MODERN EGYPTIAN GARDENS

Only those who have viaited Egypt during the winter months can form any idea of the calm repose that almost invariably pervades that wonderful country at that period of the year. The cleor blue sky and quiescent atmosphere cause such a dresminees to overspread, as it were, the whele country, that, except near the cities, one may easily imagine one's self in a land of spectre palaces, villas, and mosques. The graceful heads of the date palm, poised calm and motionless in the air, relieve the towers of the country mansions of much of their monotong. It is winter, yet the orange trees are laden with golden fruit, t e jessamine, rose, and geranium are still in bloom. Theh leaves of the vine and other deciduous trees have just begun to turn red and brown, and to prepare to fall.
Our illustration, for which we are indebted to The Garden, is a good representation of a modern Egyptian villa and garden of the Mameluke period. Ths square basin and stately cypres, the vine-embowered path, producing shade and grapes in abundance, and the l'ttle summer house or kiosque in which the owner add his family onjoy the giateful weed and aromatic coffee, are faith ful delinea!ions of Egyptian garden life. During the past thirteen years, eardening has made ra pid progressin Egypt,the frequent visite of the Pa shas, prirces, and Khe dive to Europe having given the Egyptians of high rank quite a taste for European horticul. ture; and gardeners from England, France, and Italy have been en ployed in various localivies, but more efpecially in the neighborhood of Cairo and Alexandsia, to carry it out.
The Gezira garden is the beat imitation of an English estahliehment in Eggpt, and it has been creared at an enormoue expense. Embarkments artificial mounds, rock work, and water are all very naturally intro duc-d;good breadths of lawn, dotted with treep shrube, and parterres of flowers, produce, in this land of sunshine, a more pleasir g effectthan in our own country on account of the acarcily ot graes Egypt. To acbiere this desideratum, large tank or reservoirs bave heen constructes of sufficient hight to serve the foun tains and to force wate to every part of the gar. den, which, during sum mer, has to be krpt in a state of perpetual irriga tion. In the Gezira gar den is a magnificent col lection of tropical treespalms of many kinds, ficue, cathartocarpus, muass, cycads, acacias and others too numerous to no antion. Among the vast variety of climbing plants in this notable is bougainvillea spectabilis, which luxuriance of a wistara in oar ow country, and is annually covered with thousands of spikes of its lovely mauve colored bracts. In few countries is ve getation more rapid or luxuriant than in Egypt, if theirri gation is attended to; consequently it takes but a few year to have a perfect garden.

THE BOW AND STERN SCREW PROPELLE

Mr. Robert Griffichs, of London, the well known screw propeller man, has lately made a discovery in the propuleion of vessels which, he thinks, is likely to effect a revolution in the economy of steam navigation. His plan is to inclose the propeller in tunnels, and to place one tunnel propeller in the bow and one in the stern. From practical trials made with small models, be concludes and asserts that he obtain an improvement equal to nearly 50 per cent in the speed o the vessel, without increasing the power. At a recent meet
ing of the Royal United Service Institution, Mr. Griffths gave an interesting account of the progress of screw naviga tion, from which we select the following
"It is generally admitted that barely 50 per cent of the power exerted by the engines is made available to propel the ship, by either acrew, paddle wheels, or any other plan of propulsion which has yet heen practically used, the other 50 per cent being lost in some way, to account for which there are a variety of opinions.
" I have for several years given up the idea that any fur ther improvements were to be realized by any further change in the configuration of the screw propeller, and conse

A MODERN EGYPTIAN VILLA AND GARDEN. acted upon by the screws.
nly cne screw propelled the model; for since one screw pro pelled the model from, 58 feet to 60 feet in sixty seconds with 600 revolutions of the screw, and with the two screws f the same pitch together, from 96 to 100 feet in the same ime and with the same number of revolutions, there must, therefore, be at least 50 per cent more water pass through he tupnels in the same time, and the thrust given to the crew hhafts must be in proportion to the quantity of water
" I bad the mouth of the stern tunnel enlarged to the exent of 50 per cent, and this enlargement came below the keel. This it might be supposed would be an obstruction and cause a considerabl loss of speed, but I was agreeably surprised to find when I tried it that I had a gain of 20 per cent in speed. I had found by my experi ments that, as the supply of water to the screw is diminisbed, the power re quired to revolve it il creases, and the epeed of the ship diminishes

There are tbree im portant points to be considered in screw ships namely, the propeller, the ship, and the engine. In the first there has bern no improvements with regard to speed since 1840; secondly, with rf spect to the ships, the best types of ships were described by the old builders as having cod's head and mack orel's tail the length equal to three to four times her beam, and no better sea ships have been built than our sail ing frigates of former days; but since the intro duction of the screw the shipbuilder has been ob liged to arrange his plan to suit the propeller, for experiencehas sbown the deeper theimmersion the more effective the pro peller, and roneequently steamohips are now being made with an enormous draft of water in pro portion to the beam. The eel might now be taken or tbe type of modern screw ships, which are made in length ten to ourteen times the beam; nd it not been for the iotroduction of iron for building ships, the crew would never have succeeded to the extent thas done. This great ncrease of length gives he shipbuilder no cbance of improving the form f his ships, from a ns. al architectural point of iew, which is not the case in my system, as whaterer form or type he ship will be best for sailing will also be the best for the adoption of bow and stern screws.

The great improvement in steamships during the last thirty years is to be found in the onpines from which about thre times worb about quently turned my attention to the mode of applying it; my cated power is obtained now, with the same consumption of first patent in this direction, obtainedin 1871, was for applying fuel than formerly, as well as other important improvea screw at the bow of the ship within a tunnel in combina. ments that bave been made in this deparcment. tion with the screw at the stern in the ordinary way; I afterwards fourd very great advantages in having both the bow and stern screws in tunnels, for which I obtained a patent in 1872. I was much surprised to find when I doubled the power by applying one portion to the bow acrew and the other to the stern screw, each within a tunnel, the speed of the model increased nearly as the square root of the power, but if I doubled the power on either the bow or stern screws stparately, the speed of the model in that case increased only as the cube root of the power. It is well known that the resistance to bodies propelled through the water varies as the equare of the speed, while the power required is as the cube. At last it occurred to me that this great advantage must be due to the increased quantity of water that was passed through the screws within the tunnels, when both were at work, over what was due in the same time when

My attention was first drawn to the necessity of having bow and stern screws, on account of the danger attending the employment of ships of the enormous length in proportion to their beam ; for every sailor must be well aware that, hould an accident occur to the machinery in a heavy sea, or n a號 che ship, especially if one of these long ships, with its ma-
chinery disabled, should get into a trough of the sea. I expected that the shipowners would have readily availed themelves of my urrangement on account of the safety it offered to the ship and passengers, and also that the Admiralty would have seen and promptly recognized the advantage and safety it would have been to the Bhips of war. Now tbat the high price of coal is being felt by the shipowners they may be ioduced to consider whether it will not be to their interest, as well as for the protection of their passengers, to
adopt my system. In this paper I have confined myself to fact that successful grafting has been effected by using mere the advantages gained in speed or the saving of fuel by my system ; but I will briefly name eight other important advan. tages in connection with it. (1) Thorough protection to the
propellers. (2) Smaller screws and engines only are required. (3) No vibration whatever is produced by the proquired. (3) No vibration whatever is produced by the pro-
pellers. (4) Ships so fitted can be stopped much pellers. (4) Ships so fitted can be stopped much ${ }_{2}$ sooner in
case of danger. (5, There will be no loss of speed through case of danger. (5, There will be no loss of speed through
racing of the engines. (6) Greater facility for steering and maneuvering. (7) Areater safety through dividing the power. (8) Ship can carry more canvas, and sail better. To sum uf the result of my experiments, I find that to obtain the ad-
vantages of my system the propellers must be placed in tunvantages of my system the propellers must be placed in tunnels, by means of which an extrasupply of solid water will be kept up to the propeller, which cannot be effected in open water, and the extra supply of water can be obtained by using the bow and stern screws together, or by single screw ships, either at the bow or stern tunnels, by having the tunnel mouths enlarged or bell-mouthed. It may be thought there would be a loss of speed through the friction of the water passing through the tunnefs when the ship is under canvas only, which, however, is not the case."
It is proper for us to add that Mr. Grifithe' conclusions appear to be based upon experiments with small models, which may have led to deceptive results as compared with trials upon ordinary vessels. The subject is one of interest and we shall notify any progress made by thorough and practical experiments.

Skin Grafting.

Dr. R. J. Levis, of the Penneglvania Hospital, gives, in the Medical Iimts, an interesting article on this subject. The operation of skin grafting, he says, is now conclusively accepted as one of the resources of surgery.
The utility of the transplantation of minute pieces of skin, to granulating surfaces, has been demonstrated in a vast to granulating surfaces, It is admitted that, by creating cennumber of instances. ces, the rapidity of the healing process can be much inces, the rapidity of the healing process can be much in-
creased. Ulcers of a chronic character, which have obsticreased. Ulcers of a chronic character, which have obsti-
nately resisted cicatrization in a concentric direction, can be healed by the ingrafting of new centers of germination in the midst of the areas of ulceration. Experience has also shown that the procedure is applicable to plastic surgery in facilitating the cicatrization of surfaces denuded by gaping in the division of cicatrices, and in the sliding of flaps of integument.

Besides the increase in the rapidity of healing, due to extending the lines of cicatrizing edges, a decided and important physiological influence is exerted by the presence of the grafts on ulcerated surfaces. The surface of an indolent ulcer seems to be stimulated to renewed vital action, and the incressed healing impulse even influences to active germination the peripheral limits of an ulcer in which granulation has long entirely ceased.
The utility of skin grafting has, in my observation, been in no instances more demonstratively shown than in cases of extensive denudation caused by destruction of skin, as in burns, and loss of large areas of integument from traumatic injuries. In the case of a man whose back was extensively charred at a lime kiln, while lying under the toxic influence of its emanations, the sloughing integument having left an immense area of ulceration over his dorsal and lumbar regions, the successful ingrafting of numerous minate pieces of skin healed the vast ulcer with astonishing rapidity. In an instance of the entire loss of the skin of a leg, caused by turated a stocking, the healing process was by the same procedure rendered as surprising and satisfactory.
It seems now probable that amputation, which, as a finsl It seems now probable that amputation, which, as a final
resource, is by surgical authority justified in certain cases of extensive ulcers of the leg which all expedients have failed to heal, may be substituted by the simple device of skin grafting.
All of the conditions essential to successful skin grafting I have not, after extended observation, fully determined. The most favorable condition for the devalopment of the grafts is certainly that of healthy, active granalatior of an ulcer ; and the more nearly this st
er, as a rule, will be the success.
One of the beneficial claims for skin grafting is with re. One of the beneficial claims for skin grafting is with re.
ference to the avoidance of the eventual contraction which ference to the avoidance of the eventual contraction which
disfigures, deforms, and impairs motion after extensive loss of integument. Observation seems to show that where catification is rapid from a number of skin forming centers, the resulting cicatrix is less violently contractile in its tendency.
For successful skin grafting, it is simply essential that a minute portion of skin be removed from a sound part of the body of the patient, or from another individual, and placed on an ulcerated surface. It is customary to take the pieces to be transplanted from the patient's own skin; and I have generally chosen locations where the derma is thin, and not densely covered with cuticle, as on most of the front of the body, and, as a choice, from the inner surfaces of the arms and thighs. Grafts from the integuments of other individu als develop as readily, and I have frequently practiced removing them from limbs amputated for traumatic injuries, with apparently equal success. To avold the possibility of conveying some form of specific infection by the process, it is cartaialy, as a rule, most advisable to transplant only from the patient's own skin.
A graft of skin should merely consist of the simple structures of cutiole and derma, and should avoid the anderlyin fatty and connective tianues. That even the whole thick ness of the derma is not essential is demonotrated by the
scrapings of the cuticle, in which are contained some cells of the superflicial or papillary layer of the derma; but the prac tice is uncertain, and has not practical merit. The thickness of the true skin on the front of the body, it should be borne in mind, does not average more than from a quarter to hal a line, and this depth should never be exceeded in the re moving of grafts
The operation of removing the portions of skin for graft. ng may be done by a knife or scissors, cutting off minute particles of the size to be used immediately in transplanting; or by taking a larger piece which is to be afterwards subdivided. I have adopted a method, first suggested to me by Dr. C. H. Thomas, of Philadelphia, which, for simplicity convenience, painlessness, and effectiveness, may well dislace all others.
It consists, as seen in the illustration, in merely penetraing the cuticle with a very delicate sewing needle, elevating small point, and shaving off the minute elevation of cuticle and upper stratum of derma with a very sharp knife. The same may be accomplished, but hardly in so perfect and painless manner, by using fine scissors for the excision of the portion transfixed.
The operation, if properly performed, should be freefrom really painful sensation, and patients never object to its most requent repetition. I have frequently done it without more than a tint of discoloration from blood, and blood need never actually flow from the very minate woand.

skin grafting.
The grafl is then immediately pushed from the point of the needle, and placed on the surface of the ulcer, the only care being to lay it with its epidermic surface upward. The graft need not be inserted into the granula.ing surface by making a wound for its reception, as has been advised and practiced, for such puncture allows a flow of blood that may elevate the graft from contact with the granulations.
As simple adhesion of the graft is all that is desirable. I have sometimes, with large and actively secreting surfaces, allowed threm to be exposed to the desiccating influence of the atmosphere, so that the secretion may become viscid and hold thetransplanted particles surely in position. To facili I have occasionally allowed the ulcerated surface to remain ancovered until they became well agglutinated to it.
All active medication to the ulcer should be avoided, and the surface of alceration be simply covered with a light pressing, for protection from disturbinginfluences. For this purpose the ulcer may be covered with a piece of muslin, sa
turated with oil or covered with cerate, or it may be merely protected with the waxed tiseue paper, such as is extensively used for general purposes of a dressing in the Pennsylvania Hospital.

bitin grapting.

On most alcers the dreseing need not be removed for two or three days a fter the operation; bat whet secretion is pro fuse, the ulcer may be washed daily by allowing a stream of water to flow over it, carefully avoiding the wiping of the surface with sponges or cloths, which may disturb the grafts. One of the earliest changes noticeable in the graft, after the first few days, is the detachment of its cuticle, which may occasionally be seen floating in the secretions of the ulcer, or it may be detached by a slight touch, leaving the true germinating material fixed in position. The graft, as it commences development as a germinal center, becomes so blend ed and identified with the granulations as to be for a time almost lost sight of, its re-appearance becoming evident in a bluish or lilac tinted pellicle, which indicates the progress of cutification.
In regard to the size of grafts for transplanting, I have, in several instances, grafted by removing, from recently ampu tated limbs, pieces of skin measuring one third or one fourth of an inch square; bat such large pieces are very likely to fail in retaining their vitality, and I have had mach more satisfactory success with quite nmall grafta; and for reaso already stated, this latter practice is certsinly the best.
The number and position of the grafts will vary in accord.
cers they may be distributed at short intervals, both central. ly and near the periphery. Those near the circumference will stretch their granulations outward and stimulate the borders of the ulcer to activity; and with regard to the advantage of centrally located grafts, it will be well to remem. ber their importance with reference to the difficalty often experienced in eventually healing the last of a chroniculcer. A large ulcer, on which successful grafting has been performed, will soon present islets, from which cicatrization progresses in directions of the nearest healing points, until all are joined by an interlacement of newly formed tissue.
 \section*{NEW BOOKS AND PUBLICATIONS.
 \section*{NEW BOOKS AND PUBLICATIONS.
 A hand Book of the Locomotive, including th
 tion and Management of Locomotive Eng the Construction and Management of Locomotive Engines and Boil,
ers. With Illustrations. By Stephen Roper, Engineer. Philadelphia: Claxton, Remsen and Haffelfinger, 624 . 626 \& 628 Market street.}

The author of this work very truly belleves that in a book, as in a clock, any complication of its mact:Inery has a tendency to impair its usefulness
and affect its rellabilty. Hence, in preparing a book which is intended to be a guide for the practical locomotive engineer, he avoldch " be a gulde for the practical locomotive engineer, be avolus "mathematical
problems and entangling formule," and offers a pocket volume full of problems and entanging formulse," and offers a pocket volume, full of in-
formation, theoretical as well as practical, succinctly and clearly condensed. There are chapters on heat, combuation, water, air, gases, and steam; others on the construction of the locomotive and of its various parts, entered into with considerable detalls; instructions for the care and management of bollers and engines, tables of strength of materials, and useful practical hints for the guldance of the engineer. In brief, the chanic can turn for information regarding almost every branch of his trade. It is neatly illustrated and bound in morocco, In conventent pocket book form.
Inventiong Patented in England by Amerioana. [Complled from the Commissioners of Patents' Journal.] From April 7 to April 13. 1874, Inclualve.
Eleotric Light.-M. Day, Mansield, Oblo.
Firz Trlegraph.-J. M. Guebl, Brookiyn, N. Y
Iron, Stril, and Fubnaiz -J. Henderson, New York city.
Mrtal Rolling Maobinz.-H. W. Hayden, Waterbury, Conn
Oil stove.-J. H. Thorp, New York city.

Watre Clobit Babin.- J. Bbins, New York city, et al.
Water Metre.-H.F. Read, Brooklyn,
Water Mitir.-H.F. Read, Brooklyn, N. Y.
Water Meter.-J. s. Swan et al. Kanawne

Ferent gamericat aud fortign 2atents.

Jane D. Evans, Weat Cheater, Pa, executriz of

Jane D. Evans, West Chester, Pa., executrix of Henry s. Evans, de vancling traln will itself set the algaals to indicate its approach and departure. Two pairs of Inclined bare are plvoted at the sides of one of the ralls in such positions that the free ends of sald Inclines will be struck and pressed down by the wheels of the cars. Tae inner ends of the inclines of each pair are plvoted to opposite arms of a three armed lever, which is placed in a notch in the the, with lis third arm projecting downward. To a wheel formed upon the slenale, which are pivoted to the upper ends of two posts. Etther of said signals may be operated from the other, and both set or both withdrawn at the same time. The three armed levers are gain raised to their former position, as soon as the pressure of the whee removed from the levers or inclines, by springs attached to thes.

Improved Rotary Harrow.

James W. Hanger and Joseph H. Ryan, Cliston, Mo.-This invention re latesto means for sdjusting the plvoted harrows, so as to cause one side
thereof to work deeper in the ground than the other ; also to a spring con eotion between the tongue and axle and a caster wheel, the same also upporting the driver's seat, whereby the weight of the driver effects intlle change in the pressure on the harrows in passing over rough ground, whlle yet exerting a constant spring leverage on the tongue; and lastly, to the means of adjas

Improved Bteam Boileg.

Joseph Shackleton, Rahway, N. J.-This invention relates to an inprove ment on the improved steam boller upon which the same inventor re-
celved a patent dated Aprill 5,1870 . The water receptacle is provided with waterinduction pipe atthe lower part, and a ateam eduction pipe at the top. A system of plpes extends through in horizontal Grection, and is arranged symmetrically to the horizontal aris of the sysiem in such a manner that an intermediate series of pipes is placed diagonally between and sidewise of the adjolning series of plipes. Every two corresponding horizontal plpes are connected in vertical direction by elbows to form pipe rectangled, which extend gradually from the smallest innermost ter
to the larger eatermost serles, esch rectangle being placed in separate connection with the water receptacle. A borizontal plate is immediately bolow the appor pipas of the fanermost rectangles, extending laterally to the fall width of tio recoptacle, and causing the impinging of the fre epopean, to that ni in dopleted from its direct upward course toward the oulmpay at the toos of the furpece and thrown Bidewise, pasing between ead areend the zertionl pipes towand the upper corner of the rectangles,
end thenoce aloag the top of the farnace to the chimney. The apper parts of the pipe recteagieo efe theroby fully brought into offective particips. Hion, and the heatiag power of the fuel and the gases of combustion utllised.

IEmproved Pont Hole Digger.

James W. Thomson, Portland Mills. Ind.-The pont hole diggers now Known to the pabilc heve the ends of the blade or the two blades pressed
farther and farther apart until the lowest portion of the cat is reached, and leave a long sllp on one side of the tool uncut, in which are often roots that bind the parts of earth together. This causes these old tools to stick, and to be ralsed with so much difficulty that they are thereby rendered impracticable in actual use. To avold this diffculty the ends of the tool are, in the present invention, caused to overlap each other,
so that they are only in line, and end to end at the bottom of cut, every so that they are only in line, and end to end at the bottom of cut, every
particle of the Bldes beting thoroughly exclied, and the whole core comins out clean and without obstruction from the sides.

Preparing Transfers for Panel Bign Painting. Lharles H. Gordon, Brooklyn, N. Y.-Paper is arst covered with a coat
of atarch, then calendered, and another coat applied, followed by a wash of starch, then calendered, and another coat applited, followed by a wash
of gum arable. The whole is next covered with a coating of clear white varnish. When the varnish is thoroughly dry it is dusted over with French
chalk, and the letters or $\mathbb{1}$ gures printed from the arst plate with strong
 clear varnish. Sald letters or igures are dusted with irst color, Bay gold
or red. When dry, and all superfuous color cleaned off, the foundation or red. When dry, and all superfuous color cleaned off, the foundation
for the next color is lasd, say blue, usiog the same process as for the first forlor (printing in varnish), and so in each color, till the whole of the pic-
coll ture or sign is printed on the transferring medium. When quite dry a solld ground is printed, of watte or color, which, when transferred to the panel, will form the groundwork or base of the picture, etc. After this
has stoodsome time to dry, but before it is quite dry, it is laid on a amoothhas stoodsome time to dry, but before it is quite dry, it is laid on a smooth-
is planed panel and passed through a machine, which canses the printed matter to adhere to the wood. It is afterward slightly damped and the paper removed, when the whole, groundwork, color printing, and varninh will be found transferred to the panel. Any and overy kind of printing, 1 is clalmed, can be treated in the above madder, ilthografbic, letter press
or the diest ateel ea raving.

