Coprespondence.

Concerning a Telescope of Unlimited Povver

To the Editor of the Scientific American
In connection with D.'s communication, on page 368 of your volume XXIX., it may be observed that the mercury, revolving in the manner described, will have a stability due to its motion, above that belonging to it whiie in a state of rest. The same principle applies alike to the motions of atoms and of suns, and a very striking illustration is af forded by the rigidity imparted to a stream of water is suing from an orifice under great pressare. (See Mr. E
From lack of nesessary data, the writer is unable to stat
From lack of nesessary data, the writer is unable to state
the exact stability of mercury due to different velocities; but the exact stability of mercury due to different velocities; bu
after a rough estimate, it is safe to say that, if the basin of 20 feet diameter be made to revolve at the rate of 200 re volutions per minute (which speed is practicable), the mercu ry near the circumference of the basin will have a stability greater than lead. Now, unfortunately, the velocity at the at the center will be only that due to mercury in a state of rest. It is possible that we may dispense with a portion o he cent perhaps some one dispensed with enough to tell us how much, if any, may
The great amount of power required to operate the neces sary machinery would preclude the possibility of using weights for imparting motion, and the next best thing tha wo have is an accurately balanced water wheel, imparting its motion through friction wheels. After reducing the possi bility of fricti,n to a minimum by accurate balancing, etc., we may obviate still further difficulties arising from vibration and inequalities of motion by floating the vessel, containing he mercury destined to act as a refiector, in another vesse lso containing mercury. The motion would then brs im parted through the mercury in the outer vessel by friction to the mercury in the iuner vessel. The conseq uences of thi arrangement are obvious.
In regard to the plane mirrors, will some one well ac quainted with the principles involved be kind enough to in form us if it is necessary that they should be quite as large as the parabolic reflector?
The oxidation of the mercury would be an item requiring attention. It might be prevented by covering the metal while at rest, with a suitable oil, which would separate itsel from the mercury while in motion.
Baltimore, Md

Heat and its Origin

To the Editor of the Scientific American:
The origin of the heat developed during combustion has hitherto been a profound mystery. In the beginning of this century, it was suggested that a portion of the specific or of the latent heat of the bodies consumed was set free during the process of combustion ; but this idea was soon overthrown, as it was found that the products of combustion often possess more specific heat, and almost more latent heat, than the bodies themselves did before burning, that is, before chemically combining under erolution of heat. Hence
arises the question: Whence comes all this intense heat arises the question: Whence comes all this intense heat
of com!ustion, and the subsequent great amount of latent of com!ustion, and the subsequent great ampount of latent specific heat than its elements before combination? It is curious to remark that, in this case, the most eminent phy sicists concluded that combustion must be an electric phe uomenon. That ignorant persons, knowing nothing of elec. tricity, attributed the so called spirit rappings and similar manifestations to its agency may le readily con:prehended but that scientists who have studied its laws should use thi word as a pretest for explaining fire, solar heat, volcanoes and even earthquakes, seems almost incredible. Physics form a positive science, which does not admit of vague sug.
gestions, and a phenomenon cannot be ascribed to the work gestions, and a phenomenon cannot be ascribed to the work laws and properties of electricity, when applied, explain cvery peculiar phase of the same. Notwithstanding that tha laws of heatand electricity have been thoroughly investigated we are as yet not sure of their ultimate nature; one thing oilly appears certain, namely, that both are not peculiar fluids penetrating matter, but mere motions of the molecules or soms of ponderable matter. Therefore, it is inappropriate to speak of imponderable matter, on account of the contradic tion in terms, as the first property of matter is to be pondera ble; we may have imponderable forces, or, better, caloric and electric forces. The so-called ether, which fills the planetary space and propagates heat and light, is probably ponderable matter; it is an atmosphere surpassing hydrogen in l,rightness more than hydrogen surpasses platinum, and of so small a gravitating force that millions of years will elapse before it is condensed on the planets. In fact, the spectroscope shows that, in the atmosphere of the planets and even of the sun, the materials of our earth's atmosphere are present, including water or its elements. Recent inves
tigations of the sun and other heavenly bodies, by means of tigations of the sun and other heavenly bodies, by means of this wonderful apparatus, have besides revealed the fact candescent gas of so high a temperature that the element are dissociated, that is, that all chemical affinities are destroyed, and each element exists separately in its uncombined condition, notwithstanding that it is intermingled with others A descent from tinis exceedingly high temperature to that in which the chemical affinities can manifest themselves re sults in the combination of the gases. The chemical affini ties of the different elementary substances manifest them
selves only between a comparatively limited range of temperature, below and above which they do not operate. Even as at an extreme cold no combinations can take place, so a the extreme heat, of say $8,000^{\circ}$ Fahrenheit, not only no combustions take place, but all compounds are separated into heir ultimate elements. On cooling and reaching $4,000^{\circ}$ or $3,000^{\circ}$ or thereabouts,'the volatilized substances or gases will again combine; the chemical affinities come into play, and combustion will ensue, the heat of which will egain originate partial new dissociations. This is what continually appears to take place in the san. It has been proved that the work of dissocistion is strictly analogous to that of evaporation. In imparting to a liquid, water, for instance, the property of gaseous elasticity, steam, n definite quantity of calorific energy is manifested in the newly acquired expansive power and therefore is not displayed as temperature ; in other words, heat is made latent when chauging water into steam. In like manner a still larger amount of temperature is converted nto the force necessary to separate the vapors into their component gases; here a greater quantity of heat is made atent, and this is that which is set free and appears in com ustion when the gases combine by burning, just as laten eat is freed when gases condenge into a liquid, and again when the liquid cools int, a solid. In regard to the tempera ture of the sun, we know now that those substances most promineint on our earth exist there in a state of vapor. Iron, lime, soda, potash, etc., are there in that condition, and also steam in the dissociated state of oxygen and bydrogen. Therefore the actual temperature must be several thousands of degrees, in fact, such a heat as we cannot practically produce. Direct measurement saused Sir Isaac Newton to conclude that the sun was thousands of times hotter than
melted iron, while Sir John Herschel supposed that it was a solid or liquid body, radiating from its surface only, and that its temperature ought to exceed thirteen million degrees Fahrenheit. Modern discovery has shown, however, that he sun is gaseous at least to a depth of several thousand miles,
Moreov
-oreover, incandescent gases and flames are perfectly ransparent for light and heat from lower strata, and therefore the solar rays not only come to us from the surface, but we receive the accumulated rays from layers of incandescent gases everal thousand miles in thickness. From the effects of these gases, the surface of the sun is continually being disturbed in a manner compared to which the more violent hurricanes, thunderstorms, and volcanic eruptions on our earth sink into utter insignificance.

The Prismoidal Rallvay.

To the Editor of the Scientific American
Observing in your journal of December 13, 1873, an article opied from the Publuc Ledger, referring to Crew's prismoi dal railway, we beg to call your attention to an error which we will thank you to have corrected. The error lay in the statement that " the track upon which the trial was made, contained 36 feet lumber and 18 pounds of iron to the linea oot;" it should read "lineal yard." We beg further to in orm you that, by consent of the President of the Atlanta nd West End Street Railway Company, Atlanta, Ga., for whom the locomotive was built, Mr. E. Crew, the patentee,
has been allowed its use in otder to demonstrate its power has been allowed its use in order to demonstrate its power erence, now building at the Chestnut street rink in our city, which he has rented for that purpose; where, in the course of a couple of weeks, he intends to bring it directly before the attention of railroad men and corporations. The prism of this trial railway is 24 inches wide at base, with 18 inches hight to top of cone, with an 18 lbz . rail on its apex. The curves will be of 37 feet radius, and he purposes to demon strate his principle, starting on a trip of 500 miles.
We enclose you a photograph of tlie "Atlanta" locomotive which is now at the rink. It is 11 feet long, 4 feet wide, and has two 24 inch drivers, with cylinders 5×8, and weighs only 4 tuns.
We contend that, by the use ofthe prismoidal railway, rapid ransit can be insured between the cities of New York and Philadelphia, and the time reduced to $1 \frac{1}{2}$ hours. Philadelphia, Pa.

The Relative Efficiency of Engines and Bollets. To the Editor of the Scientific American:
The question of the relative economic efficiency of mod ern engines as compared with that of boilers, as they are now constructed, is being agitated among engineers in this city, and it has occurred to me that it is a subject that will interst the readers of your valuable journal. The discussion arose from a statement, made by one engineer, that, whereas he best modern steam engines have frequently developed from 75 to 85 per cent of the power actually furnished by
the boiler, the boiler does not develope more than 15 jer cent of the power actually contained in the carbon fuel. This was objected to, the reverse being claimed as being nearer the truth. Discussion on this subject in your valuable jour know that you are desirous of obtaining as much light as possible on all scientific subjects, and especially on steam which enters so largely into all concerns of our daily life. Boston, Mass. Consulting Engineer.
Remaris by the Editor:-The subject here suggested
is one of interest, and we invite correspondents to give their views.
The Parisian pharmaceutists have contrived to incorporate cod liver oil with bread. Each pound of bread contains a little more than two ounces of che oil.

ALOMINA, FROM THE CLAY TO THE SAPPHIRE.

Brone
Alumina is the oxide of the metal aluminum. It occurs in nature as corundum, which is an extremely hard mineral, ranking nest to the diamond, its specific gravity being $4 \cdot 0$. It consists of 53 per cent aluminum and 47 oxygen. The precious gems sapphire and ruby are the representatives of pure alumina, the first of a blue and the othar of pink or rose red color. If they possess a stellated opalescence, when viewed in the direction of the vertical axis, resembling a star, they are called star sapphires or rubies, which were known to Theophrastus and Pliny in the first century. The mineral corundum occurs in very fine crystals of the blue and red colors in many localities of the United States, such as New York furnishes at Amity, New Jersey at Newton, Pennsylvania at Unionville, and North Carolina. At Franklin, an extensive quarry of the crystals is now mined, one crystal weighing 30 tuns. Georgia gives red sapphires, of wlich C'aiifornia and Canada both furnish fine specimens. The mine. rals gibbsite and diaspore are hydrates of alumina; but the mineral emery, which stands near corundum in hardness and is the most useful material in the arts, containing the alu. mina and magnesia in about equal proportions, was origi. nally brought from Asia Minor, but is now extensively mined at Chester, in Massachusetts. Alumina is also con. tained in a vast number of minerals. ('lay is the result of the decomposition of aluminous minerals, and is, strictly speaking, a misture of silex or flint, with at least one fourth of alumina, and has a peculiar earthy odor when breathed upon; and the mineral shale, which differs but little from clay, is extremely infusible and insoluble, and is also the companion of the silicated minerals: any oarth which possesses sufficient ductility, when kneaded up with water, to be fashioned like paste by the hand, is called clay. These clays vary greatly in their composition, and are nothing more than mud derived from the decomposition or wearing down of rocks, as we see by the rain drop impressions, ripple marks, or mud cracks, which bear marks and evidence of exposure above the water, indicating plainly the long time which was required for the decomposition of the felspathic rocks, mostly contained in granite, and of granitic and greissoid rocks and porphyry. In some regions where these rocks have decomposed on a large scale, the resulting clay remains in vast beds of kaolin mised with pure quartz or silex, and sometimes with oxide of iron from some of the other mine. rals present, such as we find extensive beds of in the tertiary formation, as in New Jersey, Virginia, and South Carolina.
Before proceeding further to state what function the com ponent parts of granite, which are the quartz, felspar and
mica, occupy in the aluminous silicates, let me say a few mica, occupy in the aluminous silicates, let me say a few words on the classification of rocks according to their or:gin and age, meaning the earth's crust, of which but a small portion is accessible to human observato to thir diffeare origin. The first are the aqueous; second, volcanic; third the plutunic; and fourth, the metamorphic. Each of these four distinct classes has originated at many successive periods. It was formerly supposed that all granites, together with the crystaline or metamorphic strata, were first
formed, and were called, therefore, primitive rocks, and that the aqueous and volcanic rocks were afterwards superim. posed, and would rank, therefore, as secondary in the order of time. The agueous rocks are also called the sedimentary or fossiliferous, and cover a larger part of the earth's surface than any others; they consist chiefly of mechanical deposit: such as pebbles, sand and mud, but are partly of chemical and some of organic origin. especially the limestones; they are called the stratified rocks, meaning strata which have been produced by the action of water. We have adopted these
names of formations, such as the stratified and unstratificd, fresh water and marine, aqueous and volcanic, ancient and modern, metaliferous and non-metaliferous formations.
The volcanic rocks are those which have been produced at or near the surface, whether in ancient or modern timesnot by water, but by the action of fire or subterranean heat. These rocks are, for the most part, unstratified, and are devoid of fossils; they are the results of volcanic action and of craters more or less perfect; they are composed of lava, sand and ashes, similar to those of active volcanoes; and streams of lava may be traced from high summits or cones inta adjoining valleys; and earthquakes have produced erosions, fissures and ravines (whereby we can detect porous lava, sand and scoriæ), dikes or perpendicular walls of volcanic rock, such as are observed in the structure of Vesuvius, Etna, and otheractive volcanoes. The basaltic rocks, forming the rocts of Staffa and of Giants' ('auseway, are all volcanic ; they have in their mineral composition much resemblance to the lavas, which are known to have flowed from the craters of volcanoes.
The plutonic rocks, which comprise mostly the granites, etc., differ much from the aqueous and volcanic ; they are, in common with the next class, highly crystaline and destitute of organic remains; the plutonic comprehend all the granites and certain porphyries, which are nearly allied in some of their characters to volcanic formations. The metamorphic rocks, howerer, are stratified and often slaty, and are called by some the crystaline scbists, in which are included gneiss, micaceous schists, hornblende schists, statuary marble, the finest kinds of roofing slate, and others. All the various kinds of granites which constitute the plutonic family are supposed to be of igneous and aqueo-igneous origin, and have been formed under great pressure at a considerable depth in the earth, or under a certain weight of incumbent
ocean. Like the lava of volcanoes, they have been melted
and afterwards cooled and crystalized, but with extreme slowness and under conditions different from those bodies cooling in the open air; they differ from volcanic rocks not alone by their crystaline structure but by the absence of tufa and breccias, which are the products of eruptions on the earth's Thth.
The metamorphic or stratified crystaline rocks form the fourth and last great division of rocks, comprising the gneiss, mica schist, clay slate. chloritic schist, marble and the like, the origin of which is more doubtful than that of the other three classes They contain no pebbles or sand or scorix, and no traces of organic bidies, and are often as crystalin ary formations, and may be called stratified. The materials of these etrata were originally d-posited from water in the ueual form of sediment, but were subeequently so altered by subterranean heat as to assume a new testure. It may be proved that fossiliferous strata have exchanged an earthy for a highly crystaline structure, $\epsilon \mathrm{ven}$ at some distance from their contact with gravite; hard clays containing veg etable or other remains have been turıed into slate, called the mica schist or hornblende echist,
the organic bodies bas been obliterated.
All the cry: taline rocks are of very different ages, some imes newer than the etrata called stcondary, and we must nfer that some peculiarity must exist which is equally attrib utable to gravite and gneiss, or in other words to the plutonic and altered rocks, which are distinguiehed from the volcunic and the ualtered sedimentary rocks; and that the granite and gntiss and the other crystaline formations aie hypo aqueous, or rocks which bave not assumed their fossil form and structure at the surface, and occupy the lowest place in the ordtr of superposition.
The composition of granite, as already stated, being quartz, mica and fclspar, the two last named ingredients contain the alumina in the form of silicate of alumina in nearly equal proportions, and some contain also some alkaline in gredients; likewise mica consists of a silicate of alumina and another alkali, differing somewhat from those contained in the felspar; we have, for instance, the anorthite, a lime fel spar, the labradorite, a lime and soda felspar, the oligoclase a soda lime feispar, the albite, a sorla felspar, the ortho clase, a potash felspar; while the mica group, such as the phlogopite, biotite, imuscovite, lepidolite, and others contain about twenty per ce of alumina, and about thirty per cen magnesia in their compositions. Felspar, like adularia amazonstone and labradorite, when polished, form orna mental minerals; the garnet, likewise a silicate of alumina, when cut and polished, forms a gem; so is the lapis lazuli a silicate of alumina, an ornamental stone furnishing the natural ultramarine blue colors. The turquoise, one of the genus, is of blue color, but is a phosphate instead of a silicate
of alumina, while another inter sting mineral, called wavel of alumina, while another inter sting mineral, called wavel
lite, contains this alumina. The beryl and emerald are sili lite, contains this alumina. The beryl and emerald are sili
cates of alumina osygenated, the latter colored with oxide of chrome; and the first, when cut and polished, has the name of aqua marina, and is a fine gem.
A vast number of minerals composed of alumina and silica are found in nature, which find much useful applica tion in the arts and manufactures; the mineral cryolite from Greenland, which is an aluminate but not combined with silica, is a fluoride of aluminum and sodium, is ex ported to many parts of the world and furnishes the materi al for alumina compounds.
Common slate, fuller's earth, pumicestone, marl, loam, ocher, iumber, and sienna are more or less clays or silicates of aluminum, the three latter being colored by oxides of iron and manganese.
The topaz, a beautiful gem, is a silicate and fluoride of alumina. The great family of zeolites, which are composed of hydrous silicates and represent a very interesting class of minerals, are all chemical compounds of alumina with silica; most of them contain also a considerable portion of water, and lime, soda and potash.
Clay, which is found in vature in very estensive de posits, and if of very fine quality and texture is called kao in: and the other varieties, such as common pipe clay, fine clay, Stourbridge, marl, or loam clay, and claystone: is of the same chemica: composition as cegards the silicate of alumina; some contain more iron, and some contain lime and the alkalies soda anc potash; all, however, owe thrir exittance to the decomposition of the granitic rock which,
through many causes, either chemical or mechanical, or through the action of atmoepheric air for many ages, has gradually become disistegrated; and as Brogniard found in France the granitic rock in such a condition, he called it "la maladie du granite." The rock may gradually wear down either by variation of temperature or glacial action, or by congelation of water willin the rock, gradually producing a split and expansion. In a chemical puint, water its-lf may produce a powerful metamorpbosis; as it contains carboni acid, it would probably act upon the alkulies in the felspar
of the decomposirg granitic rock ,while the silicate of alumi of the decomposing granitic rock, while the silicate of alumi
na ard the free silex would subequentiy be separated by na ard the free silex would subsequentiy be separated by
the action of water; the former, weing so much lightrr would sonn be washed away from tie heavier silex, and af ter separation the clay is deposited. Very striking demon strations of the decomposing granitic rocks may be eeen in
Vew York city, particularly in the upper part; there is a New York city, particularly in the upper part; there is a
ledge of granitic rock estending from east to west. begin ning at 31st street west to 60th street north; the Croton aqueduct in 4 ? d street and Fifth avenue has been built from a granite quarried near 48th street and Tenth avenue; wh le on the east side, above 50th street, the gneiss rock caps the
granite. granite.

inside a chorch organ.

It is questionable whether any more magnificent apecimen of human mechanical skill exists than the grand organ. The bailder must unite, in his single person, the three capacities of artist, of scientist, and of workman: of the first, in order that he may possess the delicacy of ear to appreciate mincte shades or variations of musical sound; of the second, that he may know and investigate the principles of acoustics which govern the productions of melodious vibrations, and the theories to be followed in constructing the apparatus from which the eame may be elicited ; and lastly of the skilled artificer, in order that he may contrive and invent devices for rendering the harmonies, latent in his assemblage of pipes, lever, and keys, responsive to the touch of the musicia .. It may seem almost a shattering of one's favorite mental idols to break down the divinity which, as the king of instruments, hodges around the organ: indeed. he dry details of levers, springs, and bellows, seem inappropriate and incongruous in connection with those grand tones which peal forth in the sol-mn chords which excite our reverential feelings as we kneel in the sanctuary; but Science is utterly deetitute of sentiment. With imper tur bable calnnessshe mercilessly resoives the daintiest melo. dies of Mendelssohn or Scbumann, or the most majestic of choruses of Hand-l or Beethoven, into mere vibrations of eair, prolonged through ceatann intervals and in certain ubes, or leads us off from the reverie into which we fall nver some exquisite harmony of the great tone masters into
abstruse calculations as to tho percentage of power due to the food absorbed by the organist plus the blower, which, converted into heat, is reconverted into motion by muscular action, which is again communicated to levers, tct., and which ultimately reappears in the shape of sound, and ie a ajan con verted into motion when vibrating the auditory nerves We recently spent a pleasant half hour inside an organ. We climbed ladders and mounted platforms, and enjoyed he novel sensation of standing in a small grove of tubes, where big pipes were the large trees, and the little ones, the under brush ; and looking back it seems as if we investigated nough levers, springs, and rods to estublish a moderate sized piano manufactory. We puzzled over the arrangement of pedale, couplers,and stops, and becanie hugely impressed with the skill which enables a single mortal of ordinary construction to play on so many things at once; and finally dis. covering some novel and really ingenious appliances which, the builder informed us, were not furnished to organs in general, we obtained through the kindness and courtesy of that gentleman the following interesting particulars
Let us premise by observing that the instrument which formed the object of our visit is located in the church of the Holy Communion, corner of 20th street and Sisth avenue, and hat it has just been completed by Mr. Hilborne L. Roosevelt, of No. 40 West 18th street, in this city. Mr. Roosevelt is one of the youngest of American organ builders; but if we may judge from the magnificent tone and almost perfect mechanism, coupled with devices of no mean inventive ekill, which we find in his latest production, we may fairly assume that he has reached a foremost place in bis arduous profession. His plan is to combine the best points of all schools, English, German, and French; and hence the brief sketch which we give of the arrangement of the organ in question may perhaps be considered as including many of the latest
improvements of the manufacture. improvements of the manufacture.
Everyone knows that if power be communicated indirectly, the nocessary mechanism for turning corners, etc., necessitates a certain amount of frictional loss and resistance, the motur course, than if the force was appler is weak, and moreover, acts at a disadvantage, and an outline may be gleaned of the difficulty of actuating the multitudinous valves atd levers of an organ, by compound levers connecting with key boards, say forty feet off, governed by the fingers of the rganist. There is both a strong resistance to digital pres sure, necessitating great exertion on the part of the per-
former, and also there exists an appreciable lapse of time beformer, and also there exists an appreciable lapse of time be-
tween the touching of the key and the evolution of sound. tween the touching of the key and the evolution of sound.
The improvement which avcids this trouble is called the pneumatic lever," and its effect is such that the keys are as easily manipulated, even with the full power of the instruwent ia action, as those of an ordinary pianoforte, while the nterval of time between touch and sound, is barely $\frac{1}{8}$ second, which is of course practically inappreciable. In the church bove noted, the organist's seat is on the ground floor, while the instrument is in a gallery. The levers from the inner extremities of the keys pass down under the Hooring to a
box directly beneath the loft. Here,arranged in framework, box directly beneath the loft. Here,arranged in framework, n one end of each of which is a valve. operated by a 1 -ver eading from the key board. This is so adjusted that, on pressing down a key, compressed air enters the corresponding small bellows and iuflates it. As the bellows enlarges, it pulls upon a lever that opens the valve connecting with the proper pipe. It will be noted that no pressure is needed on the key, exc-pt such as is necessary to lift the small bellows valve, which is of course a very inconsiderable mount.
This set, or rather these sets, of bellows, for there are two, one belonging to each bank of keys, must not be confounded
with the rain bellows which supplies the air blast. This apparatus is situated in the loft near the organ, and is operated by man power, forcing a powerful current of air, not directly to the pipes, but into another bellows which serves as a regulator, securing a constant, instead of an intermittent, blast. and thus preventing the disagreeable, whetzy, and unequal tooting sound often noticeable in old and im-
servoir, whence it emerges into the pipes in the manner presently to be described.
Each key board, and there may be several, belongs to an entirely separate organ, so two or mord instruments may, by ingenious inter-adjustment,be combived in one and the same case. In the organ in question, there are two key boards proper,though the pedals, worked by the feet,may be termed a third; and there is another called the tlectro-melody, so
that in fact, with two key boards and one set of petals, the play r performs upon four separate and distinct organs at will, any combination of that number, or all together. The pedal organ is merely an assemblage of low pitched pipes; and on its mechani-m, it is unnecessary to dwell. The great organ is the lowest bank of keyw, which conntct, as before noted, with pneumatic levers. Just a hove the recep. tacle for the wind is the wind chent, which may be likent d to a long sballow box, divid. d by numfrrus longitudnal paritions, making tr ugbs. In there partitinns are eet the pip.es, each longitudinal row of which is called a regi-ter The 1ow-r ends of each set communicate with a compartment of the chest, and the aprrtures are clostd by spring valves. Now, if there w. re but one set of pipes, each key wou'd through the pneumatic lever, communicate with one of those valve s, and henct would neces-arily sound but a single tube; but there are, as we navenlready stated, many rows of pies, and hence one key not only works one valve, but sev. eral, ranged in a transverse line directly arross the wind chest. Tbat is, while a single key may sound tirst a funda mental note belonging to a chord whi $\cdot \mathrm{h}$ is found in on- re
gister, it may open simultaneously valv-s belonving to tub -s gister, it may open simultaneou ly valv-s belonying to tub-s
in other registers parallel thereto, so as to admit air, and in otber registers parallel thereto, so as to admit air, and
thus produce notes having certain harmonc relation t, the key note ; so that in fact by a single pressure of the finger, if we so desire, we may ploduce a chord or portion therrof. in stead of a single vote, as on a piano. Each trough in the wind chest of course brlongs to one set of pipre, and has its own valve, so that the organist, by mfans of handles near his key board, called "stops," may admit the blast into one or any number of the channels, and thus sound any register or regist/rs he may desire. The total comp ass of ea.h register, in the great organ portion of the in trument we are de scribing, is 58 pipes, and there are twelve stops. allowing a selectinn of any of that number of r_{t} gisters. But these latter all differ in quality of tone; for instauc \lrcorner. one is a barmonic flute, another a trumpet, a third a clarion; in fact each has its own voice, due to the construction of the pipes. The pedal stops are arranged in similar manntr, and number five in all, while the swell argan, which is oper. ated by the eecoud or higher key board, has a fimilar num. ber of pipes, with a set of eight stops peculiar to it-elf. The swell organ must hrre be explained, as used for diminuendo or crescendo effects. It consists in mechanism similar to that already described, but enclosed in a tight box, the sides of which are made like Venetian blinds. By opening these shutters, more or less, the organist ran allow the whole pound to emerge, or can confine it, and so deaden it in the closed case. The electromelody organ is an entirely novel invention of Mr. Roosevelt, of which it would be hardly possible to convey a clear idea without engravings. It is, as we have stated, a separate little organ by itself, and is designed to carry the not"s of a melody or air, in a tone easily heard above the accompanim+nt, and so prove very usfful in congregati nal singing. It is connected tothe upper half ot the key boards,and with a Leclanché battery. Each key,on being pressed, establishes a current which magnetizos an electro-magnet and so opens the valve of the, proper pipe. The pecuiar point, however, lies in drvice which prevent any but the upper cr melody note being ha.21d. Thus, if we strike the chord C E G C, the upper C aloue could be hearl, if we allowed that note to rise, then o:ly the G, and thus throw out any number of tones. This in ir-ntion is lighly ingenious, and though really very simple, quite difficuli to
solvent first kight. There are many other appliances which we may briffly notice in conclusion. Among them are four couplers, by which the pedal great, and swell organs are connected, as may be de-ired, by a mere pressure of the finger if the organist on a butt'n just above his key board. Ther are besides, five combination pedals, for drawing out the full I_{I} ower of the instrum - nt, or full or part power of tach integril. rortion. Then there is the usual tremolo arrang ment, and vaitous other refinements, which, though intere-ting to the musician might fail to be appreciated by the geteral reader.
One of the most interesting applications of el. ctro mag. netism, it may be remark +d , is to the cburch orgau, aud we areaware of instunces of ite use to much larger exient than in the electro m. lodic sub organ no ed above. In fact, oue of the principal churches in this city has two enmplete
organs, one being on each ride of the clisnc. 1 , and entirely ditinct from the other. A single keybnard communicates directly with one, but operates the otlurr hy the - Hectric current and inggnets actirg on the valver; fo that if d sired, the choir may be divided, half on each side, and yet both pa ties be enabl-d to sing in corr ct uvison with the instrument. There are other points relating tn organ impre wements and manufaclure, which epane prevents our here dwelling upon. and to which we ehall \&llude at an early date.

The Balloon advertising Dodge Kejected
The Commissioner of Patents has rejected au applicatinn for a patent for the broad idea nf attachung ad virtisempnts to balloons, for the reason that a billon is a crmmon object, upon which every person bas the aight to stick or paint advertisements if he wishes. In order to support a patt nt, the applicant mot have invented something. It is not invention merely to put adrertisements on balloons.

