and afterwards crooled and cryetalized, but with extreme slowness and under conditions diffrent from those bodies cooling in the open air; they differ from volcanic rocks not alone ly their cryataline structure but by the absence of tufa and breccias, which are the products of eruptionson the earth's depth.
The metamorphic or stratified crystaline rocks form the fourth and last great division of rocks, comprising the gneiss, mica schist, clay slate. chloritic schist, marble and the like, the origin of which is more doubtful than that of the other
three classes They contain no pebbles or sand or scorix, three classes They contain no pebbles or sand or scorix,
and no traces of organic brdies, and are often as crystalin as granite, yet divided into beds correrponding to sedimeatary formations, and may be called stratified. The materials of these etrata were originally d-posited from water in the ueual form of sediment, but were subeequently so altered by subterranean heat as to assume a new testure. It may be proved that fossiliferous strata have exchanged an earthy for a highly crystaline structure, even at some distance from their contact with gravite; hard clays containing veg etable or other remains have been turıed into slate, called the mica schist or hornblende echist,
the organic bodies bas been obliterated.
All the cry:taline rocks are of very different ages, some imes newer than the etrata called stcondary, and we must nfer that some peculiarity must exist which is equally attrib utable to gravite and gneiss, or in other words to the plutonic and altered rocks, which are distinguiehed from the volcanic and the ualtered sedimentary rocks; and that the granite and gntiss and the other crystaline formations are hypo aqueous, or rocks which bave not assumed their fossil forms and structure at the surface, and occupy the lowest place in the ordtr of superpasition
The composition of granite, as already stated, being quartz, mica and fclspar, the two last named ingredients contain the alumina in the form of silicate of alumina in nearly equal proportions, and some contain also some alkaline in gredients; likewise mica consists of a silicats of alumina and another alkall, differing somewhat from those containe in the ftlspar; ; we have, for instance, the anorthite, a lime fel.
spar, the labradorite, a lime and soda felspar, the oligoclase, a soda lime feispar, the albite, a soda felspar, the ortho clase, a potash felspar; while the mica group, such as the phlogopite, biotite, muscovite, lepidolite, and others contain about twenty per ce of alumina, and about thirty per cen magnesia in their compositions. Felspar, like adularia amazonstone and labradorite, when polished, form orna mental minerals; the garnet, likewise a silicate of alumina when cut and polished, forms a gem ; so is the lapis lazuli a silicate of alumina, an ornamental stone furnishing the natural ultramarine blue colors. The turquoise, one of the genus, is of blue color, but is a phosphate instead of a silicate
of alumina, while another inter sting mineral, called wavel of alumina, while another inter sting mineral, called wavel
lite, contains this alumina. The beryl and emerald are sili lite, contains this alumina. The beryl and emerald are sili
cates of alumina osygenated, the latter colored with oside o chrome; and the first, when cut and polished, has the name of aqua marina, and is a fine gem.
A vast number of minerals composed of alumina and silica are found in nature, which find much useful applica tion in the arts and manufactures; the mineral cryolite from Greenland, which is an aluminate but not combined with silica, is a fluoride of aluminum and sodium, is ex ported to many parts of the world and furnishes the materi al for alumina compounds.
Common slate, fuller's earth, pumicestone, marl, loam, ocher, umber, and sienna are more or less clays or silicates of aluminum, the three latter being colored by oxides of iron and manganese.
The topaz, a beautiful gem, is a silicate and fluoride of alumina. The great family of zeolites, which are composed of hydrous silicates and represent a very interesting class of minerals, are all chemical compounds of alumina with silica; most of them contain also.a considerable portion of water, and lime, soda and potash.
Clay, which is found in nature in very extensive de posits, and if of very fine quality and texture is called kao iin: and the other varieties, such as common pipe clay, fine clay, Stourbridge, marl, or loam clay, and claystone: is of the same chemica: composition as cegards the silicate of alumina; some contain more iron, and some contain lime and the alkalies sota anc potash; all, however, owe thrir existence to the decomposition of the granitic rock which,
through many causes, either chemical or mechanical, or through the action of atmoepheric air for many ages, ha gradually become disistegrated; and as Brogniard found in France the granitic rock in such a condition, he called it "la maladie du granite." The rock may gradually wear down either by variation of temperature or glacial action, or by congelation of water within the rock, gradually producing a split and expansion. In a chemical puint, water its-lf may produce a powerful metamorpbosis; as it contains cartonic
acid, it would probably act upon the alkalies in the f_{t} /spar of the decomposing granitic rock, while the silicate of alumi of the decomposing granitic rock, while the silicate of alumi
na ard the free silex would subequentiy be separated by na ard the free silex would subsequentiy be separated by
the action of water; the former, weing so much lightrr would sonn be washed away from tie heavier silex, and af ter separation the clay is deposited. Very striking demon strations of the decomposing granitic rocks may be seen in New York city, particularly in the upper part; there is a
ledge of granitic rock estending from east to west, begin ning at 31st street west to 60th street north; the Croton aqueduct in 42d etreet and Fifth avenue has been built from a granite quarried near 48th street and Tenth avenue; wh le on the east side, above 50th street, the gneiss rock caps the granite.

inside a chorch organ.

It is questionable whether any more magnificent apecimen of human mechanical skill exists than the grand organ. The bailder must unite, in his single person, the three capacities of artist, of scientist, and of workman: of the first, in order that he may possess the delicacy of ear to appreciate mincte shades or variations of musical sound; of the second, that he may know and investigate the principles of acoustics which govern the productions of melodious vibrations, and the theories to be followed in constructing the apparatus from which the eame may be elicited ; and lastly of the skilled artificer, in order that he may contrive and invent devices for rendering the harmonies, latent in his assemblage of pipes, levere, and keys, responsive to the touch of the musicia .. It may seem almost a shattering of one's favorite mental idols to break down the divinity which, as the king of instruments, hddges around the organ: indeed. the dry details of levers, springs, and bellows, seem inappropriate and incongruous in connection with those grand tones which peal forth in the sol-mn chords which excite our reverential feelings as we kneel in the sanctuary; but Science is utterly deetitute of sentiment. With imper tur bable calnnessshe mercilessly resoives the daintiest melo. dies of Mendelssohn or Scbumann, or the most majestic of choruses of Hand-l or Beethoven, into mere vibrations of he air, prolonged through cestann intervals and in certain tubes, or leads us off from the reverie into which we fall ter some éxquieite harmony of the great tone masters into abstruse calculations as to tho percentage of power due to
the food absorbed by the organist plus the blower, which, onverted into heat, is reconverted into motion by muscular action, which is again communicated to levers, etc., and which ultimately reappears in the shape of sound, and ie a ajan con verted into motion when vibrating the auditory nerves We recently spent a pleasant half hour inside an organ. We climbed ladders and mounted platforms, and enjoyed he novel sensation of standing in a small grove of tubes, where big pipes were the large trees, and the little ones, the under brush ; and looking back it seems as if we investigated nough levers, springs, and rods to establish a moderate sized piano manufactory. We puzzled over the arrangement of pedale, couplers,and stops, and becane hugely impressed with the skill which enables a single mortal of ordinary construction to play on so many things at once; and finally dis. covering some novel and really ingenious appliances which, the builder informed us, were not furnished to organs in general, we obtained through the kindness and courtesy of that gentleman the following interesting particulars
Let us premise by observing that the instrument which formed the object of our visit is located in the church of the Holy Communion, corner of 20th street and Sisth avenue, and that it has just been completed by Mr. Hilborne L Roosevelt, of No. 40 West 18th street, in this city. Mr. Roosevelt is one of the youngeet of American organ builders; but if we may judge from the magnificent tone and almost perfect mechanism, coupled with devices of no mean inventive ekill, which we find in his latest production, we may fairly assume that he has reached a foremost place in bis arduous profession. His plan is to combine the best points of all schools, English, German, and French; and hence the brief sketch which we give of the arrangement of the organ in question may perhaps be considered as including many of the latest
improvements of the manufacture. mprovements of the manufacture.
Everyone knows that if power be communicated indirectly, the nocessary mechanism for turning corners, etc., necessiates a certain amount of friction al loss and resistance,
creater, of course, than if the force was applied directly from the motor. Add to this the fact that the latter is weak, and moreover, acts at a disadvantage, and an outline may be gleaned of the difficulty of actuating the multitudinous valves atd levers of an organ, by compound levers connecting with key boards, say forty feet off, governed by the fingers of the rganist. There is both a strong resistance to digital pressure, necessitating great exertion on the part of the per-
former, and also there exists an appreciable lapse of time beformer, and also there exists an appreciable lapse of time be--
tween the touching of the key and the evolution of sound. The improvement which avcids this trouble is called the pneumatic lever," and its effect is such that the keys are as easily manipulated, even with the full power of the instruwent ia action, as those of an ordinary pianoforte, while the interval of time between touch and sound, is barely $\frac{1}{8}$ second, which is of course practically inappreciable. In the church above noted, the organist's seat is on the ground floor, while the instrument is in a gallery. The levers from the inner extremities of the keys pass down under the Hooring to a box directly beneath the loft. Here, arranged in framework,
is a series of little bellows,one for each key of the organ; and is 2 series of little bellow,one for each key of the organ ; and
in one end of each of which is a valve. operated by a 1 -ver leading from the key board. This is so adjusted that, on pressing down a key, compressed air enters the correspondng small bellows and iuflates it. As the bellows enlarges, it pulls upon a lever that opens the valve connecting with the proper pipe. It will be noted that no pressure is needed on the key, exc-pt such as is necessary to lift the small bellows valve, which is of course a very inconsiderable mount
This set, or rather these sets, of bellows, for there are two, one belonging to each bank of keys, must not be confounded
with the rain bellows which supplies the air blast. This apparatus is situated in the loft near the organ, and is operated by man power, forcing a powerful current of air, not directly to the pipes, but into another bellows which serves as a regulator, securing a constant, instead of an intermittent, blast. and thus preventing the dieagreeable, whetzy, and unequal tooting sound often noticeable in old and im-
servoir, whence it emerges into the pipes in the manner presently to be described
Each key board, and there may be several, belongs to an entirely separate organ, so two or mord instruments may, by ingenious inter-adjustment, be combiced in one and the same case. In the organ in question, there are two key boards proper,though the pedals, worked by the feet,may be termed a third; and there is another called the electro-melody, so
that in fact, with two key boards and one set of petals, the playtr performs upon four separate and distinct organs at will, any combination of that number, or all together. The pedal organ is merely an assemblage of low pitched pipes; and on its mechani-m, it is unnecessary to dwell. The great organ is the lowest bank of keyw, which conntect, as before noted, with pneumatic levers. Just a hove the recep. tacle for the wind is the wind chent, which may be likent d to a long sballow bos, divid.d by numfrruas longitudual partitions, making tr ougbs. In th-ze partitinns are set the pip.es, each longitudinal row of which is called a regi-ter The 1ow-r ends of each set communicate with a compartment of the chest, and the aprrtures are clostd by spring valves. Now, if there w. re but one set of pipes, each key wou'd through the pneumatic lever, commuicate with one of those valve s, and henc↔ would neces-arily sound but a single tube; but there are, as we navenlready stated, many rows of pipes, and hence one key not only works one valve, but several, ranged in a transverse line directly across the wind chest. Tbat is, while a single key may sound tirst a funda mental note belonging to a chrrd whirl is found in on- re
gister, it may open simultaneouly valv-s belonging to tub-s gister, it may open simultaneou ly valv-s belonying to tub-s
in other registers parallel thereto, so as to admit air, and in other registers parallel thereto, so as to admit air, and
thus produce notes having certain harmon:c relation t, the key note ; so that in fact by a single pressure of the finger, if we so desire, we may ploduce a chord or portion therrof. in stead of a single vote, as on a piano. Each trough in the wind chest of course brlongs to one set of pipas, and hass its own valve, so that the organist, by m+ans of handles near his key board, called "stops," may admit the blast into one or any number of the channels, and thus sound any register or regist/rs he may desire. The total comp ass of ea.h register, in the great organ portion of the in trument we are de scribing, is 58 pipes, and there are twelve stops. allowing a selection of any of that number of r_{t} gisters. But these latter all differ in quality of tone; for instauc - one is a barmonic flute, another a trumpet, a third a clarion; in fact each has its own voice, due to the construction of the pipes. The pedal stops are arranged in similar mannar, and number five in all, while the swell organ, which is oper ated by the eecoud or higher key board, has a fimilar number of pipes, with a set of eight stops peculiar to it-elf. The swell organ must hrre be explained, as used for diminuendo or crescendo effects. It consists in mechanism similar to that already described, but enclosed in a tight box, the sides of which are made like Venetian blinds. By opening these shutters, more or less, the organist ran allow the whole sound to emergo, or can confine it, and so deaden it in the closed case. The electromelody organ is an ertirely novel invention of Mr. Roosevelt, of which it would be hardly possible to convey a clear idea without engravings. It is, as we have stated, a separate little organ by itself, and is designed to carry the not*s of a melody or air, in a tone easily heard above the accompanim+nt, and so prove very usfful in congregaii nal singing. It is connected tothe upper half ot the key boards,and with a Leclanché battery. Each key,on being pressed, establishes a current which magnetizos an electro-magnet and so opens the valve of tho, proper pipe. The pecuiar point, however, lies in drvice which prevent any but the upper cr melody note being ha, 2 d . Thus, if we strike the chord C E G C, the upper C aloue could be hearl, if we allowed that note to rise, then only the G, and thus throw out any number of tones. This in:-ntion is lighly ingenious, and though really very simple, quite difficuli to There are mant
There are many other appliances which wa may briffly notice in conclusion. Among them are four couplers, by which the pedal great, and swell organs are connected, as may be de-ired, by a mere pressure of the finger if the organist on a butt'n just above his key board. Ther are besides, five combination pedals, for drawing out the full I_{I} ower of the instrum - nt, or full or part power of tach integril. fortion. Then there is the unual tremoloarrang ment, and vacious other refinements, which, though intere.ting to the musician. might fail to be appreciated by the geveral reader.
One of the most interesting applications of el. ctro mag. netiem, it may be remark +d , is to the cburch oreau, aud we areaware of instunces of ite use to much larger exient than in the electro w.Jodic sub organ no ed above. In fact, oue of the principal churches in this city has two enmplete
organs, one being on each ride of the clisnc-1, and entirely organe, one being on each tide of the clisnc 1, and entirely distinct from the other. A single keybnard communicates directly with one, but operares the otlur by the +lectric current and ingnets actirg on the valver; fo that if d sired, the choir may be divided, half on each side, and yet both pa ties be enabl-d to sing in corr ct uvisen with the instrument. There are oth $-\mathbf{r}$ points relating tn organ impre wements and manufaclure, which epane prevents our hore dwelling upon, and to which we ehaill \&llude at an early date.

The Balloon advertising Dodge Hejected
The Commissioner of Patents has rejected au applicatinn for a patent for the broad idea nf attachng ad virtisemonts to balloons, for the reason that a billon is a crmmon object, upon which every person bas the sight to stick or paint advertisements if he wishes. In order to support a patt nt, the applicant mot have invented something. It is not invention merely to put adrertisements on balloons.

