apprecisble dimination of the atmosphere which surrounds the plant. The primary cause of the inspiration of oxygen by the leaves of living plants is, therefore, of a chemical nature. With the facts which have just been announced before us, it seems very probable that, during the nocturnal inspiration, the carbonic acid which appears is formed at the cost of carbon contained in the leaves, and that this acid is retained either wholly or in part, in proportion as the parenchyma of the leaf is more or less plentifully provided with water.
A plant that remains permanently in a dark place, exposed to the open air, loses carbon incessantly; the oxygen of the atmosphere then exerts an action that only terminates with the life of the plant: a result which is apparently in oppo sition to what takes place in an atmosphere of limited extent. But it is so, because in the free air the green parts of vegetables can never become entirely saturated with carionic acid, inasmuch as there is a ceaseless interchange going on between this gas, and the mass of the surrounding atmosphere; thereis, then, incessant penetration of the gases,as it is called. There is a kind of slow combustion of the carbon of a plant which is abstracted from the reparative influence of the light.
The oxygen of the air also acts, bat much less energetically, upon the organs of plants that do not possess a green color.

The roots baried in the ground are still subjected to the action of this gas. It is indeed well known that, to do their office properly, the soil mast be soft and permeable, whence the repeated hoeings and tarnings of the soil, and the pains that are taken to give access to the air into the ground in so many of the operations of agriculture. The roots that penetrate to a great depth, such as those of many trees, are no less dependent on the same thing; the moisture that reaches them from withoat brings them the oxygen, in solation, which they require for their development. It is long since Dr. Stephen Hales showed that the interstices of vegetable earth still contained air mingled with a very considerable proportion of oxygen. The roots of vegetables, moreover, appear generally to be stronger and more numerous as they are nearer the surface. In tropical countries, various plants have creeping rcots which often acquire dimensions little short of those of the trank they feed.
If a root detached from the stem be introduced ander a bell glass full of oxygen gae, the volume of the gas diminishes, carbonic acid is found, of which a portion only mingles with the gas of the receiver, a certain quantity being retained by the moistare of the root.
The volume of the gas thas retained is always less than that of the root itself, however long the experiment may be continued. In these circumstances, whether in the shade or in the sun, roots act precisely as leaves do when kept in the dark. Roots still connected with their stems give somewhat different resulce.
When the experiment is made with the stem and the leaves in the free air, while the roots are in a limited atmosphere of oxygen, they then abiorb several times their own volume of this gas. This is because the carbonic acid formed and absorbed is carried into the general system of the plant, where it is elaborated by the leaves if exposed to the same light, or simply exhaled if the plant be kept in the
dark. dark.
The presence of oxygen in the air which has access to the roots is not merely favorable; it is absolately indispensable to the exercise of their functions. A plant, the stem and leaves of which are in the air, soon dies if its roots are in conThe use of oxygen in the growth of the subterraneons parts of plants, explains why our annual plants, which have largely developed roots, require a friable and loose soil for their advantageous caltivation. This alfo enables us to understand why trees die when their roots are sabmerged in stagnant water, and why the effect of submersion in general is less iojurious when the water is ranning, such water always containing more air in solution than that which is stagnant.

MILE AS A DIET AND ITS EFFECT ON THE BYETEM.
There is considerable difference of opinion on the subject of a milk diet. It is surrounded with a mass of whims, of prejudices, and of mistaken ideas, which are besed more on individual fancies than áron certain fact. To one a glaen of milk imbibed is believed to be a sure provocation of a bilione atta kk , to another, a disordered stomacb, to a third, drowsi ness, and so on, through sach a category of simple though disagreeable ailments that we look aghast at the farmer who drains cap after cap of the fresh pare liquid, time and again during the day, and wonder at the resiating powers which his organization must poseess. The trath is, however, that milk is not unwholesome. On the contrary, it contains good sabstantial bone, muscle,flesh, ard brain producing substances, which, assimilating, quickly act rapidly in building up the body. Naturally, we assert, it is noarishing; that it does bring on certain troables is nevertheless trae, bat the cause is in the individual stomach, not in the milk, provided, of course, the latter be freah and sweet. The Commercial Adoertiser of recent date has some excellent remarks on this subject which are well worthy of repetition. " Milk dilated with one third lime water," it is said, "will not cause any one biliousness or headache, and, if taken regularly,
" It may be taken with acid of some kind when it doen no easily digest. The idea that milk mast not be eaten with pickles is not an intelligent one, as milk cardles in the stomach nearly as soon as it is ewallowed. When milk is constipating, as it is trequently found to be by persone who
drink freely of it in the country in summer time, a little salt sprinkled in each glassfal will prevent the difficalty. When has an opposite effect, a few drops of brandy in each goble sential to the hesith of our bodies, it is well to consider sential to the hesith of our bodies, it is well to consider
when to take it, and how. It is a mistake to drink milk boween meals, or with food at the table. In the former case it will destroy the appetite, and in the latter it is never proper to drink anything. After finishing each meal a goblet of pare milk should be drank; and if any one wishes to grow fleshy, a pint taken before retiring at night will soon cover plaint, miest bones. In cases of fever and sam. The ide that milk is "feverish" has exploded, and it is now the physician's great reliance in bringing through typhoid patients, or those in too low a state to be nourished by solid food."
Oar contemporary, we notice, says that the persons with whom milk does not agree are the very ones who require it, and whom it would probably regenerate, did they so prepare it as to make it palatable and suitable to their particular constitations. Not exactly, we think. It should be remem bered that " what is one man's meat is another man's poison is a very frequent case; and while, as we have above pointed out, milk may in perhaps a majority of instances be rendered agreeable to the stomach, still there are certain organizations which persistently refuse it in spite of any assisting admix tare. A similar illustration may be found in the case of wine ; and we know of instances where persons, of otherwis strong digestion, are atterly anable to drink half a gill of even the parest grape juice without experiencing the same bilious and other derangements which many ascribe to milk. It is a fact, however, that for individuals troabled with dys pepsia, weak stomach,and kindred ills, milk has wrought re markable and unexpected benefit, and the diet has in cases mong our own acquaintances resulted in great relief.
Milk drinking, particularly in this city, has during lat years received au uuasual impetas through the establishment of dairies, or restaurants where the bill of fare is confined to a fow simple articles of farinaceous food and to generous The ides, we believe, oring retailed at very moaierate prices The idea, we believe, originated some five years ago in a small baker's shop, in one of the little down town streets, which had a monopoly of the basiness for some time,making large recoipts. Others, being attraited by the gains, embarked in the business, and now the dairy is as mach a fix ture in New York city as the more pretentious restaurant As a matter of curiosity, we recently inquired of the man ager of the largest of these establishments as to the people who patronize the diet, and the effect of the increased de mand apon the supply. His customers, he told us,comprised every class; the rich banker perches on the high stool beside his errand boy. Clergymen, lawyers, merchants, editors men whose repatation is worldwide, throng into the doors, proving that,even if this sudden increase in milk drinking be merely a popula
The milk for the city is brought principally from West chester and Datchess counties in this State, and the neighboring counties in Connecticat. In the dairy above referred to, the stocks of several large farms are required to produce the necessary amount. Twelve handred quarts in cool
weather, and apwards of eighteen handred quarts when the mercary makes excarsions into the nineties, are daily con sumed by an average of twenty.five handred persons in the single establishment. This milk is sold at about ten cents a quart, realizing a fair profit.
The greater portion of the milk used in the city does not come direct to the seller, bat goes through the same hand ling, by four or five " middle men," as the often doabtfal flaid retailed by the peripatetic milkman. The farmer, for instance, binds himself to sapply a certain number of cans to the contractor for a definite period, usually six months, at
the price of about 33 to 42 cente per can in sammer or 45 the price of aboat 33 to 42 cents per can in summer or 45
cents in winter. The contractor receives the filled vessels from a collector, who gathers them from the different farms and deposits them at the railway stations. Under charge of the latter,th6y are transported in early trains to the city and sold at the depots to milkmen and dairy keepers at an advance of about five cents per can. The milkmen eupply families and grocers with the commodity, pus another pro
which brings its cost to the consamer, as above stated to which brings its cost to
about ten cents per quart.

As to the quentity of milk daily consumed in New York, it is difficalt to obtainany precise figares; bat it is estimated that the sapply does not fall short of two million quarts
every twenty-four hours. This on a rough calculation is the produce of some thirteen thoueand cows and an average of something over two quarts per diem to every soal of the popalation.

THE RESPIRATION OF OXYGEN.

According to the older notions in regard to the prapision of Nature for the sustenance of life, the surrounding fonditions have been expressly arranged for the benefit of al living creatares, so as to secure not only their existence bu
their welfare and comfort. According to late ideas, how ever, as the different living creatures were evolved under previously existing conditions, the mode of their development was such as to accommodate the different organisms to these conditions; aud when the conditions changed, a corresponding change occurred in the creatures themselves: those not adapted to the changed conditions perishing, and those most fit for the new era surviving and propagating their species. We will illustrate this by an example: In our at-
mosphere, the oxygen is diluted with very nearly four times mosphere, the oxygen is diluted with very nearly four times
its amount of nitrogen, and all the air-breathing animale,
including man, have become adapted to these conditions. If the amount of otygen became less, a corresponding change would occar in the respiratory system, as is illustrated in the high lands of South America, where, by reason of the rarefied atmosphere, the amount of oxygen inhaled at each espiration is less than near the ocesn level; and as a consequence, the haman langs are more developed there, and the nhabitants are remarkable for their largely developed ohests, allowing them to make up by quantity for the quality of the nspired air. The reverse is also the case; it has been found that the effect of the compressed air (on those worimen whose constitations allowed them to withstand the pressare and labor for some length of time in the caissons for the foundations of the Mississippi bridge at St. Louis, Mo., and the East river bridge, New York) was to narrow the volume of the chest, while deep respirations of the highly compressed air were painful.
Now comes an interesting discovery of M. P. Bert, who inds that it is not alone the pressare which is hartful to the system, which can soon accommodate itself to it, bat chiefly the concentration of the oxygen, which even acts like most violent poison when inhaled pare, under a pressure of three or four atmospheres; consequently when (ander a pressure of some 90 or more pounds to the square inch) 20 amount of oxygen surpassing the normal quantity some six or more times is inhaled at every respiration, its hartful effects manifest themselves, one of them being a very great ncrease in animal heat, with a distarbed pulse; this, of course,adds largely to the discomfort. This factsaggests that men who have to submit to conditions of greatly increased atmospheric pressare would be relieved and benefitted by inhaling an artificial atmosphere containing less than the normal amount of oxygen, 10 per cent oxygen to 90 of nitrogen for two atmospheres pressare, 5 per cent oxygen and 95 nitrogen for foar atmospheres, and so on. The value of this suggestion is strengthened by the French physicist De Fonvielle, who maintains that the discomfort experienced by ravelers on high mountain peaks, or by seronats when ascending to high altitudes, is not so mach caused by the diminished atmospheric pressare as by the want of oxygen, which, in that rarefied condition, is not given to the langs in sufficient quantity. He suggested, therefore, the inhalation of pare oxygen at those high altitudes; and two balloonists, Sivel and Croce. Sf inelli, have verified this theory during a recent ascent in the balloon Etoils Polaire. M. Croce-Spinelli, when he had reached a hight of 16,400 feet, experionced a strong feeling of suffocation; he then resorted to the inhalation of pare oxygen (enclosed in a large rabber bag with which he was provided), and became not only relieved, but ecovered his normal condition of perfect comfort. The effect on the pulse was remarkable: while below it was 86 beats per minate, it rose, at a hight of 16,000 feet, to 140 when orygen was respired, it descended at once to 120.
The pablished account of this ascent adds the following: When not asing the respirator, the skies appeared to the bservers quite dark; bat when freely respiring the oxygen, the blue color of the hesvens was restored." As the blue color of the sky is due to the refraction of the solar light in the atmosphere, it is an objective phenomenon, aud cannot be seen at such high altitudes, where there is little of the atmosphere (and that little very rarefied) left above the obcorver. The atatement that the blue color was restored by the inhalation of the oxygen woald infor that the hue is mab jective and due to the condition of our eyes, induced by breathing the gas.
In regard to the hight which travelers are able to attain, we may state that Alexander von Humboldt, in his ascent of Chimborazo, was compelled to stop at a hight of 16,000 reet, at which point he had to give up from suffocation ; but n late years the brothers Schlagintweit ascended the Hims ayas, and slept all night in bivouac at a hight of 19,200 feet and later ascended the peak Ibi Gamin, 22,200 feet high.
The English astronomer Mr. Glaisher claims that he has ascended to a hight of 26,000 feet without feeling any dif. comfort, and that only when reaching 32,000 feet he experionced any very serious feeling of suffocation. No doubt, different constitutions are differently affected; some are anable to resist diminished atmospheric preasures, othern ncreased premsure. We met even last summer a consump. tive individusl on Mount Weshington (which is not mach over 6,000 feet high), who stated that he felt suoh a feeling of suffocation that he was obliged to hesten down on the same day.

THE AMERICAN SOCIAL BCIENCE CONGRESS.

The American Social Science Congress will hold its annual ersion in New York city, commencing on May 19 and ter minating on May 23. The title of this institation is broad enough to cover a vast field of useful knowledge,and the subjects for investigation are very namerous and intereating. Mr. George W. Cartis will preside, and papers by Rev. Dr. Woolsey on exemption of private property from eaptare at sea, by Mr. W. C. Flagg on the farmers' movement, by President Gilman on California, by Hon. D. A. Wells on taxation, by Professor Peirce on ocean lanes for steamship navigation, by Mr. G. G. Hubbard on railroads, and by Professor Samner on the Finance Department, will be read Many other papers relating to pablic health, penal institu tions, charity, and kindred subjects are promised, and the Boards of Health and Pablic Charition will probably be in session on the same days.

The bill before Congress for the grant of national aid to the extent of three millions of dollars in behalf of the Oentennial Exhibition has been defeated.

New Elghey-one Tun Gun
Unly two years ago the sobriquet " Woolwich infant"was playfully applied to a gan which had just been constructed in the gun factories of the Royal Arsenal at Woolwich, of the then anprecedented size of thirty.five tans. Recent events have, however, proved that the name was by no means ill chosen, for a decision has been arrived at which will necessitate our viewing tinis gan actually in the light of a mere baby, a series of monstrons successora having been designed which will patits nose out of joint altogether. The first four of these, which are intended to form the armament of the future ironclad Inflexible, will be proceeded with so soon as the experimental one, which is the sabject of the present paper, has been completed and proved.
The new gan will, it is expected, be of a weight slightly over or slightly under eighty one tans. Its total length, in cluding the plagecrewed in at the breech end, 27 feet; the length of bore, 24 feet; the caliber will, in the first instance, be 14 inches, but ample provision is made in the thickness of the steel tabe to increase that figure to 16 inches, if deemed desirable. The rifling has not as yet been decided on, but will be a maiter for consideration as the gan approaches com pletion, by which time the result of the present series of experiments with the $\frac{35}{3}$ tun gan will doubtless have thrown considerablelight apon this vered ques tion. The trannions are to be 16 inches in diameter. The internal construction is similar to that of the 10 inch gan and upwards, exceptthat thechaseis divided into three portions instead of two.

The accompanying engraving wlll give some idea of the appearance of the proposed gun, and exhibits the grandeur of its proportions as compared even with those of its colossal predecessor. The 7 inch gan is also shown as demonstra ting the immense advance that has ta ken place in modern artillery during the past eight years. When we consider that it was positively stated, when the 7 inch gan was produced, that we had attained the highest point we should ever reach in weight of metal, it seems almost incredible that in less than a de cade we should be in possession of artillery twelve times as heavy. One is almost tempted to pervert the Latin proverb, and exclaim: "Tempora mutantur et arma mutantur in illis.

Neither the weight of projectile nor quantity of powder to be contained in the cartidgo for the 81 tun gun has been positively fixed, but the firgt will probably range between $1,000 \mathrm{lbs}$. and $1,200 \mathrm{lbs}$, while the secondmay be estimated at about one sixth of that amount. In the following calcutions as to the probable energy of the new gan, or force of impact of its projectile, at the various ranges apecified, three weights of shot or shell are respectively dealt with of 1,000 lbs., 1,100 lbs., and $1,200 \mathrm{lbs}$. Au initial velocity has been assumed in all cases at the mazzle of the gan of 1,800 feet per second. It would possibly be considerably greater, but we debire to be within the mark. Working by the well known formula :

The energy in vis oiva in pounds $=\frac{\mathrm{WV}^{2}}{2 g}$
where $\mathbf{W}=$ weight of projectile in lbs. $\mathrm{V}=$ velocity in feet, $g=$ force of gravity (32-2),
we find at the mazzle for the 1,000 lbs. projectile a blow of 11,715 foot-tuns, for the 1,100 lbs. projectile one of 12,886 foot-unns, and for tbe $1,200 \mathrm{lbs}$. projectile the terrific force of 14,058 foot-tuns! These forces would, of course, be considerably enbauced by the higher velocity which would doubtless be obtained. When we compare such energies with tbose of the 35 tan and 7 inch gans, namely, 8,404 and 1,855 tune, reapectively, the latter sink into utter insignificance.
The actual penetrating powers of the 81 tan gan, as distinguished from the striking or racking powers, can only be decided by experiment. With the earlier natures of heavy ordnance, such as the 7 inch and 8 inch, a rough rule gave the penetrative or punching power as 1 inch in excess of the diameter of the projectile. Thus the 8 inch gan would penetrate armor 9 inches thick at a moderate distance. But as we ascend the serier, this power developes itself in an increasing ratio, the 10 inch gun piercing armor of 12 inches in thickness, bat not going through the backing; while the 12 inch gun of 36 tuns easily pierces 14 inches armor and backing, and only is arrested by the latter after going through 15 inch targets. Hence we may reasonably eatimate the power of the gun now under consideration as capable of penetrating at least 19 inches or 20 inches of armor plates and their backing, at a distance of, aay, 500 yards. We are aware, of course, that by increasing the diameter of the bore to 16 incbes, tbe charge remaining the same, a lose of penetrative power would result, but we anticipate that (by employment in making up the cartridges of the slow-burning $1 \frac{1}{2}$ inches or 2 inch cabes of pebble powder, some of which have been manufactured at Waltham Abbey, and with which good velocities and low pressures were obtained in recent experiments with the 38 tan gun at the proof butts), as the caliber is increased, so the charge may be incresoed in proportion. That the 81 tun gun will altimately have a caliber of certainly's inches, we little doabt.-The Enoineer.

THE POLAR CLOCE-THE TIME OF DAY BHOWN BY

One of the most beantiful practical applications of the polarizing instrument is presented in Sir Charles Wheststone's polar clock, shown in our engravings and described in the following passage by the inventor:
"At the extremity of a vertical pillar is fixed, within a brass ring, a glass disk, so inclined that its plane is perpen dicular to the polar axis of the earth. On the lower halp of this disk is a graduated semicircle, divided into twelve parts (each of which is again subdivided into five or ten parts), and againat the divisions the hours of tbe day are marked, commencing and terminating with VI. Within the fixed brase ring, containing the glass dial plate, the broad end of a coni-

81 tun gun. projectile 1,200 Lbs. Cartridge 200 lbb.

35 tun gun. projectile 115 Lbs. Cartridge 110 lbb

7 tUN GUN: PROJECTLLE 700 Lbs. CARTRIDGE 30 Lbs

cal tube is so fitted that it freely moves round its own ario ; this brosd end is closed by another glass disk, in the center of which is a small star or other figure, formed of thin film of selenite, exbibiting when examined with polarized ligh strongly contrasted colors; and a hand is painted in such a position as to be a prolongation of one of the princlpal sec
tions of the crystaline films. At the smaller end of the con ical tube a Nicol's prism is fixed so that either of its diagonals shall be 45° from the principal section of the selenite films. The instrument being so fired that the axis of the conical tabe shall coincide with the polar axis of the earth and the eye of the obeerver being placed to the Nicol's prism, it will be remarked that the selenite etar will, in general, be richly colored; but es the tube is tarned on its axis the colors will vary in intensity, and in two positions will on tirely disappear. In one of these positions a amaller circu lar diak in the center of the star will be a certain color (red, for instance), while in the other position it will exhibit the complementary color. This effect is obtained by placing the principal section of the small central disk $22 t^{\circ}$ from that of the other films of selenite which form the star. The rule to sacurtain the time by this instrument is as follows: The tube must be tarned rouud by the hand of the observer until the color star entirely disappeare while the disk in the center re mains red; the hand will then point accurately to the hoar The accuracy with which the solar time may be indicated by

Fig. 1.
Fig. 2.

Wheatetone's Polar Cloci.
this means will depend on the exactness with which the place of polarization can be determined; one degree or
change in the plane corresponde with four minates of solar ime.
The instrument may be furnished with a graduated quadradt for the parpose of adapting it to any latitude; but if it be intended to be fixed in any locality, it may be perma. nently adjusted to the proper polar elevation and the expense of the graduated quadrant be saved; a spirit level will be useful to adjast it accurately. The instrument might be set to its proper aximath by the sun's shadow at noon, or by means of a declination needle; bat an observation with the instrument itself may be more readily employed for this parpose. Ascertala the true solar time by means of a good watch and a time equation fable, set the band of the polar clock to correspond thereto, and turn the vertical pillar on its axis until the colors of the selenite star ontirely disappear. The instrument then will be properly adjusted.
" The advantages a polar clock poseesses over a sun dial are: 1st. The polar clock being constantly directed to the same point of tbe eky, there is no locality in which itcannotbe employed, whereas, in order that the indications of a sun dial should be observed daring the wbole day, no obstacle must exist: any time between the dial and the. ang the ann and it theretore can placos of the an, and therolore can ot be applied in any confined situa ion. The polar clock is consequently applicable in places where a sun dial would be of no avail : on the north side. of a mountain or of a lofty building, forinstance. 2d. It will continue to indicate the timeafter sunset and before sunrise, in fact, so long as any portion of the rays of the sun are reflected from the atmosphere. 3d. It will also indi. e the time but with leas accura cate the time, but with less accuracy, when the sky is overcast, if the clouds lo not exceed a certain density.
"The plane of polarization of the north pole of the eky moves in the opposite direction to that of the hand of a watch; it is more convenient therefore to have tbe hours graduated on the lower semicircle, forthe figuree will tben be read in theirdirect order, whereas they would be read backwards on an apper semicircle. In the southern hemisphere the apper semicircle should be employed, for the plane of polarization of the south pole of the sky cbanges in the same direction as the hand of a watch. If both the upper and lower semicircles be gradua ted, the same instrument will serve equally for both hemipheres.
"The following is a dencription of one among several otber orms of the polar clork which have been devised. This Fig. 8), thongh mach less accurate in its indications than the preceding, beantifully illustrates the principle.

Fig. 3.

Selenite Polar Clock.
"On a plate of glass twenty-five films of selenite of equal thickness are arranged at equal diatences radially in a semicircle ; they are so placed that the line bisecting the principal sections of the flms shall correspond with the radii respectively, and figares corresponding to the hours are painted above each film in regular order. This plate of glass is fixed in a frame so that its plane is inclined to the horizon $38^{\circ} 32^{\prime}$, the complement of the polar elevation; the light, pasaing perpendicularly through this plate, falls at the polarizing angle, $56^{\circ} 45^{\prime}$, on a reflector of black glass, which is inclined $18^{\circ} 18^{\prime}$ to the horizon. This apparatue being properly adjustod, that is, so that the glass dialplate shall be perpendi. cular to the polar axis of the earth, the following will be the effects when preeented towards an unclouded sky : At all times of the day the radii will appear of various shades of two complementary colors, which we will assame to be red and green, and the hour is indicated by the figure placed oppooite the radius which contains the mostred; the hall hour is indicated by the equality of two adjacent tinte.'

A Correction-An accidental error exists in tbe description of the bolt cutter of the Wood and Light Machine Co., which appeared on the first page of our issue of May 9. The beginning of the detailed reference should read: " A is tbe face plate of the die holder," etc. Instead of the following aentence should appear: B is the head, caused to revolve by proper mechaniom, through which passes a mandrel, moring treely back and forth, in the spindle, \mathbf{C}.

THE Ereen color of the boron flame may, be very well shown by bolling a mixture of boracic acid, alcohol, and aulphuric acid, and lguiling the vapor.

