HYDRAULIC RIVETING YACHEE.

It is now no unusual thing to have boilers in use at sea with plates of one inch and even apwarde in thickeaes. Such boilers require to be constracted with rive of sizes that cannot be aatisfactorily set up by mere mannal labor; and of late years, after many applications of steam and gearing for this parpose, hydraulic power has been employed with the best results.
The first thing that strikes an observer of this new process, is the entire absence of that most deafening noise, the usual accompaniment of ordinary riveting; and a little further attention will show that this absence of noise is its lesst merit. By the quiet, steady pressure, rivets are onlarged throughout their length, and fill up all roughness or irregularities inside the punched holes they enter, so that they remain firmly fired, even when one or both of the heads are cut off, and must be drilled out altogether should it ever be neceseary to remove them. The pressure not only forms heads on the rivets, and effects the above named compression, but it holds them up, and the plates also, close together, until the former are sutticiently cooled to bear the strain, and even draws the plates closer together by subsequent contraction.
Oar illustration shows Mesars. McKay and Macgeorge's patent hydraulic riveter which bas been for some time in use a the Millwall Docks Engineering Works London. This machine is one of the most powerful of its class, and gives a pressure of 60 tuns upon the rivet, an amount abundantly sufficient for the largest class of boiler work hitherto regaired for marine engines. Above the machine stands a powerfal traveling crane, from which boilers are suspended over it, their (ordi nary) horizontal axis, of course, then be ing in a vertical position. Circular seams of rivets are brought to the machine by the simple process of turning the boiler round on a swivel, and vertical seams, by raising or lowering it in the usual manner with mochanical arrangements of this claes.
The preseare is derived from an accu mulator, and it amoants to 700 lbs. per square inch in the present case. This pressure is only admitted into the large cylinder when the dies come in contact with the hot rivet, the slack being taken up by the action of a smaller cylinder. By this arrangement a considerable saving of power is effected; for if the largecylin der took its supply and moved the levers their entire distance by accumalator pressure, it is evident that great waste of power would ensue thereby, and in al porect acting an irect acting steam-rivoling machines this
The hydraulic cylinder, and all valves, levers, weights, etc., are placed in a pit below ground, clear out of the way of men working, and asfe from frost or accidental injury. Of course the pit is covered over, and in winter carefully protected from cold; and where, as is sometimes the case, these machines stand practically out of doors, a precaution of this kind should nover be neglected.
The apper end of the powerful cast iron levers which form the most conspicuous part of this machine are perfectly free from all surroundings, except only a conveniently placed handle for starting or reversing; this handle stands behind one of the levers, and therefore does not appear in the present illustration. These levers are so strong that any accidental blow given to them can do no harm; and the readieet access is obtained to every part of the mechine. Steol dies are simply placed in bored holes, and naturaily hold themelves there.
When all is prepared, and a heated rivet in position, a movement of the handle admits high preseure water to the smaller cylinder, the dies rapidly close upon the rivet, the self-acting valves admls water to the larger cylinder, and without noise or vibration, the work is done. The dull, heary pressure crushes together the thick plates; and after holding them and the rivet together for a moment that the latter may cool, the pressure is released, the diee recede, another rivet is soon completad, ani a boiler is finished with astonishing ease and rapidity.
The distance, from the center shaft on which both levers work to the dies or center of the hydraalic cylinder, is 6 feet in the present case; so that, after deducting the center bearing and wrougbt iron straps to carry the tensile strain, there remains a clear space of 5 feet for boiler plates, and this is found to be ample for the several clagsee of work for which this particular machine is used.-The Engineer.

Now Australian Trees and Plante.

Mr. Walter Hill, the Government botanist, has reported to the Queensland Secretary for Lands that his party have ex amined the banks of the Mulgrave, Russell, Mossman, Daintree, and Hall rivers, and have been more or less saccessfal in finding saitable land for sugar and other tropical and semi-tropical productions. The escent of the summit of Bellenden Kerr was succeessfully made by Johnstone, Hill, and eight troopers. At 2,500 feet in hight they obeerved an
andeecribed tree with crimson flowers, which excels the poinciana regia, coloillia racemosa, lagersstroma regia, and the jacaranda mimosifolia At 4,400 feet a tree fern, which will excal in grandear all others of the alboreous class. A palm tree at the same hight which will rival any of the British.Indian species in gracofulness. "On the banks of the Daintree we saw a palm tree cocoa, which far exceede the unique specimens in the garden of the same genera from Brazil in grandeur and gracefulness. While cutting a given line on the banks of the river Johnstone, for the parpose of eraminiag the land, an enormons fig tree stood in the way, far exceeding in stoutness and grandear the renowned forest giants of California and Victoria. Three feet from the

the British Medical Journal, confirms this statement, and ays that it is of the greatest value as a local application in nearalgia. Mr. Browne, having employed it during several months, has found great and sometimes instantaneous relief o follow its application in every case. It is only necessary to paint the mirture lightly over the painful part and allow it to dry. The spplication never blisters, though it may oc casion a tingling sensation of the skin. The compound has lso been found of great service in the relief of toothache. - Pharmacoutical Journal.

Death Valley.

According to the recent expeditionary report of Lieutenant Wheeler, the Death Valley in California is a detrital sink of unique physical characteristics. This whole region presents a series of valleys or detrital plains, each ontirely inclosed by the ridges of Cordil leras that are more or less distinct as a series of mountain masses. The Death Valley proper is one of the most remark able of all known interior continental de pressions, and has portione near the cen ter of its axial line below the level of the sea, although far inland, and lying mach to the north of the lower border of the great interior basin. It is the aink of the in the aroas of drainage n th south-and east of Belmont, Nevada, tra verses the desert of that name while passing soathward, until, reaching lat. $35^{\circ} 41^{\prime} 5^{\prime \prime}$, it makes an abrupt angle to the west, and thence, at right angles to the north, reaches the point of greatest depression, a little less than 500 feet be low the sea level, in the heart of Death Valley proper. This valley, of the ordinary oval form, is fully 70 miles in length, varying from 5 to 15 miles in width, surrounded by frowning moun. tains of volcanic and sedimentary origin the Telescope range, rising higher than 10,000 feet. The line crossing this dismal area from the mouth of Death Val ley cañon to the thermal springs in Fur nace creek, presenting a labyrinthine maze of efflorescent, saline forms, create at the level of vision a miniature ocean, the vibrations of whose contorted waves has a sickening effect upon the senses. The larid glare, horizoned by th bluish haze radiated from the mountain sides, appears focussed to this pit, though broad in expanse. It seems, coupled with the extreme heat, to call for the atmost powers of mental and phyaical ondurance.

hydradtic riveting machine.

ground it measured 150 feet in circumference; at 55 feet, where it sent forth giant branches, the stem was nearly 80 feet in circumference. The river Johnstone, within a lim-
ited distance from the coast, offers the first and best induceited distance from the coast,
ments to sugar cultivation."

Effect of Pipe Smoking on Teeth.
Dr. Erich Richter, of Ula, Col., gives, in Dental Coomos, the accompanying engraving of dental abrasion from tbe use of clay pipes. The patient, a miner, a native of Germany addicted to amoking, could not refrain from it even while at work. It was his custom, while using the pick or ehovel, to support the pipe between the canines and first bicuspids, and, when makingheavy strokes, the pipe would move a little. After a few years he could close his teeth and still have room for the pipe.

The accompanying diagram illustrates the effect upon the teeth. The left superior cuspid is worn down nearly to the gum, and looks as though it had been filed for pivoting and then polished. The pulp cavity is not exposed, but is covered with so thin a layer of dentine as to make the touch of an instrument painful. The other abrasions areall in the form of a segment of a circle, and are all highly polished. The second left lower and the first upper bisuspids have been extrac
badly.

Now Local Anwathetic.
Some time since the Medical Record quoted from an American eource a statement that if camphor be powdered by rabbing it in a mortar with a few drops of apirit, and an equal weight of chloral hydrate added, a liquid is produced wbich is a valusble local aneathetic. Mr. Lennox Browne, writing

The journey through the Valley of
Death occasioned the utmost apprey sion, evinced tbrough the entire season. To this was added the effect of the fearful cloud barst experienced while among the Telescops mountains, to the west, and the ab sence of tbe guide who had ventured toward the northwest orn arm of the valley, it was feared to return no more. The transit of 48 hours, in a temperature that remained a 117° Fah. at midnight, so exhausted both men and animal that further travel was rendered precarious.

Teating Dyes for Adulteration.

Red dyes must neither color soap and water nor lime waer, nor mast they themselves become yellow or brown after boiling. This test shows the presence or absence of Brazi wood, archil, safflower, sandal wood, and the aniline colors. Yellow dyes must stand being boiled with alcohol, water, and ime water. The most stable yellow is madder yellow; the east stableare anatto and turmeric: fustic is rather better Blue dyes must not color alcohol reddish, nor must they decompose on boiling with hydrochloric acid. The best parple colors are composed of indigo and cochineal, or parpurin. The former test applies also to them. Orange dyes must color neither water nor alcohol on boiling; green, neither alcohol nor hydrocbloric acid. Brown dyes must not lose their color on standing with alcohol, or on boiling with water. If black colors have a basis of indigo, they turn greenish or blue on boiling with sodium carbonate; if the dye be pure gall nuts, it tarns brown. If the material changes to red on boiling with hydrochloric acid, the coloring matter is logwood without a basis of indigo, and is not durable. If it changes to blue, indigo is prosent.-Dingler's Polytechnisches Journal.

Phosphoric Acld on Oats.

E. Wolff describes water culture experiments in which the nourishing solutions, eight in number, supplied graduated quantities of phosphoric acid. The percentage of phospboric acid in the dry crop varied with the amount sapplied. When this percentage fell below 0.33 (with good field oats it is about $0 \cdot 44$) the amount of straw seriously diminished, bat an increase of phosphoric acid above this point did not increase the straw. The corn, however, was greatly affected by an increased sup. ply, and gave by much the largest yield when the phosphoric acid reached $1 \cdot 11$ per cent of the dry crop. The ash of the straw contained no silica, none having been supplisd; its percentage of phosphoric acid was $4.4-18.9$, that in the ash of field oats (silica deducted) being $9 \cdot 1$. In the ash of the corn, the phosphoric acidvariedonly from $87 \cdot 7-48 \cdot 8$ per ceat, the percentage in the ash of field oats being 41.3 .

