by the centrifagal force resulting from its orbital motion round the luminary. No reflecting observer, aware of the actual amount of the solar pull (748 grains), can witness the perfect' repose of the floating iron globe on the level surface of the mercary, a the moment when the sun is rising, with. out being impressed with the importance of what he beholds. Again, if he has previously calculated the curvature of the orbit in which the instrument is moving, he can aesert that the velocity of the floating iron globe round the sun must exceed 18 miles per second, in order to develop, by centrifagal force, an energy capable of connteracting the pall which he knowoe the globe is subjected to while be is watching ts repose on the surface of the flaid me tal.
J. Ericsson.

The Planet Mars.

To the Brditor of the Brientific American: A few particulars relating to the future movements of Mars may be of inte rest to your readers:
At the present time this planet is badly situated for observation, being nearly at to greatest diatance from the earth and bat a few degrees east of the sun. The next opposition of Mars will not occar until the 20th of June, 1875. The planet will then be seen near the well known Milk Dipper of Sagittarius. This opposiion will not be a very favorable one, howover. The low altitude which the planet will attain in our northern latitudes will render it difficult to obtain good views.
solar attraction exactly balances orbital contrifagal force at sunrise, the energy of solar attraction gradustly overcomes the orbital centrifugal force daring the diarnal revolution, until at noon the difference amounts to 00001812 . My demonstration also proved that a weight of 20,000 pounds suf fers a dimination of 0.001546 of a pound during six hours of diarnal rotation, owing to the very cause which $\mathbf{M r}$. Bil ram asserts that I have overlooked !
Referring to the experiments which have been instituted with my solar attraction instrament, it will be well to ob serve that, although the energy of lunar attraction is prac tically imperceptible, it has been deemed bess to conduct the observations when the moon is in the first quarter, its attraction being then exerted at right angles to the line of solar pull. Let us now consider whether the observations have feen conducted on a sufficiently large acale to warrant
finite concluaions. The weight of the iron globe employed nite conclusions. The weight of the iron globe employed of the sun and the earth and other known data show that the pall of the san amounts to 748 grains. The startling fact that the floating iron globe. while subjected to auch a considerable direct horizontal pall, remains stationary, at oncesuggests the following question: Is the surface of the mercary in the cistern perfectly level in a line pointing east and west,-does not solar attraction raise the surface of the laid metal at the eastern edge of the cistern, thereby producing an inclined plane which solar energy is incapable of causing the iron globe to mount? This important question he writer has disposed of by the following device: Two pen cisterns containing mercury, connected by a horizontal tabe, are placed twenty feet apart on a level stone foundaion. Above the center of each cistern a micrometric mechaniam is applied, by means of which the hight of the mer cury may be measured with the atmost preclaion. The two cisterns with their connecting tube being placed east and weat, and time allowed for the mercary to come to a The of perfect equilibriam, the micrometers are This adjustment, it should be particularly observed, made when thesun is in the zenith, at which time its attrac tion evidently cannot disturb the equilibrium of the flaid metal in the connected cisterne. The contact of the micro meters and the mercury is then examined from time to time during the dinrnal revolution, the final observation being made when, near sunset, the two cisterns point towards the laminary, at which moment the attractive force, tending to disturb the equilibrium of the fluid metal, is at its maximam. Regarding the result of the observations conducted P. M., it nay be briefly stated that, when the micrometers are pro perly adjasted, not the least excess of elevation of the leve of the mercury in the western cistern is produced by solar attraction, at the moment, when the attractive energy is ex orted in the direct line of the two cisterns. Persons famillar with cosmical questions will eay that, in case the sun and moon should be nearly in conjunction when the observation

Moreover, on account of the ellipticity of the orbits of Mara and the earth (especially that of Mars), the planet is mach arther from the earth at some oppositions than at others; and on this occasion, it will not be as well situated in this respect as is sometimes the case.
At the next following opposition, however, which will take place in the first part of September, 1877, Mars will be very favorably situated for observation. The planet will,on his occaaion, arrive nearly at its minimam distance from our globe; and as it will be situated but a few degrees south of the equinoctial, it will, when on the meridian, be at a con venient altitude for observation in these latitudes.
It happens, in 1877, that Saturn will arrive in opposition to the sun nearly at the eame time as Mars. Both planets will be seen, near the time of their opposition, close together, in the constellation Aquarius, near the line which separates that constellation from Pisces.
At the next opposition, in November, 1879, Mars will not be well situated, bat a favorable opposition will occur again in 1892.
At present, the perihelion point of the orbit of Mars is in heliocentric longitude $383^{\circ} 45^{\prime}$, and the aphelion is in heliocentric longitude $153^{\circ} 45^{\prime}$. Mars is therefore most favorably situated when its opposition occurs in the latter part of August, while the most unfavorable oppositions take place in the latter part of February. In the former case the apparent diameter of the planet reaches $23 \cdot 5^{\prime \prime}$, and in the tter case it is only about $13^{\prime \prime}$
St.Catherine's, Ontario.
J. M. Barr.

Laying Out Rallroad Curves and

To the Editor of the Scientific American:
In your issue of April 11, 1874, I notice an article from the pen of H. C. Parsons, concerning the laying out of railroad carves. Having felt the need of some simple mode for this operation, I discovered the following method, which I find aufficiently correct and easy of application. I append a aketch, the rule for its application, and tables of coefficients with which to ascertain the chords. These tables are calculated especially for laying out gear wheels, by using the angular or chordial pitch instead of the arc; therefore it mast always be borne in mind that the pitch mentioned is the chord of the arc.
RULE.-Divide the circleinto a convenient number of equal parts of degrees and: minates, then use one hall of the same for the changes on the instrament, in establishing points. Then apply rule 2 of my table of coefficients for gears, which will give the chord of the arcof each division of the circle. Ecample: What will be the angle for the instrament and helength of the chorde for a circle of 600 feet radios, divided into 36 parts of 10° each? Answer: The angle will be 5°. and the chord of the arc will be 10488 feet.
By this method at lesst one third of the circle can be laid wihont moving the insurument, or the latter can be ehifted
to any point of the circle, whenever any obstructions or ir regularities of the land make it requisite to do so. By di viding the circle intomany parte, the chorde can be brough down to any desirable length.

table of coefficients.

	$\left\|\begin{array}{c}\dot{\circ} \\ \dot{0} \\ \vdots \\ \vdots \\ 0 \\ 0\end{array}\right\|$		$\left\|\begin{array}{l}\dot{a} \\ \dot{a} \\ \vdots \\ 0 \\ 0 \\ 0\end{array}\right\|$				宫
		26	8.29616	51	1624500	76	$24 \cdot 20000$
		27	861370	52	1856313	77	24-51824
		28	8.98131	53	1688127	78	2483650
4	$1 \cdot 41421$	29	924×98	54	17-19942	79	$25 \cdot 15476$
5	1.70111	30	$9 \cdot 55671$	55	17.51757	80	25‘47302
6	$2 \cdot 00000$	31	988450	56	1783573	81	25.79128
7	2.30480	32	1020233	57	$18 \cdot 15390$	82	26.10955
8	$2 \cdot 61316$	33	$10 \cdot 52021$	58	18.47207	83	26.42782
9	2.92380	34	$10 \cdot 83811$	59	18.79024	84	26.74610
10	3-23607	30	$11 \cdot 15604$	60	$19 \cdot 10842$	85	27.06437
11	354980	36	$11 \cdot 47400$	61	1942681	86	$27 \cdot 38: 66$
12	$3 \cdot 86403$		11.79198	62	19.74481	85	27.70094
13	417876	38	$12 \cdot 10998$	63	20.06300	88	28.01922
14	449399	39	$12 \cdot 42800$	64	2038121	89	2833751
15	$4 \cdot 80942$	40	12.74600	65	$20 \cdot 69943$	90	2865580
16	512609	41	1306406	66	2101764	91	28.97409
17	5.44247	42	$13 \cdot 38211$	67	$21 \cdot 33585$	92	$29 \cdot 29238$
18	5.75906	43	1370017	68	$21 \cdot 65407$	93	$29 \cdot 61067$
19	607581	44	14,0i824	69	21-27230	94	$29 \cdot 92896$
0	639270	45	1433631	70	22.29053	95	3024725
1	670971	46	$14 \cdot 65441$	71	$22 \cdot 60876$	96	$30 \cdot 56555$
2	7.02681	47	14.97251	72	22.92700	97	$30 \cdot 88885$
3	734400	48	1529062	73	$23 \cdot 24524$	98	3120214
	$7 \cdot 66129$	49	$15 \cdot 60874$	74	23.56350	99	$31 \cdot 52044$
25	7.97866	50	$15 \cdot 92686$	75	23.88174	100	31 '83874

Rule 1: To find the diameter of a wheel when the pitch and number of the teeth are known : Multiply the coefficients in the table, corresponding to the number of teeth, by the given pitch, in iuches and hundredths; the product will be n inches and hundredths.
Rale 2: To find the pitch of a wheel, when the diameter and number of teeth are kuown: Divide the given diameter by the coefficient in the table corresponding to the number of teeth, and the quotient will be the pitch.
Rale 3: To find the number of reeth in a wheel where the pitch and diameter are known : Divide the given diameter by the given pitch, and the number in the table corresponding to the quotient will be number of teeth.
These tables were computed by two distinct processes, at seven places of decimals, and are warranted not to vary more than $\mathrm{T}^{\frac{1}{0} \sigma}$ of an inch in the diameter of a wheel of 200 teeth and 3 inch pitch.
New Bedford, Mase.
h. C. Crandall.

Professor Mayerg Discoveries in Acountice. -nA

 Note from the Authortho Lator of tho Bciontific American:
Will you permit meto correct two erroneous statements in the accounts you published of my discoveries in acoustice recently read before the National Academy of Sciences?
Under the heading "The Duration of the Sensation of Sound," for "he concludes that the whole ear vibrates a he notes, the number of their vibrations, and the duration of their residual sensations, (the French notation, used by König, is adopted):

Note	No. of vibrations. Der second.	Daration of the sound the sound
C_{1}	64	
C_{8}	128	$\frac{1}{26} \cdot{ }^{\prime}$
C_{3}	258	产"
G_{3}	384	'10 ${ }^{1}$
C_{4}	512	$\frac{1}{16}$ "
E_{4}	640	${ }^{1} 5$
G_{4}	768	189"
C_{5}	1024	$\frac{1}{136}{ }^{\text {c }}$

Calling D, the duration of the residual sensation, and N,

Now carrying this law (which we discovered by meang, n in vigorsue experimental measures) downwards and upwards, through the range of audible sounds, we have, for 40 vibra tions per second, the residual sensation lasting $\frac{1}{1 f}$ of a eceond after the vibrations which caused the sound have
ceased; while for 40,000 vibrations per second, we have a residual sensation of only ofo of a cecond. If we apply residual sensation of only 50 of a cecond. If we apply
continuous sound, but explosive sensations in the ear, we reach a remarkable result, thus: 3) vibrations per second give a residual sensation of 10 of a second; but if the resi the ear, in one second, do not blend? For they follow one another at each $\frac{1}{3}$ of a second. This is explained by the another at each fat of a second. This is explained by the fact that co-vibrating parts of the ear, corresponding to
counds produced by vibrations fewer than 40 per second, do not exist, and therefore there are no bodies to co-vibrate and keep up their oscillations after the cause which set them in motion, has ceased to exist, it follows that in other cases the ear is vibrated only as one mass, and the duration of these oscillations of the whole ear are far too short to remain the ${ }^{\frac{1}{6}}$ of a second. This supposition also explains why the higher notes, fre beyond those used for musical sounds, pro. duce continuous sensations, though we have every reason to believe that no co-vibrating parts of the ear correspond to them; with these high notes, the ear vibrates as a mass, but the duration of this vibration is sufficient to keep up sonorous vibrations, following one other at each $\frac{1}{500}$ of a second; but for notes thus perceived without the intervention of corresponding co-vibrating parts in the inner ear, the pitch should be difficult to dintinguiah, and this we find is actually the case.
The heading " The Reflection of Sound from Flames and Heated Glasese" should read "The Reflection of Sound from Fiames and Heated and Cold Gases." Under this head, for among other curious results, Professor Mayer has ascer rained that thereis an absorption of sound in the bat's wing ame; that the flame is heated by the sonorous vibration which euter it as such, and issue as heat vibrations," please abstitute the following:
" The contemplation of these experiments naturally calle up quertion:
Is the actiou of the flame due entirely to reflection? May it not also absorb part of the sonoruus vibration, as in the nalogous phenomena of the reflection of light?
If the intensity of the sonorous vibrations which have aversed the flame equal the intensity of the vibration which impinged on the flame, minus the intensity of those which were reflected from the flame,then there is no absorption of these vibrations by the flame; but if this equality does not exist, then there is absorption in the flame; and this means that the flame is heated by the sonorous vibrations which enter the flame as heat vibrations. It thus at firgt appears that the absorption of the sonorous vibrations might be detected by their production of an increase in the temperaare of the fiame, just as sonorous vibration
In the following manner I have recently. u the direction of determining the equivalent of a given souorous aerial vibration, in fraction of a Joule's unit of souorous aerial vibration, in fraction of a Joule's unit of
772 foot pounds. I stretched between the prongs of an $U t^{3}$ 772 foot pounds. I atretched between the prongs of an Ut^{3}
tuning fork a piece of sheet caoutchouc, 100 th of an inch uning fork a pisce of sheet caoutchouc, 100th of an inch
in thickness, and about in inch broad. The effect of this n thickness, and about $\frac{1}{3}$ inch broad. The effect of thi
ubber on the vibrating fork is rapidly to extinguish its vi rations, with which the rubber itself is heated; and if a ork be vibrated continuously, by one and the same force when the rubber is stretched on it and then when it is taken off, the aerial vibrations produced by the fork are far more intense in the latter circumstances than in the former. By a method described by me in the American Journal of Science ebruary, 1871, I now measured the relative intensities o the aerial vibrations, in these two conditions of vibration.
The sheet of caoutchouc was now enclosed in a compound The sheet of caoutchouc was now enclosed in a compound
hermobattery, and the fork vibrated during a known interval the rubber was heated by the vibratione,which would have appeared as sonorous vibrations, if the rubber had been removed from the fork. The amount of heat given to the caoutchouc was accnrately determined, by the deflection of a Thomson reflecting galvanometer, connected with the thermo battery; and by knowing the interval during which the fork vibrated, and the amount of heat given by the caoutchouc during this interval, and the equivalent of the heated ubber in water, I calculated the intensity of the sonorous vibration in terms of a thermal unit, from which I at once obtained the value of the sonorous aerial vibrations, when he fork was not heating the rubber, in other worde, when it ibrates fieely. I thus found that the sonorous aerial vibrations, during ten seconds, of an Ut ${ }^{3}$ fork placed in front of its resonator, equaled about the 100,000 th part of a Joule's unit; that is, they can be expressed in the work done in lift ng 54 grains one foot high. This quantity of heat, which is equal to the heating of 1 pound of water one 100,000 th of a degree Fah., expressed the amount by which the gas flame would be heated, if it absorbed all of the sonorous vibra tions issuing from the Ut^{3} resonator. But thisis such a small fraction of the entire heat in the flame that it is far within the actual fluctuations in temperature in the flame; and,even if the fame were constant in temperature, this amall increase could not be detected by any known thermometric method. We cannot therefore determine the amount of absorptive power of a flame, or sheet of heated air, for sonorous vibrations, by ex periments on their increased temperature, when sonorous vibrations impinge on these bodies."

Alfred M. Mayer
Stevens Institute of Technology, Hoboken, N. J.

Turbine Water Wheels.

To the Exitor of the Briontific American:
In our experience, if we have a flood of water with reaonable head, almost any kind of wheel, if it be large enongh, will do; hat when we come to substitute a turbine for an overshot wheel, on light streams, we find that it is a ice matter to decide on the size the wheel should be to give
venture to say here that there have been moze failures in turbines on light streams on account of uning too large wheels than from all otber causes combined; and we set it down as well established fact, without having reference water wheel pamphlets, that there are now in use and have een for some years several different makes of turbine wheels that will give from seventy five to eighty per cent. when working with seven eighths to full gate; and persons interested can inform themselves more satisfactorily by corresponding with parties having wheels in use than by consulting pamphlets on the subject.
It is said that the best wheels afford almost all their power at five eighthe gate or under. Now this is entirely at variance with our experience. Putting in a turbine wheel, on a light stream, that would be large enough to drive the machinery at half gate would be a failure simply because of the small percentaga gielded, and consequently the use of too much water for the amount of power given.
Substituting large wheels operating at from one quarter to one half gate, for small wheels requiring seven eighthe gates, results in the use of much less water for a given effect, and is also at variance with our experience and can only be based on the idea that the wheels give a better percentage at one quarter than at three quarter gate, which is not the case with any wheels we are acquainted with; but there is ample room for improvement in turbine wheels in that direction.
There is one advantage in using large wheels, and it is that when there is a flush of water it can be utilized, which is the only offest to the loss of power in running at ordinary ages of the water.
J. Broomell.

Christiana, Pa.

New Steamboat Law. Authorized Increase of Steam

 Pressure on the Mieslssippl.AN ACT relating to the limitation of steam pressure of vessels used exclusively for towing and car
the Mississippi river and its tributaries:
Be it enacted by the Senate and House of Representatives of the United States of America in Congress Assembled: That the provisions of an act entitled "An act to provide for the better security of life on vessels propelled in whole or in part by steam, etc., approved February twenty-eighth, eighteen
hundred and seventy-one, so far as they relate to the limitation of steam pressure of steamboats used exclusively for towing and carrging freight on the Mississippi river and its tributaries, are hereby so far modified as to substitute for such boats one hundred and fifty pounds of steam pressure in place of one hundred and ten pounds, as provided in said act for the standard pressure upon standard boilers of fortytwo inches diameter, and of plates of one quarter of an inch in thickness; and such boats may, on the written permit of shall carry on their business, be permitted to carry steam above the standard pressure of one hundred and ten pounds, but not exceeding the standard pressure of one hundred and fifty pounds to the square inch.
Approved January 6, 1874 ."
To the Editor of the Beientific American:
A recent act of Congress, regulating the management of steam vessels, authorizes tow and freight boats on the Mississippi river to carry a steam pressure of 150 lbs . to the square inch, instead of 110 lbs . as heretofore, in standard boilers of 42 inches diameter and one quarter of an inch thick. I presume that, by standard boilers, is meant such as are ordinarily well made of good average waterial and aingle riveted. However this may be, the pressure stated is clearly in excess, and very dangeroualy so, of that allowed by the rules generally adopted by first class engineers. A boiler 42 inches in diameter and one quarter of an inch thick, with 150 lbs. to the square inch, is subjected to a strain of 12,600 lbs. to each square inch of sectional area of the solid plate, or fully one quarter of the ultimate tensile strength of good boiler iron. According to Fairbairn, in single riveted work the streng th is reduced to 0.52 and in double riveted work to 0.7 , of that of the solid plate. Under the above circumstances, therefore, a good new boiler, if single riveted, would be subjected to a working pressure equal to nearly one half of that at which it might be expected to tear asunder, or, if double riveted, to more than one third of the breaking strain. The rule given by Bourne for the thickness of locomotive boilers is to multiply the diameter in inches by the pressure per square inch and divide by 8,900 , which, in this instance, would require the shell to be about seven tenths of an inch thick. For marine boilers he allows 3,000 lbs. per square inch of sectional area of plates. Now it does not appear that there is any legitimate reason why the owners of boats, used simply for freight or towing, should be allowed to subject their employees to imminent danger from explosion, while persons merely passengers are protected by law from such danger. That the pressure stated is really known to be dangerous needs no further proof than the fact that it is confined to that class of boats; and since it must be admitted that all citizens are entitled to equal protection, why not the officers and men serving in these vessels? It may be said that they voluntarily expose themselves with full understanding of the circumstance, but this is not always the case, and, if it were, would not be a good argument. An explosion of one of the above mentioned boats occurred in March last, causing the loss of aixteen lives. Dare we say that those lives were less precious because they belonged to engineers, firemen, deck hands, or others forced by the necessity of providing for themselves and families to work under constant dread of danger and death?

John Lepper.
Washington, D. C.
Of all solid substances found upon the earth, carbou is both the hardest and the softest. In the form of diamond, it is the hardest. In the form of graphite, it is the softest. Both diamond and graphite are the same in chemical comBoth diam
position.

