THE VERTICAL MOLTIPLIER BORING MACHINE. We have already laid before our readers three applications of that ingenious combination of gearing, the vertical multiplier, to woodworking machinery. By its use the band saw, the jig saw, and the circular saw have been adapted to run by the foot power of the operator, thus enabling the mechavic whose shop is not of sufficient extent to require the work of a steam engine to supply its place, on the machines most employed, by a device which affords a means of applying his available force at perhaps the best advantage.
We now present, in the annexed engraving, a representa tion of still another adaptation of the invention, recently made to the boring machine. The nature of the peculiar mechanism through which the power is communicated has already been fully described and explained in other connections, so that no further allusion to its construction is necessary. By its aid, however, in the pre sent machine, forty revolutions of the shaft, ac tuated by the treadle, correspond to 1,640 revo lutions of the bit, a four inch pulley being connected with the latter, making a proportion of one to forty-one. The general arrangement of the boring mechanism will be readily understood from the engraving. A table is provided which, bf. a slotted support through which passes a set screw, may be adjusted at a hight suitable to the dimensions of the work to be operated upon. It has a longitudinal slot on its surface in which travels a guide piece, against which the wood to be bored is held by the hand of the operator, as it is advanced toward the tool. This guide piece, by means of a slotted semicir cular bar and set screw, may be placed at any desired angle so as to allow for the boring of inclined holes.
We recently had occasion to examine this machine, and found that the tool penetrated through knots or woods in any direction, with much facility and with the exercise of a quite small amount of effort on the part of the ope rator. It is evident that any sized bit, which can be adjusted to the shaft, may be used. This device will doubtless prove a useful addition to the shops of wood workers generally.
For further information, address the Combined Powe Company, 23 Dey street, New York city.

IMPROVED FUEL ECONOMIZER.

Among many novel devices displayed at the recent exhibition of fuel economizing appliances, held at Manchester, England, is a steam generator composed of three coils of cast iron piping, of four inches internal diameter. These coils are not cast whole, as stated in the inventor's descriptive circular, but are formed of a number of half circles, bored and turned to spigot and faucet joints. The ends of these half circles are reduced to three inches in diameter, and have ribs cast on the exterior surface. After the segments have been placed together an iron hoop or thimble is cast on over the joints, and, by the contraction of the metal in cooling, draws the ends of the pipe close to gether. The exterior of the thimble is of the same diameter as the fipes, and thus a per fectly smooth joint is obtained for scrapers to trivel over; the pipes are held securely togeth or, while all cement or rus joints are dispensed with.
Should a coil become frac. tured it can be repairad by split ting two hoops and removing the damaged segment.
The form of scraper will be readily underatood by referring to the angraving. One half rests upon the pipe, embracing the upper portion of it, while the lower scraper is kept up to the pipe by means of a balance weight: these weight; these scrapers ar pushed forward by arms or pro pellers fastened to a cente shaft, driven by a worm and wheel at the top of the ma chine, and supported by a foot stop in the center of each coil; the scrapers follow the line of pipes until they reach the bottom, when, by the action of the reversing motion, they agaln ascend the coil to the top These scrapers will, undoubted These scrapers will, undoubted y, clean the cnils fron soot provided the pipes are cast tru ly cylindrical and the scrapers made to fit them exactly; but in the apparatus exhibited at Manchester this was not the case -the plpes being very rough cantioge and far from cylindri cal, consequently many por tions of the pipes wereuntouched by the scrapers, the points of which were frequently more than an inchapart. Theinventor

tion o from all sharp turns and angles, thus avoiding strains upon the pumps and joints. By means of this rapid circulation it is maintained that incrustation and deposit of seale on th interior of the pipes are avoided, and their heating surface kept uninjured. The feed water enters at the bottom of the coil furthest from the boiler, which is the coolest end; it passes into thesecond coil at the top, and, descending through it, enters the third coil at the bottom, becoming gradually hotter until it enters the boiler at a temperature varying from 200° to 300°. From the absence of abrupt corners and bends, the coils can be well cleaned out by blowing through hem with steam. It stands independent of all brickwork and is self-contained in its own frame, which reduces the cost of fixing. The three coils are estimated by the inven cos

tor to give as good results as an economizer comprising

 seventy vertical pipes.but that in all economizers now supplied by him he will guarantee the accuracy of the form of the coils.
Many advantages are claimed for this economizer over those with vertical pipes. The first is that the whole piping presents a surface for the heat to beat against, the back part of the coil being exactly opposite the front space. We can see no difficulty, says the Engineer, to which we are indebted for the engraving, in arranging vertical pipes, so that those in the second row should be placed exactly opposite the spaces bet.ween the pipes in the first row, and so on alternately. Anotheradvantage claimed is the rapid and continuous circula

VERTICAL MOLTIPLIER BORING MACHINE
American aad European Locomotiv en American engines have, as it were, gradually crystallized nto certain definite and fixed forms. Outside cylinders and nside frames are now universally used here, whereas, on the continent, cylinders and frames are sometimes placed inside f the wheels and sometimes outside. The steam chests here are always placed on the outside and top of the cylinders; thus there are often placed on the side and inside the frames. Almost the only kind of pistons which seems to be used there is that made with solid heads, with simple grooves tarned on the outside, into which steel, cast iron, or brass rings are sprung. Here the varieties of packing in use are numberless. For simplicity and cheapness the European is cer tainly very much superior to ours. Here the only valve gear now made is the shifting link motion worked from eccentrics on the main axle: there the shifting link, the suspended link, the Allen or straight link, the Walschaert, and several other kinds of valve gear are used Some of them are worked from eccentrics placed outside of the wheels; and in at ieast one en gine we nutice that the axle bearings are outaid of the wheels, and then the eccentricsare placed next the bearinge, and a crank outside, to which the connecting rods are attached. All wheel centers are made of cast iron; there, of wrought iron. In the tyres of our truck wheels we are imitating Europeans, and steel tyres are now much used here for that purpose. The springs in American engines are, if we except the Boston and Albany railroad, always placed above the arles and frames. In Europe they are often be low. Here they are excepting in four wheeled engines, always arranged with equalizing levers; there this is not always the case. The use of plate frames is universal in Europe, whereas in this country they are now never used.
In the construction of locomotive boilers there is also a very great difference in their practice The steam dome is there always placed either about the middle or near the front end or smoke box. The Becker pattern of boiler is also much used, espe cially in Germany and Austria. In this plan the outside of the fire box, instead of being arched, is rectangular, that is, the top of what we call the wagon top, instead of being ound, is flat, and is raised somewhatabove the barrel of the boiler. The corners are, however, rounded somewhat. The crown sheer, instead of being scayed with crown bars and braces, is supported by long stay bolts screwed through the outside shell and the crown sheet. Some of the engines which are to be built at the Grant Locomotive Worke, for a Russian road, are to be made in this way. This is, we think, very excellent plan, and is quite certain to be adopted in his country when its merits become known. Shaking grates are, however, seldom shown in the illustrations of European ongines: but grates very steeply inclined are still much used there It is very singular that in Europe the exhaust steam al most universally is allowed to escape at the base of the smoke stack instead of the bottom of the smoke box as is the practice here. It will also be observed that there many of the smoke stacks are made conical; that is, the base of the insideof the stack is smaller than the upper part. We have seen it stated that it is found that the steam blast is much more effective with this form than with a straight stack. We do not know, how ever, upon what the assertion was based, and would be glad to get some further information in reference thereto. The differences in points of detail are almost numberless, and are well worth number study. The reasons for many of these differences would be very interesting if carefully examined, and we intend to return to the subject again. A very striking fact, however, is themuchgreat er variety in the methods of construction adopted in Europe than is in use here. The reason for this we believe to be, singular as it may seem, partly political The suppression, or rather re pression, of individuality under republican governments has often been remarked. In this country, perhaps, no principle is more generally believed than that " the majority should rule." The re sult is that this axiom prcduces a kind of intellectual subser viency of the individual to the will of the majority, which thus, to a very great extent, becomes the standard of right and wrong
l, therefore, any new method of construction fails to be ap proved by a majority, it is abandoned. We will not under take here to determine whether the suppression of individuality is a gain or a loss. It is quite certain that originality is very expensive when it exercises itself in the construction of locomotives or other railroad machinery, and that the Chinese virtue of uniformity has muchmerit, and is of ten profitable when greatingenuity and skill would not be.-Railroad Gazette.

Contespipaudeuce.

An Electric Toy

To the Editor of the Scientific American:
I send you herewith a sketch of a scientific toy, which I have recently constructed and placed on a bracket in front of the desk in my engine room. The main belt of the engine is 30 inches in width, and about 120 feet, in length, and runs from south to north, at an angle of about 45°, and with a velocity of 2,500 feet per minute; it is highly electrical.

The idea occurred to me that the electricity so developed might be made usg of for mechanical or other purposes; and having seen an engraving of what is called an electrical wheel, I constructed one as shown herewith, but without the coils. A is a vial, about 6 inches in length by $1 \frac{1}{2}$ inches in diameter, the bottom of which is inserted in a cavity in the bracket, B. In the center of the cork is inserted the eye end of a darning needle, the point projecting upward about 2 inches, on which rests the wheel, C, which consists of two pieces of copper wire, 1-32 inch in diameter and 7 inches in length, placed at right angles to each other; their centersare flattened and soldered togerher, and half an inch of the end of each arm is bent at a right angle, all in the same direction, and filed to a point. D is a copper wire, one eighth inch in diameter, one end of which rests against the needle, the other running in front of and about 6 inches distance from the belt, and terminating in 5 or 6 points, 2 inches long, projecting toward it.
On connecting the conducting wire with the needle, my wheel immediately started off at a speed of 100 turns in 50 seconds. I soon ascertained that, by placing a good metallic cond uctor beneath the wheel and making an earth connection, I could add materially to its speed. Accordingly I placed a copper coil, E, $5 \frac{1}{2}$ inches in diameter, one inch below the wheel, connecting it with the gas pipe, which accelerated its speed to 148 turns in 50 seconds. Soon my wheel began to gyrate even to an angle of 20°. This annoyed and puzzled me. I eventually found that, by adding another coil, F, one inch above the wheel, and connecting it with the earth, I not only restored its equilibrium, but also increased its velocity to 173 turns in 50 seconds.

When the air is dry and frosty, I have had it running as fast as 280 turns per minute, and the ozone given off by the wheel is apparent to the senses at a dietance of several feet. It also acts as a barometer, indicating (by increasing or diminishing its speed) atmospheric changes several hours in ad. vance. It is especially lively on the approach and during the prevalence of a northeast snow storm ; but with the wind anywhere from east to south, it will scarcely move at all.

The apparatus can be easily constructed by any person of ordinary intelligence, and it makes a very interesting scientific apparatus. It can as well be located in the counting room oor thice as in the engine room.
328 Delancy street, New York city.
Edwin Leach.

Elasticity and slipping of Belts

To the Editor of the Scientific American:
It is pretty generally admitted, though sometimes contest ed, that any belt running upon two pulleys, one the driver and the other the driven, must slip on both when any appreciable amount of power is being transmitted by it. It seems to be very evident that, if a belt is passing from a state of greater to one of lesser tension, or vice versa, in its passage around a pulley:in the former case it must undergo contraction, and in the latter case extension, in direction of its length; and we knowthat a bolt alwaysexists in a different state of tension in the parts entering upon and leaving the given pulley. If, then, in passing around the driving pulley, a belt undergoes contraction, and on the driven pulley, extension, there can be no point of the belt but must have a eliding movement on both pulleys, and thus result in the driven pulley having a lower velocity than would be mathematically due to the diameter of the pulleys. Thus, or two pulleys of exactly equal diameter, one driving and the other driven the latter must heve the lower velocity.
cases where high speeds are to be obtained by means of belts
and the prime belt, that from the first driver, has a low ve and the prime belt, that from the first driver, has a low
I recently, quite accidentally, observed a peculiarly deli cate and interesting illustration of this property of belte, es pecially illustrative of the invariable slipping upon the dri ving pulley; and I think it will be of interest to your read re, as it establishes that fact in a very beautiful manner.
I have, in my factory, a number of pairs of spindles running at about 5,000 revolutions per minute. Each of the pairs is driven from one countershaft by two separate driving pulleys, situated nearly close together, as in the illustration and the spindle pulleys are so situated, one in advance of the other, as to take the belts from them. The countershaft being directly over the median line between the two spindles, the two belts were practically of equal length. The spindles are alike in all material respects, and carried 4 inch pulleys, the drivers on the countershaft being 24 inches in diameter The work done by the spindles alternated regularly about 60 times per minute, the belt of one spindle having-while th other was at work-nothing more to do tban to turn the spin dle in its bearings; and while the feed mechaniem of the ma chine containing the spindles was not in operation, neither belt had any more to do than simply turning the spindles, which was practically equal.
In this case: owing to the great disparity in the diameters of the driving and driven pulleys, and consequently in the area of surface wrapped by the belt (the distance from coun tershaft to spindle being less than four feet), and the fact that the drivers were directly overhead, bringing the weight of belts to their aid: it is certain that, but for the elasticity of and the consequent difference in the tension of the two halves of the length of the belts, whatever slipping occurred from the resistance of the work would take place upon the smaller pulley. But this experiment shows indubitably that these belts always slip on the 24 inch or driving pulleys as well eand, of course, most when the work is greatest.
It so happens that, of one pair of the 24 inch drivers, one is slightly larger in diameter than its companion, but so small an amount that it can only, with great care, be detected with the callipers; and-although not essential to this illustration as the same cffect would be produced by a difference in the length of belt-but for this latter fact the following interest ng observation would prcbably never have taken place.
In the engraving, 1, 2, is the countershaft with its pulleys, a and $b ; \mathbf{D}$ and E are the pulleys of the spindles. The ob serveris isituated at A, and at W is a window. The holes in the belts made for the fasteninge, - which, from use, had be come sufficiently enlarged to permit the passage of the light -when situated as at H^{\prime}, would allow the passage of a ray of light through the downward side of one bels and the upward side of the other, as at A B; and as the speeds of the belts were such as to cause these holes to cross the line o vision in periods of time less than the duration of the im pression upon the retina, there appeared to be a permanen

opening through them. If the pulleys, a and b, were exactly of the same diameter, and the feed works of the machine not in operation, the pointe, H and H^{\prime}, would, after completing a circuit, reappear in the same position; but owing to the slightly larger diameter of the pulley, b, the ray of light, when both apindles were idle, had a very regular upward movement until cut off by the pulley, a, as shown at C A, and, after a short time had elapsed-a little less than a minute, by repeated timinge-would reappear at B A; and as the belts were running at about 5,000 feet per minute, it will readily be seen how small was the difference in the diameters of the pulleys, a and b. Now, when the spindle, D, was at work. E being idle, the downward motion of the point, H , became at once retarded, and the upward motion of the ray would become suddenly accelerated; but when the spindle, E, was at work, and D idle, the point, H', became in turn retarded, and the ray would either come to a stand still or slightly descend, according as the material being operated upon by the machine offered more or less resistance to the cutting tools. The descent, however, was never so great as the ascent ; and whether the ray passed upward regularly, as when the spindles were both idle, or intermittently, as when they alternated in their work, its recurrence at B A always took place in the same period of time. The intermittent motion of the ray of light could only be produced by the slip. ping of the belts on the upper pulleys, except that a small fra:tion of it might result from the stretching of the belte
ntering upon the other; but that this must be very somal will be evident from the fact that, during one second (the period of one alternation of work from one epindle to the the: and return), the belt would make about 21 complete circuits, or pase from pulley to pulley 42 times in that period; therefore the change in tension in the two halves of the belt's length must take place principally upon the surface of the pulleys.
I think this example shows conclusively that, in any belt whatever, the side in contact with a pulley has a greater ve wity than the surface of the pulley itself.
New York city. John L. Haweins.

Measuring the Width of a Stream.
To the Editor of the Scientific American:
In surveying, it is often necersary to ascertain the width of iver, pond, or other body of water, with the least possible river,
defar

Lit A B represent the hine of survey (the course bellig oue north), striking the river bank at B. Have a flag set on this ine at C. Take your station at D , at a right angle with your ine, B A, at any convenient distance, with or without wea urement. Set your compass at D, and bring it to bear on your flag at C. By observation you find the course N. $13^{\circ} \mathrm{E}$. Reverse your compase, taking your course S $13^{\circ} \mathrm{E}$. Send a flagman back on the survey line, keeping in range with B C until he comes in range of your compass sight at \mathbf{E}. Mea ure from B to E, and you have the distance from B to C.
Farmington, Iowa.
Join Cross.

The Relative Attraction of the Sun and the Earth

 To the Editor of the Scientific American:Permit me to correct a serious mistake contained in Dr. Vander Weyde's communication, published in your issue of April 18th. Your correspondent incorrectly asserts that I have constructed an apparatus for measuring the changes of terrestrial attraction, consisting of a heavy iron globe floating in mercury; regarding which he remarks "that a floating object is identical with a lever acale, as the liquid balances the floating body, and any change in the gravitation will equally affect both; so that such an apparatus would show no change whatever, even when transported to the moon or to Jupiter." Dr. Vander Weyde appends to his irrelevant remark the following unwarrantable conclusion "It is, therefore, not in the least surprising that Captain Ericsson, according to his own showing, had no results.' The reader will be surprised to learn that my apparatus, the principle of which Dr. Vander Weyde evidently does not underatand, has been constructed for the sole purpose of proving practically that, at the rising and setting of the sun, solar attraction exerted on a body resting on the sulface of the earth is exactly balanced by the centrifugal force acting in an opposite direction, called forth by the earth's orbita motion round the sun. The reader will find, on referring to my communication inserted in the Scimptific Amebican March 14, 1874, that the reault of the experiment with the floating iron ball was mentioned in my demonstration relat ing to solar attraction simply for the purpose of convincing Mr. W. B. Slaughter, by actual experimental test, that sola attraction is neutralized by orbital centrifugal force. The reader will also find, by referring to the said demonstration that, while the sun's attraction on the iron globe exerts a pul of fully 748 grains, and that while a tractive force of a few grains suffices to move it across the vessel of mercury in which it floats, yet the globeremainsperfectly stationary on the surface of the liquid metal when subjected to the stated pull of 748 grains exerted by the attraction of the rising sun Consequently the instituted experiments with my appara us, which in the opinion of Dr. Vander Weyde have produced "no results," prove incontestably that the centrifugal force, called forth by the orbital motion of the iron globe, exactly balances the attractive energy exerted on its mass by the sun at the moment of rising and setting. I will not detain the reader by commenting on Dr. Vander Weyde's criticism of my solar attraction apparatus, since it is based on the iurele vant fact that "a floating object is identical with a lever scale, as the liquid balances the floating body." Moreover, the reader cannot fail to perceive, without further discursion, that, according to his own showing, Dr. Vander Weyde does not comprehend the principle of the apparatas nor its object
J. Erscasos.

