CURIOUS PLANTE.

There is little to our minds interesting in a garden filled with roses, lilies, fuchsias, heliotropes, and pasaies, or any other simple selection of the flowers that every one knows. True, their fragrance is always delicious, and their beautiful colors never pall upon the eye; but while we should perhaps stop for seconds to admire the gorgeous hues of a cluster of tulips or to enjoy the perfume of a bed of violets, we would certainly give minutes, and many of them, to watching the shrinking of the leaves of the sensitive plant or to examining the strange forms of the aloe or cactus.

In the one case we admire a flower which we know beautiful, doubtless far more so than the odd plant which attracts our closer attention; but with the one we have always been familiar, and the gratification it affords us is simply to the senses of sight and smell; the other pre sents the charm of that greatest of wonders, a new va gary of Nature, and arouses a deeper and more intellectual interest, which holds us enchained until we have gratified the curiosity which leads us to new stores of knowledge. For this reason, we think that no garden should be without some odd or queer plant, in the growth and development of which new marvele will be daily unfolded. Of course there are hundreds of apecies wel known to the professional floriculturist, but of which the amateur gardener is comparatively ignorant; and from these, selections may be made which will render one's flower beds a museum of strange and beautiful forms, which will make them a constant source of pleasure and interest.
As specimens of these odd freaks of Nature, the annexed engravings represent plants which, we think, will prove something novel even to the skilled gardeners in this country. We extract the illustrations from that excellent periodical, the English Garden. In Fig. 1 is shown a noble sub-tropical plant, called the Wigandia caracasana. Its broad leaves are of a fresh green color and very luxuriant, rendering it a beautiful ornament for lawns. It rarely flowers, but produces a large scorpioid enflorescence at the top of a thick fleshy stem. The plant grows quickly in warm soils, and altains a hight of from six to seven feet in a single season. It is easily propagated in the spring by means of cuttings; and if the thick roots are cut off in the autumn, a large proportion of them will form young plants when set out in light sandy earth.
In our second figure is represented one of the hardiest of the ferns, the Dicksonia antarctica. The trunk varies considerably in thickness, and in its native country, Aus-

Fig. 2.-Dicksonia Antarctica.
tralia, attains a hight of thirty feet or more, bearing at its summit a magnificent crown of dark green lance shaped fronds, from six to twenty feet long, beautifully arched and becoming pendulous with age. The crown itself is frequently ten or twelve feet across, and is evergreen.

In Fig. 3 is another queer but very differently appear ing plant, coming from high latitudes in Mexico, and called the mammillaria sulcolanata. It grows from five to six inches high. At the base of the mammal is a dense forest of white wool which disappears as the plant gets old. Ita flowers are yellow, and one inch and a half in width. They have short bell-shaped blossoms, which rarely protrude beyond the spines, and are produced in whorles.
A very curious plant, known as the ataccia cristata, shown in Fig. 4, is a native of the islands of the Malayan archipelago. The underground portion consists of a short and conical root stock, marked with the scars of former leaves, and here and there throwing up some former leaves, and here and there throwing up some
small tubers, by the removal of which it is easily multiplied. The actual roots consist of a few coarse fibers. From the crown of the root stock rise three or four hand. fome and dark green leaves, and in the midst is a stou
scape, like that of a hyacinth, twelve to eighteen inches in hight, bearing on the summit a unilateral umbel of from twelve to twenty brownish purple flowers. With these are many more that are abortive, attenuated to a length of at least twelve inches, and hanging down like thin straight hair, a lock upon each side, while back of all stand up two enormous vertical bracts, and two smaller ones, flattened out and of a cadaverous greenish purple hue. The whole thing is so weird and gipsy.like that one almost starts at the supernatural mockery. It is easily propagated from its tubers. The echinocactus myriostigma (Fig. 5) may be described a a civilized cactus, inasmuch as it has laid aside its spine

Fig. 1.-Wigandia Caracabana.
and other asperities, and put on an elegant attire, bespangled with silver. This littlegem (from Mexico) has generally five deep angles, though sometimes they number seven or eight at the apex, on the margins of the angles, are borne a quan tity of silky, yellow, star-like, sessile flowers, which open du

Fig. 4.-Ataccia Cribtata

one inch and a half in diameter. The ground color of the plant is dark green, and its whole surface is thickly and re. gularly beset with whitestar-like scales, which giveit a very beautiful appearance, especially under a microscope. Its culture is in no way different from that under which other echi nocactr thrive, but it must, says Mr. Croucher, not be subjec ted to a temperature below 40°, otherwise it will be sure to uffer more or less from cold, and will not flower satisfactoily.
In a future issue we shall present engravings of several ther curious plants and flowers, which will doubtless prove as intereating as those above described.

A Hunter9e Parrot.
A correspondent of the Little Rock (Ark.) Gazette sends that paper the following account of a common poll parrot, which, it is claimed, has not only been trained to hunt, but which has learned to take a great delight in the chase. The owner and trainer of this hunting parrot is a boatman, who formerly plied between Little Rock and New Orleans, but who some years since gave up the business of boating and has since led the life of a hunter, living in a anug cabin at the junction of Big Mammelle Creek with the Arkansas river. This hunter hermit, whose name is Nathan Lask, brought with him from New Orleans, on making his last trip to that city, a fine young parrot, to which he soon became more at tached than any other thing on earth. Seated upon his shoulders, the parrot attended him in all his walks. To train the bird and talk to it was almost his sole occupa. tion. With the careful training of so loving a master, added to its great natural talent for imitating all manner of cries of birds and animals, this bird has become a marvel of cunning and a great wonder in its way. Taken into the hills bordering Big Mammelle Creek, and the signal being given at intervals, it utters the cry of the turkey so perfectly as to deceive the oldest and most astute gobbler that ever strutted. On being answered by a gobbler, the parrot proceeds to lure him to death in the most fiendishly coquettish manner imaginable. Seated on his master's shoulders, charily and coyly the parrot replies. Once he has fully attracted the atten tion of the vain and anxious gobbler, often allowing him to call in a fretful tone twice or thrice before deigning to answer; he then, in a few low and tender notes, lures the answer ; he then, in a few low and forest within range of the hunter's the proud bird of the forest within range of the hunter's
deadly rifle. Seeing the turkey struggling in the agodeadly rifle. Seeing the turkey struggling in the ago-
nies of death fills the parrot with the most fiendish delight, to which he gives utterance in a succession of bloodchilling "ha has," in all manner of diabolical tones and keye. Should the hunter miss his aim, however, the parrot ruffles his feathers, croaks and scolds, pulls his master's hair and long refuses to be pacified. Duck hunting in Forche and Meto Bayous is, however, the parrot's chief delight. Seated in the bow of his master's boat, sungly ensconced in

Fig. 5.-Echinocactus Myriostigma.
a patch of tall bullrushes, the parrot bursts forth into such a " quack, quacking," and general duck gabble that there seems to be in the vicinity a whole flock of these birds, all enjoging themselves immensely. Thus are many passing flocks of ducks lured within range of the gue of the hunter. Geese are in the same way called up by the parrot; also many other wild fowl and even deer,as the bird imitates the plaintive bleating of a fawn or doe to a nicety. No money would buy the bird, and Nat. Lask, seen strolling through the woods, gun in hand and with his almost inseparable companion seated on his left shoulder, seems a second Robinson Crusoe. Although so perfect in his imitations of all manner of Although so perfect in his imitations of all manner of
birds and animals, the parrot is not a great talker; indeed, his vocabulary is limited to a few words and one or two short phrases. He will sometimes sing out: "Nat, you lubber," and when Dan Lanagan (a brother boatman of Nat's, living at the head of Bayou Forche, and almost his only visitor), in his dug out, is ssen paddling in toward the mouth of Big Mammelle Creek, the parrotwhose name, we forgot to say, is Bobby-will shout "Lanago, aboy! Lanagan, a a hoy!" The moment Bobby sees his master take down his gun, he is in a great Bobby sees his master take down his gun, he is in a great
utter. He cocks his head on one side, his ared red
eyes sparkling with delight, and, in a low, inquiring tone, says: "Turkey ? turkey?" "No, Bobby," Nat will perhaps eay, " not turkey today." Bobby cocks his head the other way and softly says: "Cuack, quack, quack?" "Yes, Bobby," says Nat, "quack, quack!" Bobby then burats into a loud "ha, lia,ha!" and cries, "Nat, you lubber, quack,quack quack!" Then he ha has till the whole cabin rings again.

THE FLOW OF SOLIDS AND ITS EFFECT UPON THE STRENGTH OF MATERIALS

by profrssor r. b. tevabton.

One of the most important properties of metals is that which has been carefully and ekillfully investigated by M. Tresca, the distinguished "Sous.Drecteuri du Conservatoire des Arts et Wétiers," and by him called the flow of solids. The important modification produced in the strength of materials by this action is not generally recognized, and has not been considered by standard authorities on this subject.
Professor Henry proved long ago that liquids, which were previously regarded by all, and which are still regarded by many, as destitute of all cohesion, are actually endowed with considerable attractive force, their molecules clinging to each other with a tenacity probably nearly, and perhaps quite, equal to that of ice. The total absence of the force of polarity, which gives the property of solidity, and the perfect freedom from true friction, observed in fluids, prevent the casual observer from detecting the existence of this attraction, and it can only be measured by ingenious artifice and skillfully conducted experiment. In solids, the force of polarity prevents the occurrence of such intermolecular movements, and enables cohesive force to be observed and appreciated; but it is evident that, so long as the power of changing interatomic distances by flow remains, the maximum cohesive resistance of the material cannot become a measure of its tenacity.
It has recently been found that any distribution of material which aids polarity in resisting the tendency of particles to slide among each other, under the action of any straining force, causes a power of resisting external forces to become evident, higher than is noted where the form is such as to permit flow. The realresistance to fracture offered by any piece, as a bolt, for example, is determined by the relative and absolute vaiues of cohesive force and polarity, and the form of the piece, and is not, as has been so generally supposed, a simple measure of the cohesive strength of the substance.

It was shown sometime since, in an illustrated article pub. lished in the Railroad Gazette*, that a piece of boiler plate having rivet holes, whether punched or carefully drilled,was actually weaker per square inch of breaking section than when solid. It has long been known to engineers that short specimens of materia's, subjected to test in the standard form of testing machine, exhibited higher tenacity than long specimens of the same material with a uniform cross section. This phenomenon bas recently been studied by Mr. C. B. Richards, at Hartford \dagger, and by Commander Beardslee at the Washington Navy Yard, and the results obtained are very similar.
The standard short specimen gives,almost uniformly,about twenty per cent higher resistance to fracture by tensile force than the long specimen, which has a uniform cross section for a length of several times its diameter.
A metal which exhibits a tenacity of 60,000 pounds per square inch when tested in the first form, the minimum area occurring at a single point, will usually resist with a force of but about 50,000 pounds when tested in the form of a long bolt. It is therefore very important to know in what form a specimen of metal has been tested when its so called tenacity is stated.
The majority of experiments hitherto made and quoted in books and periodicals have been made with short specimens. We are consequently very liable to be led to expect
more of our materials than they are really capable of sustaining.
It may be inferred, from what is above stated, that, in construction, we ahould always be careful to design the part exposed to strain in such manner that their form should aid in giving rasisting power by preventing, as far as may be, a How of particles and consequent stretch or distortion. This is correct when dead loads are to be carried.
Another inference would be that one large piece is less liable to yield under the attacking force than several small ones of equal total section. It is, however,to be remembered that small pieces are usually better worked and are less affected by internal strain than are large piec ${ }^{\circ}$ s. This is particularly the case with iron and steel, which are far more liable to this last kind of fault than are the other metals. Where the piece is to resist blows, or to sustain live loads, it need hardly be said, it should never be given a contracted section if it can possibly be avoided.
Since the damaging effect of a blow is measured by the product obtained by multiplying the weight of the striking body into the hight from which its fall would have given it its striking velocity, and since the resisting power of the piece receiving the blow is measured by the product of the strength of the material into about two thirds the distance it will stretch bofore breaking, it is seen that the proper it the best opportunity to stretch to a maximum extent before breaking. This is done by making the greatest possiblelength of uniform section and seeing that all other por tions are somewhat larger.
Thus the best bridge builders in this country make the

[^0]long bolts, which are used as braces, of uniform sectional area from end to end, except at the very extremities, which are upset for a distance equal to the required length of thread to be cut on them, and this enlarged portion at each ond is given such size that the diameter at the bottom of the thread, when cut, shall be somewhat greater than that of the body of the rod.
The amount of flow of the metal is determined by the character of the metal. Hard wrought iron and tool steels, for example, exhibit it less, and are consequently more ductile and resilient, than soft iron and low steels, while the latter are weaker metals than the former. Cast iron is both weak and non-resilient, and is therefore not well fitted to sustain either dead or live loads. The harder metals are not leas affected by shape, in their power of re sisting shock, than are the softer grades, and where it becomes necessary or advisable to make use of them under such circumstances, the same care should be taken to avoid concentrating the straining action on a short portion, or upon a single plane of cross section.
It often happens in, designing machinery, that pieces are he cearily made of such shape as to be liable to injury from the desigereconsidered. Should this danger appear serious to avoid such risk.
A connecting rod, as usually made, is an illustration of a piece unfitted by its shape to bear a blow. The less the taper of the rod, the less is its lisbility to yield to shock. To secure in any given case a form of rod that shall best combine power of resisting shock with maximum endurance under heavy strain is often an important problem. The spring of the rod will often take up excessive strains, due o accidental and excessive blows caused by the pistonstrik ing upon w
currences.
The body of a piston rod being of uniform section, it is well fitted to meet either static or dynamic compressive stress, but it is so seriously weakened at each end by the
taper given it in fitting it to piston and crosshead, and by the slots cut through it, that it is usually quite unfit to fifer maximum resistance to shock in tension.
To resist perfectly steady strain, therefore, and to carry dead loads, we should always select the strongest material rather avoiding ductility, and, where the minimum section ccurs, make that as short as possible and of such form as hall best resist flow and change of shape.
To resist percussive action and to sustain live loads, wo should select that material which is at once the strongest and most ductile, avoid brittleness as certain to produce danger, and make the piece of such form as shall allow the greatest possible stretch lefore breaking.
Where two materials have products of strength into olongation which have the aame magnitude we would selec the most tenacious. Where two materials are equal in other respects, we wonld select that which has least density, since it is less likely to produce a concentration of the effect of the shock near the point at which the blow is struck.
Stevens Institute of Technology.

Plant Trees.

Mr. Reuben Shelmandine, of Jefferson, N. Y., is evidently a philanthropist, and he proves his love for mankind in gen oral by issuing a proclamation to farmers. Why he should embody a number of very useful hints about transplanting rees in this highly official document, we cannot explain Suffice it that the writer says that he has had an ex perience of twenty years on a farm, and " not on a side walk," and that his remarks are practical. Transplant, he says, finest or standard fruit trees, some in the fall and some in the spring, until you have from 10 to 50 trees grow ing. No tree should stand nearer a building than twenty feet, and the trees should be about twenty feet apar throughout the entire grove or orchard. Establish forest rees along the road and the front yard, and fruit or forest trees on other sides of the house. Sugar maple, commonly named hard maple, is preferable of forest trees, and thrifty hardy apples or fears, or both, of the standard (not dwarf) kinds.
Ornamental trees should be trimmed during the first few years, leaving the main shoot to form the trunk of the tree in order to have the branching lower limbs of the final tree from six to seven feet from the ground. The land in such an orchard grove can be cultivated for all ordinary crops including a garden, by plowing shallow and carefully near the trees.
It is suggested that the first ten trees be planted on the south side of the house, if none be there already.
If a wind break is wanted on the west, northwest, or outhwest, plant as near together as possible and have a par of the trees evergreens, to complete the thicket. The forest and fruit trees, arranged about twenty feet apart, as above described, will be estimated by the owner or other person at the expiration of five years from the time of planting to be worth at least five dollars each, and at the expiration of ten years at ten dollars each, with an increasing value there after.

> Inventions Patented in England by Americanc,
> [Complled from the Commissloners of Patents' Journal.]
> roma April 14 to April 16, 184, incluaive.
> Boillez $a n d$ Furnacz.-D. Renshaw, Hingham, Mass.
Horse Collar Lining.-D. Curtie et el., Madison, Wis.
> Lrathiz Dribsing Maceing.-J. m. Caller, Salem, Masa.
> Nazdiz.-W. Trabue, Leulafille, Ey.
Pump.-W. D. Baxter, New York city.
> Trypreing Apparatus.-G. F. Slmonds, et al., Boaton, Mass.

ded

decisions of the commibsioner of patents.

patent toracco bag.-Jamta d. odlp.-Appeal.
 Legartt, Commissioner:
${ }_{1}^{\text {Ap }}$ Pliteant cilalms

1. The nse of elastlc knit or loosely woven tobacco sacks, substantlally

 did

Legagrt, Commissioner:

 lid

United States Circuit Court-District ofMassachusetts. atent elastio fabric.- Willian smiti os. the glendale rlastic
FAbics company. [[n equity.-Before Shepley, Judge.-Declded February 13, 1874]. The prevlous production to a ilmited extent of goods resembling those
fabricated by theplaintifts process, and by means some耳nat simlir. held
to have amounted to no more than abandoned and unsuccessul expert to bave amounted to po more than abandoned and un
ments, and not to lmpeach the valdity of his patent.
This la a bill in eqnity founded on alle of infringement of letters patent
 did
 ed

United States Circuit Court.-o-District or Massach 0 -

 setts.WADE H. hill et al. v8. G. н. whitcomb et al.
[In equity.-Before Shepley, Judge.-Dectded February 18, 1874.] The Court held as followe

[^0]:

