the english telegraphs.

by azoraz b. przacont

CONSTRUCTION OF THE LINES.

The construction of the English telegraph lines is uniformly excellent, and reflects great credit upon the Engineering Staff, in whose hands it is placed.
The timber used for poles is generally larch treated with sulphate of copper, or red fir creosoted.
The creosoting is accomplished by the Bethel process. The poles are placed in an iron receiver and the air exhausted from them, after which boiling creosote oil is forced into them by pressure. This process greatly increases the durability of the wood, pine and spruce being thus rendered as lasting as cedar. The offensive, but no

on this account.

The poles are never creosoted until they have been stacked a sufficient length of time to be thoroughly dry.
The cost of creosoting includes a certain margin for loading into trucks, or on board a ship, which is alwaye stipulated for when the contracts are made.
It sometimes happens that a parcel of poles are exceptionally dry, in which case they are given an extra two pounds of oil per cubic foot, costing from six pence to eight pence per pole additional.

When poles are used, which are neither prepared with sulphate of copper nor creosote, they are well seasoned, and then painted, the butt ends being slightly charred from the bottom to a foot above the ground line, and tarred.
The cross-arms are made of English oak, two inches thick and twenty-four and thirty-three inches in length, and are placed alternately on either side of the pole. A twenty-four inch cross arm is placed on the front of the pole a foot from the top, and then a foot lower down a thirty.three inch cross arm is placed on the back of the pole, and so on. In some cases as many as seventeen wires are carried upon a single carries more than two wires, except on the double pole lines, carries more than two wires, except on the double pole lines,
where seven feet cross arms are employed, and four wires are supported upon each cross arm.
All the poles are provided with earth wires, or contact con. ductors for carrying the wet weather escape directly to the earth, instead of permitting it to leak into the neighboring wires. The earth wire consists a piece of No 8 galvanized iron wire, extending from the top of the pole to the bottom, and terminating in a flat coil attached to the foot of the pole, so as to expose as large a surface as possible to the earth. From the thick earth wire, branches, composed of No 10 gal vanized iron wire, are carried in saw grooves sunk in the cross arms, and soldered to the insulator bolts. The work is performed at the factory before the cross arms are carried
out on the line. The earth wires sometimes project above out on the line. The earth wires sometimes project above
the top of the poles, and serve an excellent purpose as lighte ning arresters.
Great care is taken to keep the poles in a rigidly upright position ; and in addition to placing them well in the ground and tamping the earth thoroughly around them, they are well supported with stays made of wire ropes attached to iron rods, which run into the ground about four feet. Oads, double lines and slight curv
stays are employed.
insulators.
The insulators on the railway routes are uniformly of the Varley double cone brown ware pattern, and those upon the canals and highways of the single cone white ware, or porcelain. The Varley insulator is regarded as the best, but its greater cost has prevented its exclusive use.

THE CONDUCTORS.
The conductors employed upon the English lines are com. posed of zinc-coated iron wires of Nos. 4, 8, and 11 gage. The No. 8 gage- $0 \cdot 170$ inch diameter-is the size in general use: the No. 4 gage- 0.240 inch diameter-being employed
upon a few of the long circuits between the more important upon a few of the long circuits between the more important
points, while No. $11-0.125$ ineh diameter-is used for short lines only.
The method formerly followed of allowing the wires to pass freely through the insulators, and fastening them only at
distances of half a mile, has been a bandoned in favor of bind. distances of half a mile, has been abandoned in favor of bindbinding.

JOINTING THE WIRES.

Great care is observed in the jointing of the wiree, which is invariably performed upon the line, no joints by the wire makers being permitted. The joint exclusively adopted is that known as the Britannia joint. This is made by slightly bending the ends of the two wires and placing them side by side for a distance of three inches, and binding them tightly together with No. 19 wire, and soldering them thoroughly. All joints are required to be soldered, whether the wire be old
or new, galvanized or plain. The leading.in wires at theoffces are insulated with gutta percha, covered with linen tape and varnished with a preparation made of linseed oil and Stork. holm tar. These wircs are re-tarred from time to time to pre vent decay.

THE OVER HOUSE WIRES.
The over house wires are erected in spans, supported by iron poles attached to cast iron saddles, which are fitted at the ridge of the roof. The poles are light and well stayed by wire ropes. In London, cables containing 50 insulated in the manner described above. The conductors in these cables consist of No. 22 copper wire.
At Newcastle on-Tyne, a strand composed of seven steel wires, of No. 16 gage and 454 yands long, is euspended over

The cables rest upon ebonite chairs attachedto the rope by means of ringe placed at distances of 12 feet apart.
The over house wires are used principally for lines which are leased by the Post Office Department to private firms or individuals for the transmission of messages on their own special business between offices, factories, etc., and which make a system of nearly 5,000 miles. -Journal of the Telegraph.

The Chemical Clanmification or Iron.

M. Frémy, an eminent French chemist who has recently been studying further into the metallurgy of iron and steel, and metatlit would be of much more advantage to founders according to its physical properties, should be known with reference to its chemical characteristics, that is to say, in accordance with the verysmallquantities of carbon, sulphur, phosphorus, etc., which it may contain, and which chemical analysis would reveal. This chemical classification has for
some time past been in use in Krupp's celebrated foundery, where, in fact, nothing is left to chance. Chemists constant y analyze the crude materials and the fabricated products. The scientific and industrial element is intimately connected with the military. Artillery officers examine the manipulations and follow their every detail. Considerable sums are devoted to new experiments, made on the different alloys which may be suitable for cannon, and of each metal tried there is compiled a record which indicates its chemical com. position, its advantages, and defects.
According to M. Frémy's investigations, it appears that he best metal for guns is neither iron nor steel, but some combination of both.

New Street Rallway Locomotive.

A trial recently took place on the Manchester, Sheffield, and Lincolnshire railway, between the Grange Lane and Tinsley stations, of a tramway engine, constructed by the Yorkshire Engine Company, upon L. Perkin's patent sys tera, for the Belgian Street Railway Company, Brussels. The novel features of this engine consist in its not emitting any smoke or steam into the atmosphere, and making comparatively little noise. The engine used steam at 500 lbs to the square inch, and maintained this pressure by natura draft without any difficulty. The engine is compound, and expands the steam to the most economical limits, and then condenses it by means of two air surface condensers placed one on either side of the machine. The engine can be driven from either end, all the driving gear being duplicate to ob viate the necessity of turntables. The engine accomplished a apeed of fifteen miles per hour, drawing its full load up gra dients varying from 1 in 200 to 1 in 80.-Iron.

Ballooning Extraordinary.

Werecently published a note of Mr. Croce-Spinelli to the French Academy of Sciences, in which he indicated the belief that existence could be maintained at very high altitudes by aeronauts, if they should provide themselves with cylinder of oxygen, to be breathed in the highly rarefed atmosphere.
M. Spinelli and Sivel have lately demptred M. Spinelli and Sivel have lately demonstrated the truth of this view by ascending in the Etoile Polaire, a balloon of 98,840 cubic feet capacity, to the immense elevation of 25,841 feet without inconvenience. The barometer level descended 11.7 inches, showing the abovealtitude, which is higber than that obtained by Gay Lussac and nearly equal to the point reached by Glaisher in his famous ascension. The thermometer at minimum marked $7 \cdot 6^{\circ}$ below zero Fah. The aeronauts, having taken with them all necessary instruments, made a number of valuable observations which, we learn
from Les Mondes, will shortly be communicated to the French Academy.

Rain Cannonadea.

Mr. Edward Powers petitions Congress to authorize a eries of experiments to produce rain by artificial means, during dry seasons. This,he pointsout,may be accomplished by the firing of heavy artillery. In back numbers of the Scientific Ambrican, we have given many epecific examples of rain storms which have followed heary cannonades, and Europern with various battles, during the late rebelion concussions of 'artillery, when eufiliently long continued, mashave a condenaing or aggregating effect upon the aerial vapors, and so induce the fall of rain. When the nations debt is paid, or specie payment resumed, we think it might
be well to born some public powder as suggested by the present petitioner. But wo move that the experiments be postponed until then.

A Chance for Inventorm.

The attention of parties desiring to invest in patents is directed to the announcement of Mersrs. F. A. Hull \& Co. manufacturers of the Danbury drill chuck, published in our advertining columns. This invention'was fully described and illustrated on page 214, Vol. XXIX. of the Scientific AMe riCAN, and is a three-jawed lathechuck eo constructed tha all the jaws are simultaneously moved, in radial directions, by the revolution of a single right and left hand screw. The action is direct and positive, and, it is claimed, cannot clog, set, or in anywise get out of order.
We are informed that, since the placing of the article upon the market, it has met with a ready sale, and has given general eatisfaction. The owner, desiring to dispose of the patent in order to devote his efforts to a more important enterprize, offers the same at quite a moderate price. Judging rom the representations of the manufacturers, we presome mat any one, having the requisite capital, will find the invest ment highly profitable.

The St. Louts Bridge. - The iron work is now complete, wo weeks in advance of the contract time. A grand banquet has been given by the Keystone Bridge Co., contractors, to their employees, some 200 in number, at the Grand Central Hotel. The approaches will now be hastened to completion, railroad tracks laid, and carriage ways finished as speedily as possible; and the indications arethat the bridge will be thrown open to public trafic at a much earlier day than was antici. pated.
(2ccent Gutcricau aud foreigu æe,atents.
Improved Stone Pavement.
$\begin{aligned} & \text { Andreas Etchenberg, Columbus, Otho.-This invention is an improve- } \\ & \text { ment in stone road beds, and corsists in arranging an upper vertical lager }\end{aligned}$ ment in stone road beds, and corsists in arrangink an upper vertical layer degree of stability of the individual pleces in their normal postion. Sand or gravel is used to til the interstices.
Harrison W. Curtts, Philadel phla, Pa., assignor to Joseph L. Ferrell, same place.-Thls inventlon conslats of an arrangement of the idie pulleys nsed
for turning a driving belt out of a right line for a belt shifter by mounting for turning a driving belt out of a right line for a belt shifter by mounting them on a a winging frame in a line ca
the two llnes in which the belt runs.

Improved Grain Tally.
carriage moves forward and backward on gulde ralls between stop pins. A measure in retained tn position on the carrlage by pegs, and placed under the spout of the thresbing nachine, passing uoder cross bars for equalizing the grain to the same The attendant moves the carriage in one difection, when one measure Alled, and emptles the same whlle the other mcasure is illed from the
pout. He then moves the carrlage back, taking off the second measure pout. He then moves the carriage back, taking oft the second measure
when full, and repeats this operation, a registering device keeptag a cor ect tally of the grain measured ott, forming thus a very conventent selfacting apparatus for counting the number of measures.

Improved Thill Coupling.
J. Russell Little, Jamatca Platns, Mass.-Thts is an Improved coupling or connecting thills or a pole with the axle of a carilage. A retaincr
which 18 a small bar of iron, the ends of which work in slots forned in the oke of an axle cllp, when pushed into the forward ends of its slots, comes so far over the hook head of the thill fron as to prevent the sald thill iron frombeng ralsed from the bolt. The retainer is held forward by a spring,
which will allow ft to be pushed back when it is dealred to attach or detact Which will allow

Improved Bobbin Winder for Sewing Machines. Moses Cook and Moses G. Cook, Ashifld, Mass.-This invention consists a drum with a reversing cam groove for working the traversing gutde for ward and back along the spool has the necessary slow motionlmparted to by a pawl and a frictlongriptng atrap. The pawl is workedby an eccentric on the bobbing turntng shaft, whtch recetves motion from the sewing machine wheel by a friction wheel. An adjuatlyg ocrew regulates the extent of the pawl's movements so as to turn the drum fast or slow, accordtng to
the atze of the threads, and the drum has a frittion strap and spring for holdtag it when released by the griptng apring. The bobbin has a apring onte spindle for fastentog the thread to it at the begining. The spoo holder has a tension apring to regulate the unwinding of the thread holder
from it.
Impre
Improved Comblned Gang Plow, Cultivator, and Chopper.
Jonn J. Watrous, West Polnt, Ga.-This invention Jonn J. Watrous, West Pofnt, Ga,-This invention has for its object to
curntsh an fmpioved machine whtch may be readlly adjusted for breaking up and bedding land, and for cultivating and cbopplig the crop. By aultable construction no tongue is required, which enables the machine to be urned in a very small space, and the chopper is operated by its advance. The chopplng hoes may be conventently adjusted to work deeper or shalower in the grouud, as may be desired. The chopper may be easily ratsed
rom the ground, and thus prevented from worktig, and, when not required rom the ground, and thus prevented from worktng, and, when not required
or use, may be detached. The plowi may be adjusted to work shallower or deeperin the ground. Any desired number of plow beams may be used according to the kind of worm to be done. Suitable construction also
allows the rear ends of the plow beams to have a free vertical movement. Improved Pitman.
George L. Jones, Vanville, Wis.-This invention consists in a pltman having a side-notched eye at each end, and a collar bushing combined with pin secur the pltman can be forced farther upon the pina to take up the wear, by sccemingup the nut.

Improved Machine for Making Animal shoes.
Willam Hamillon, Fallsburg, assignor to James L. Lamoree, Grahampille, N. Y.-This iavention consists of an anvil, trip hammer, and two side ham he tor hammering the shoe on the sides and edges. The anvil is fat on that of and the hammer has a face which is the same form in outilne a that of one side of the shoe to be made, but wider, so as to Insure the ham.
mering of the upperside of the blank over all its surface. The hammer ts also beveled or tnclined to vary the thickness of the shoe sand produce the requisite shape for the top. One of the side hammers is sha ped in respect of the contour of its face to correspond with the required shape for the outer edge of the shoe; the other is shaped to correspond with the inner dge, and both rest on the face of the anvil, and work toward and from each other to hammer the edges of the blank. These bammers perform
thelr operation whille the trip hammer ts ralsed, and then move out of the walr operation whlle the trip hammer ts ralsed, and then move out of the
way when the trip hammerfulls, to give the necessary space for it between them which in required by the greater width of the hammer than that of he blank. Theside hammers areoperated by thehelve of the trip hammer one being connected directly to an arm projecting from Its axis by a rod or hank, so as to be harown forward when the hammer rises, and the other helag connected to the same arm by a slmilar rod, and an intervening rock ration of the trip hammer. A bar la arranged on the trip hammerhelva, 10 he actedod by the tappont wheel for ralalng the hammer, whicb eald bar to ofnted to the shank, and arranged to swingoat of the path of the tappeta o throw the hammer out of gear, and fnto their path to put it in rear galn.
George W. Burr, East Line, N. T. This invention La an tmprovement in he class of catches for door and gate latches, which are made vertically assume in consequence of shrinkage, swellings, or other cause. The in ven. tion consists 1 n combining a T -shaped catch with a slotied holder or guard
plate, whtch 1 secured to the gate post by screws, so that by means thereof plate, which is secured to the gate post by acrews, so that by means thereo he catch may beclay ind held by fiction at any dentred potn Improved Corn Plow.
Jeremlah F. Trout, King wood, assignor to himself and Isaac s. Cramer, o allow an outward lateral movement to the lower part, with a apilng on o allow an outward harteral movement to the 10 wer part, with a apilng on
he outside and alever on the inside. The draftbars, which are attached to the frame and run along through slots in the plow stocks, are connected o the stock by wooden ptns, which are prepared, in respect of thetr the stocks are plvoted to the frame, so asto aming tack great restatance. The stocks are pivoted to the frame, so asto swing
break.
Improved Ice Machine.
Thomas F. Peterson, Macon, Ga.-This invention consists of a boller, condensing coll and coollag tank, receiver, freeztng coll and tank, and pumps, all comblaed and arranged so that the ammonlacal gas expelled
from the boiler by heat ts compressed and condensed in the condensing coll, and then, after paening through the recelver, ta let into the freezing coll, and then, arter pacoing taroagh the receiver, is let into the freezing
coll con, heat from It. It 1a then pamped directly into the boller again for rep. peating the process, and takes witb it the heat obtained in the freeser, and ande utilizen it inctood of vasting it.

