a model transatlantic steamer.

We have heard it ascierted that there is acarcely a steamer croseing the Atlantic that could not be sunk by a fow blows from a heavy sledge. We have received ample evidence, in recent ocean disasters, that the action of the waves alone may strain a modern vessel so that she is considered unseaworthy by a modern captain. Such matters are of grave interest to the traveling public, and they may be glad to know that it is possible to build vessels that will be able to withstand much more severe usage. In the early days of iron shipbuilding, it was pointed out, by the best authorities, that the way to make a vessel safe and strong was to build it with a double skin, making, as it were, a ship within a ship. One of the most noted vessels of modern times, the Great Eastern, was constructed in this manner, and our readers may remember that she ran aground in New York harbor, tearing a hole in her outer skin something more than eighty feet long, and that it was not even necessary to dock the vessel to repair the damage. Of course, a vessel built in this manner is much more expensive than one of the ordinary construction, and it is scarcely necessary to remark that very few examples of this kind are to be found in the mercantile marine. Siesmship owners and the traveling community seem in general to have opposing interests, the former desiring to build and run vessels as cheaply as possible, while the lattgr are more interested in the strength of the ship and the efficiency of the officers. It is with great pleasure, then, that we call the attention of our readers to an exceptional case, that of a company which seems disposed to use the best vessels that can bs built, regardless of
cost. We refer to the company ouerating the Red Star line cost. We refer to the company operating the Red Star line of steamers,formerly ruuning from Philadelphia to Antwerp, which have recently changed their place of sailing to thi port. Ouly three vessels of this line, the Nederland, the Vater others are in course of construction. Our readers may remembor that not long ago the Nederland ran ashore on the New Jersey coast, in making what appeared to be an effurt to reach Philadelphia overland, and that, after having been aground for about two days and exposed to a pretty severe storm, she was floated again and taken to Philadelphia, ap parently uninjured. We need scarcely remark that not every steamer crossing the Atlantic could be expected to behave as well under such circumstances. The Switzerland, the othar vessel belonging to this line, reacbed New York on the $8: \mathrm{h}$ instant, this being her first voyage. She is 350 feet long, 40 feet beam, has 33 feet depth of hold, and is of a bout 2,800 tuns burden. Tie vessel is diviod by bulkleads into 6 watertight compartments. Each bulkhead is composed of two tiaicknesses of plate, with a space between, the plates being strongly stayed together. The ship has a double skin, the distance between the outer and inner skins being between 18 and 20 inches, the main and berth decks being built double, in the same manner. The main deck is covered with heavy planks, and the inner skin of the vessel is abeathed with wood. These compartments between the skins are fitted with good sized pumps which can be worked either by havd or by engines on the upper deck. Tie steam puinps in the engine romm are unusually large for a vessel of this aiza, and it would seem as if nearly every safeguard that could lee required, in case of a ieak, was provided in the present instance. The door of each watertight compartment can be closed from the upper deck, by means of a screw.
The Switzerland has a compound engine, the length of stroke being 48 inches, and the diameters of the two cylinders, 40 and 80 inches. There are accommodations for 160 first class passengers, and for about 900 in the steerage.

Without going very fully into details, we trust that have shown that the vessel under consideration is one of the most substantial crafts that can be built, and offers security to passengers that cannot be guaranteed in the case of the ocean steamer as ordinarily constructed. Our readers may rest assured, also, that, when ocean travelers demand such safeguards to be provided on all lines, they will be forthcoming, and not before.

LEFT HAND WRITING.

A correspondent asks for the best way of holding the pen in writing with the left hand, and the best angle of slope for the letters. No absolute answer can bo given in either case. Hands differ, and what would be an easy position of pen for one person might be a very awkward one for another. Each writer must by goverded by the necessities of his individual case, to be discovered rather by thoughtful observation of bis own writing than by the study of rules. It is enoagh to say that the ideal position figured on the covers of copy books can be maintained but for short periods without excessive fatigue, and only by persons having slender hands. It an-
swers well enough for writing as a fine art, but is altogether swers well enough for writing as a fine art, but is altogether
too stiff and tiresome when much offhand writing is to be too stiff and tiresome when much offhand writing is to be done. What is true for the right hand is equally true for
the left. A good deal depends, too, on the mode of writing, the left. A good deal depends, too, on the mode of writing,
whether the motion is a wrist stroke or a finger stroke or a whether the motion is a
combination of the two.
Equal freedom must be allowed in regard to the angle or slope of the writing, prevising simply that the greater the departure from the perpendicular the greater the danger of illegibility; while a slight slope to right or left adds much to the gracefulness of the script without making it perceptibly lese easy to read.
In writing with the left hand, the easiest position would seem to be with the body square before the table, the arm making an angle of about forty five degiees with the front line of thetable, the line of writing being at right angles with the direction of the arm. In this position the writing is natudirection of the arm. In this position the writing is natu-
rally "back hand," about twenty degrees from perpendicu.
lar. To the present writer, whose left hand practice began ather late in life, in consequence of an accident which threat ened the disabling of the right hand, it is much the easi-
est way, in left hand writing, to hold the pen reporter-fashion est way, in left hand writing, to hold the pen reporter-fashion
between the first and second fingers, as in this position the between the first and second fingers, as in this position the
pen is held steady with the least effort, and is not so likely to wander from a uniform slope. It is well, however, to accustom one's self to a variety of positions, especially when much writing has to be done, since, by changing the posture the labor of writing may be thrown on different sets of mus cles, and rest obtained without ceasing to write.
One of the clearest and most graceful left hand writers of our acquaintance writes a style that cannot be distinguished save in a slight peculiarity in shading, from normal right hand penmanship. To one watching the process, the writing appears to be done upside down. The pen is held between the thumb and forefinger in the regular way; but the paper is placed so that the line of writing is perpendicular to the front of the body, the direction of the writing being toward he body. It seems most natural, however, for the writing to slope to the left when the left hand is employed.
There is a special advantage in using the left hand to write with, and one that we have never seen commended. The hand is never in the way of vision. The pen point is always in plain eight, and so is the paper to be written on. There
is, consequently, no inducement to stoop forward or to turn the head so as to throw the eyes out of focus. It is a common fault with those who write much that the left eye has a shorter range than the right. It is overworked and compelled to adapt itself to nearer vision. In writing with the eft hand, these evils are avoided. An upright posture is
the easiest, and the eyes are equally distant from the paper

RUBBER $\triangle 3 \triangle$ DEFENSIVE $\triangle R M O R$.

We have before us a petition for the relief of Jonathan L. Jones, recently submilted to Congress, in which the memorialist prefers a claim against the United States for the sum of $\$ 500,000$ for compensation for the use of his paten dated April 15, 1862, for improved defensive armor upon the gunboats Essex, Choctaw, and Lafayette, in their oderations against Vicksburghand the Confedurate batteries on the Miss18sippi river during the late war. This armor was composed of one inch of iron plating, backed by one inch of vulcanized india rabber and twenty tíree inches of solid timber, covering the portions of the hulls abreast thed boilere, the forward and after casematen, and the pilot houser. Thus protected, the boats went repeatedly into action, passing Vicksburgb, destroying the ram Arkansas, and participuting in other engagements, during the course of which they were struck, it is alleged, by heavy projectiles, an aggre gate of 276 times without the sume penerating that portion of the armor constructed on the memorialis:'s plan. Shot, it is admit. ed, passed into the vessels at various times, but never through the parts protected ly the armor. A host of le!ters attidavite, otc., are
submitted in correboration of the aseertions advancod; and with the apparently plain claim nicely wade out, Mr. Jones got in for the abovementioned grab. It forcibly reminds us of the efforts of the claimant in the famous Tichborne case.
On the 3rd uf October, 1863, Mr. Jones' own target, made of materials furnished by himself, consisting of four one inch wrought iron plates and four sheets of rubber one inch
thick, backed by twenty inches of solid oak, was set upagaicst thick, backed by twenty inches of solid oak, was set upagainst
a clay bank in the Washington Navy Yard. The first four inches of the shield nearest the timber were composed of alternate layers of rubber and iron; and the two shents of one inch rubber and two one inch wrought iron plates were added, the latter being on the outside of the target. The first shot, weighing 169 lbs., was fired from a 11 inch gun at 84 feet distance. It went untirely through plates, rubber, and timbor, and penetrated the bank a distance of 12 feet. Diameter of shot hole, $11 \frac{1}{2}$ inches. On the 6th of October, the target was placed at an angle of 45° to the line of fire, and a similar shot fired at it. The ball again penetratad everything and entered 6 feet into the clay bank. The holes made by the shot are shown in the annexed engraving, made from the target at the time and published in the Screntific american. In order fully to prove the inefficiency of Mr. Jones' shield, another target was made, of simply 4 one inch iron plates, backed by 20 inches of eolid oak, for comparison, to indicate the effect of the rubber. The first shot fired under similar circumstances to the above went through and penetrated the bank 5 feet. The second projectile, at an angle of 45°, broke in pieces and glanced off, leaving a frag ment in the plating. If the members of the committee to whom Mr. Jones' claim has been relegated desire further
evidence, we would refer them to the files of the Ordnance evidence, we would refer them to the files of the Ordnance Bureau in the Navy Department, as to the detailed account of the tests conducted upon targets Nos. 45 and 46 in the Pencote battery. Further, a year before Mr. Jones produced the above mentioned ehield, which failed so conspicu
ously, a Mr. Bennett, of Now York, furnished a plate one inch thick, for target No. 10 in the same series of experiments, and this also was repeatedly penetrated, as shots fired at other targets made in the usual way without rubber." Target No. 18 was made of two way without rubber." Target No. 18 was made of two thicknesses of
one inch wrought iron plates backed by 14 inches of rubber, one inch wrought iron plates backed by 14 inches of rubber,
7 inches of yellow pine, and three beams 12 inches square
running lengthwiee the shield. The shot tore tbrough the plating and rubber as before and penerrated the bank for 17 feet. Target No. 21 had two inches of rubber between two one inch iron plates and 7 inches of pine, with beams as before. This was pierced with equal facility by two shots. Target No. 37 was faced with 4 one inch rubber plates and backed with $4 \frac{1}{3}$ inches of scrap iron and 20 inches of oak. All the rabber was forced off. Trials at similar targeta without the rubber proved the latter to be of no value.
It would be idle for us to proceed further in disproving Mr. Jones' assertions. Leaving out the above experiments altogether, it is a very simple matter to show tbai even theoretically the inventor's ideas are false. Rubber alone in he form of plates or blocks opposes a resistance to projeciles of about fifty per cent of that of oak. The bslls go hrough it almost as if it were tallow. Now when it is conceded that the shot easily penetrated targets unprovided with the material, it is palpably absurd to suppose that the addition of a substance so easily pierced would add materially to the general resisting power.
That there is any truth in the "philosophy" of the results aid to have taken place, namely, that the rubber causer a diffusion of the force through its elasticity, we cannot for a momentadmit. As in the converse case of shooting a tallow candle through a door, no time is afforded in the passage of he shot through the single inch of iron for its force to act and react before the penetration is effected.
How Commodore Porter could have been ignorant of the experiments which proved the inefficiency of the rubber, we fail to understand; nor can we reconcile the letters of the ollicers in its favor in any other manner than by supposing that the results ascribed to the armor must have been due to other causes, a fact which we think would have been ap parent had the gentlemen considered the subject in the ight of the simplest mechanical laws.
In justice to Mr. Jones, however, it may be added that al though his shield could not have repelled the shot, it never theless may have served some useful purpose, as the crews

of the vessels evidently believed in it; and hence, going into action with a greater confidence in their safety, they perhafa performed better work. This, however, is hardly worth 500,000 to the people.

PHOTOGRAPHY AT THE BOTTOM OF THE 8EA.

Dr. Neumayer has recently exbibited before the Berlin Geographical Society a photographic apparatus designed for the determination of the temperature and of the currents at great depths in the ocean.
The invention is composed of a copper box, hernetically sealed and furniehed with an oxterior appendix made like a rudder. In the interior is a mercury thermometer and a compass, each onclosed in a glass receptacle in which are admitted treoes of nitrogen gas. A mmall eloctric battary com pletes the apparatus. When the latter is allowed to desoend attached to a sounding line, the action of the current on its rudder causes it to assume a parallel direction, thus indica ting the set of the flow by the ralative position of compass, needle, and rudder. The thermometer of course shows the surrounding temperature. In order to fix these indicatione a piece of photographic paper is suitably dieposed near the glass cases containing the instruments. Then at the proper time a current of electricity is established through the gas in the receptacles, causing an intense violet light, capable of acting chemically upon the paper for a sufficient length of time to allow of the photography thereon of the shadows of he compass needle and of the mercury column. Within three minutes, it is said, the operation is complete, whento apparatusia hoisted and the paper removed.
an American River Nile.-The valley of the Rlo Grande del Norte, in New Mexico, recalls the features of the Egyptian Nile. A large population is entirely dependent pon theriver An annual rise of the watere carries a mud dy sediment, superior in fertilizing properties, as was proved y analyain, to that of the great African river. While the amount of phosphoric acid is nearls the same, the amount of potash is considerably ligher. Thousands of acres are lying idle along the valley of the atream, avaiting the onter prising farmer.

