L. P. S. says: In a factory a § inch pipe was placed against the wall, and above a tank in which acids were kept for dipping the bronze work. The pipe wa covered with the finer portions of the boxwood sawdust used for drying the work after being dipped. On re-moving some woodwork, I found the dust on the pipe at a bright red heat. I questioned the workmen to ascertain whether there had been a lamp or fire in any form used there, and found there had been nothing of the kind; but the men had found fire therebefore. I then brushed the burning dust from the pipe, and soon after on a blow being struck on the woodwork, more dust fell; aud lodging on the pipe, it ignited immediately and became incandescent. I thought that perhaps the fumes of the acids affected this dust and converted it into xyloidin, but the very slow combustion rather precludes such a theory. The gages at the time alluded to indicated between 60 and 65 lbs. pressure, and the steam must have passed through 20 or 30 feet of pipe afterleaving the boiler. A. The supposition that there was a gradual conversion of the woody fiber into nitro cellulose, by the continued action of the acid fumes, under the circumstances narrated, is a conjecture both in genious and probable.

C. Y.—Your boat seems to be well proportiosed. Your engine should make from 250 to 300 revolutions per minute, giving a speed of from 8 to 10 miles an hour.

G. B. M. asks: 1. How can oxygen gas be generated, and can it be kept for inhalation? A. There are several methods of preparing oxygen. The safest way for an amateur is to heat good commercial binoxide of manganese to redness in an iron retort. 2. Is there any way to produce and keep up a succession of electrical sparks? A. A good electrical machine will give a succession of sparks to the knuckle or a metallic object held near the prime conductor, ss long as the plate or cylinder is kept in motion. 3. How is aqua ammonia made? A. On the small scale by heating a mixture of sal ammoniac and lime and receiving the gas in to cold water. 4. What is carbolic acid? Is it poisonous? A. Carbolic is made is $C_{12}H_5O$,HO.

A. S. asks: In testing milk, what is the relative proportion of cream and milk? If I pour 5 inches of milk into a test tube and let it remain in a moderately warm place till the cream all rises to the top, how thick ought the cream to be? From the thick, ness of cream in a watered sample of milk, how am I to draw correct conclusions as to the amount of water added by the milkman who sells it? A. The thickness of the cream would depend somewhat on the length of time the milk had stood in the milkman's can, and whether it was taken from the top or bottom of thecan, also on the diet of the cattle and the condition when yielded. You must determine the thickness of cream from milk you know to be good, and then compare with the unknown sample. No rule expressed in fractions of an inch can be given.

J. P. H. asks: If a siphon whose vertex is 50feet above the level of a reservoir be closed at each arm with a stopcock, and both branches be then filed with water at its vertex, after which it be made airtight aud both ends be opened, will the water flow through the siphon, or will the formation of a vacuum be made of its vertex? A. The siphon will not work.

G. R. J. says: 1. When a light is applied to a perforated cork in a bottle containing oxygen and hydrogen gases, an explosion takes place, driving the cork with great force out of the bottle. When the two gases form water, is there not a vacuum in the bottle? A. It no air be allowed to enterafter the explosion, a partial vacuum will be left. 2. If a vacuum is produced in the bottle, why does not the external air force the cork in? A. It would, if the cork could be prevented from blowing out. 3. What forces the cork out? A. The great expansion of the gases, due to the heat generated from chemical combination of the hydrogen and oxygen.

H. C., H. E. W. and others: You need enter tain no doubt as to the possibility of making sugar and sirup from sawdust, rags, and paper. In order to effect this change, shreds of linen, paper, or sawdust are submitted to the action of strong sulphuric acid in the cold. After a certain time the acid is diluted with water and boiled for some hours, and the free acid finally neutralized with chalk. The flue is then filtered, evaporated to a sirup, and set aside to crystalize. Sugar sirup is now made on the large scale in Europe from starch and di lute sulphuric acid. But this chemical sugar is glucose it is not so sweet, nor does it crystalize so readily as the sweet natural cane sugar. Nevertheless it is imported into this country and used more extensively perhaps than many suppose. But if it be properly made and pu rified, there need be no alarm in using it, as it is identi-cal in composition with the sweet principle of fruits. Chemists have not yet discovered how to manufacture cane sugar artificially. A cheap process that would con vert grape sugar or glucose, which we have been con-sidering, into cane sugar would be of great value. There is little doubt that considerable quantities of ar tificial glucose or grape sugar are used in the shape of sirup, either alone or mixed with natural sirup. The dail stain sometimes seen is caused by iron, which may have sarisen in the manufacture. The correspondent who speaks of feeding a decoction of muriatic acid and old rags to his cillidren i under a misapprehension. No are no longer rags when converted into sugar

E. C. H. asks: 1. Which has the greatest driving power, a balance wheel 3 feet in diameter orone 4 feet in diameter, the weight being the same in each wheel? A. Precisely allke, other things being the same. 2. Did the trilobite have feet or legs? A. No

distance of 5 or 6 feet, the effect was lost, the fuel burning more fiercely than before, from the fact of the stream of gas spreading and carrying with it so much oxygen from the air.

H. S. asks: 1. What will force the beard to grow? A. Nature and time are the most powerful aux-iliaries. Frequent shaving seems to stimulate the growth to some extent. 2. How can I make nitrate of A. Saturate nitric acid diluted with three ammonia? or four times its weight of water with sesquicarbonate of ammonia, evaporate by a gentle heat and crystallize When not required crystallized, the salt is evaporated to dryness at 212º Fah.; and the heat being then carefully raised to about 250° Fah., the melted salt is poured a polished slab of iron or stone, and when solidified taken up and put into bottles. 3. How can I make Greek fire? A. The ancient Greek fire was a compound of sulnhur, hitumen, and nitch. The name has also been given to substances that will ignice on the surface of or under water. If a glass bottle containing benzole and a small piece of potassium be broken on the surface of water, the benzole will take fire. 4. How can I combine phosphorus and chlorate of potash? A. The phos horus is made into an emulsion with warm glue or gum and the fine chlorate afterwards incorporated by stirring. 5. What danger is there in making phosphide of calcium? A. Phosphorus requires to be handled with reat caution, therefore there is danger in inexperinced hands in experimenting with it, owing to its ready infiammability. 6. How can I make a cheap galvanic battery? A. Insulate a cylinder of zinc in a copper ves sel containing a solution of sulphate of copper. The zinc is one pole and the copper the other. 7. How can I make from 5 to 10 lbs. of ice at one time at a cost of from ½ to 1 cent per lb. ? A. Small machines are made in France for this purpose, invented by Carré.

W. H. S. asks: 1. At what cut-off does an engine give the most power? A. At full stroke. 2. Which gives themost power, a short or a long stroke engine, both using the same amount of steam? A. Theoretically both give the same, with similar piston speed. 3. How do engineers tell how large to make steam pipes? A. There are definite rules, depending upon piston speed, length, and form of connection, etc. 4. If I have a column of water above a boiler and the weight of water is greater than the pressure of steam, will the steam escape up through the water? A. Yes, if there is no valve between.

T. C. O'B. asks: How can a straight avenue of fifteen yards wide and two hundred yards long best be lighted up brightly? We have tried some glass reflectors, but they are entirely inadequate. Would a lens of the Freenel kind answer the purpose? What is the best manner to adjust a lens? We have gas on the premises. A. The best lens will be of little use, if you do not have a good light. By forcing air into the flame of your gas, and directing the jet upon chalk, you can obtain quite a brilliant light.

M. E. D. says, in reply to our correspondents who asked as to washing fannels: Take soft water, as warmas you can bear your hands in. Make a strong suds, well blued. In washing fine fiannels, wet but one piece at a time; soap the dirty spots and rub with the hands, as washboards full the fiannels. When half clean, add three times as much blue as for cotton clothes. Use plenty of soap. When clean, have ready a rinse of the same temperature as the suds, rinse well, wring tight, shake briskly for a few minutes, hang out in a gentle breeze. When nearly dry, roll smooth and tight for an hour or two. Press with a moderately hot iron. If embroidered, press on the wrong side. Flannels washed in this way will look white and clean when worn out, and the quality will look better than when new.

L. M. R. says, in answer to J. B. V., who asks how he may remove green moss from his brown stonestoop: Carbolic acid will effectually accomplish it. A solution containing one per cent of the acid in watershould be applied to the plants, which will kill them, slthough it will not alter their appearance. After a few hours they may be washed off clean from the brick or stone.

C. W. Y. says, in reply to F. O. C. H., who asked as to patching a boiler: Take off all warped and twisted parts of the boiler plate; have your patch large enough to cover the hole nicely, then bolt it on firmly with boiler boits, bevel the patch on the outer corner, or, in other words, thin the patch; then, with a calking tool, upset the iron all around the patch close to the boiler. This, if properly done, will make a perfectly water and steam tight joint without cement of any kind. I have calked up leaky rivets in boilers with a calking tool, so that they were tight under any press-

A. W. W. says: C. W. B. asks, on p. 202, i there is any better way to make a house warmer tha the usual weatherboarding and plastering, except to Ill in with brick between the boarding and plastering Let me give him my ideas of how a frame house shoul he huilt. After the frame is un, cover the outside wit rough one inch boards, then put on a covering of ta roofing felt (which will not cost over twelve or fiftee dollars for a medium sized house) and put the clap oards on top of that, then go inside and laya cours of brick on the underpinning up to a level with the to of the sills; this will make the cellar much warmer now take some strips about one inch square and say them off to a length of the distance between the stud nail them on to the outside boarding between the stud lath on to them, letting the lath run up and down, the put on a good thick rough coat of plaster; then lat and plaster the inner wall as usual. The plastering be w111 only add house, probably not more than 60 or 75 dollars to a me dium sized house. The rooms will be very much warm erin winter and cooler in summer, and the walls will a ways be dry, for the wind, frost, or dampness will neve get beyond the first coat of plaster.

G. W. says, in answer to C. W. B., who asked for a cheap and efficient method of building a house, which will make it warmer and drier than any other plan in use: Put the studs one foot apart, and board perpendicularly (outside and inside) with 12 inch stock boards, making the joints on the center of the studs. Then put siding or battens on the outside, and fur with lath over the cracks on the inside, before lathing and plastering. Blocks should be nailed between the studs on a level with the chamber floor to prevent the upward escape of warm air, and it is better if a course of bricks is laid on these before the inside sheathing is put on. A tall house should never be bat tened, forit will make it look out of proportion; for a similar reason, a low house appears better with perpendicular battens.

M. G. P. asks: How can I render a pair of buckskin gauntlets impervious to water?-A.D. asks: How can I prepare gelatin for molds to cast plaster of Paris undercut work?-A. B. asks for a formula for obtaining the force of the wind at different velocities.-F. H. S. asks: Of what metal can I make rivets for leather, which can be coated with a black color?-C.L. C. asks: How can I make a cheap barometer or instrument of any kind to force ill a storm by pressure? "I think those influenced by molsture are worthless, as often a damp night will change them as much as a storm."

COMMUNICATIONS RECEIVED.

The Editor of the SCIENTIFIC AMERICAN acknowledges, with much pleasure, the re ceipt of original papers and contributions upon the following subjects:

On the Regulation of Patent Monopolies. By G. H. K.

On a Mathematical Problem. By H. M. On Polishing a Parabolic Mirror. By W.B.C.

On Reclaiming the Colorado Desert. By R d'H. On Steam Engines and Turbine Wheels.

By J. H.

On Drying Lumber by Steam. By H. G. B. Also enquiries and answers from the follow-

ing: A. W. M.-F. G. H.-F. R.-E.B. W.-C. J. T.-N. A. W. -J. P. F.

Correspondents in different parts of the country ask : Who makes milking apparatus? Who sells leather splitting machines? Makers of the above articles will probably promote their interests by advertising, in reply, in the SCIENTIFIC AMERICAN.

Several correspondents request us to publish replies to their enquiries about the patentability of their inventions, etc. Such enquiries will only be answered by letter, and the parties should give their addresses.

Correspondents who write to ask the address of certain manufacturers, or where specified articles are to be had, also those having goods for sale, or who want to find parthers, should send with their communications an amount sufficient to cover the cost of publication under the head of "Business and Personal," which is specially devoted to such enquiries.

[OFFICIAL.] Index of Inventions

FOR WHICH

Letters Patent of the United States WERE GRANTED IN THE WEEK ENDING

March 24, 1874,

AND EACH BEARING THAT DATE. [Those marked (r) are reissuedpatents.]

0		ristol barrels, drilling, etc., Johnson & Bye	
iď	Aerial steering and propelling, C. B. Wainwright 149,012	Planter, hand corn, J. Riebe	
ze	Altern harden D. Ditecher	Plow colter, J. and G. Armstrong	
ly	1/0.001	Plow, reversible, J. P. Dexheimer 1	
r,		Polishing machine, R. Bathbone	
ng	Alarm telegraph, fire, J. F. Kirby 148,833	Printers' roller composition, I. L. Jackson	148,829
ne	Axle clips, die for forging, Clapp et al 148,972	Printers' rules, dressing, A. Neilsen	148,896
ly	Bale band and buckle, F. M. Logue 148,890	Printing press, B. F. Allen	148,912
ıy	Bedstead, wardrobe, E. E. Everitt 148,940	Printing press, R. Clay, Jr.	148,929
a)	Beehive, Armstrong & Gillet 148,914	Pruning shears, A. P. Bettersworth	148,918
8-	Belt tightener, W. B. Cleves 148,808	Pruningshears, T. J. Secor	148,854
	Blower, fan, G. C. Hawkins 148,951	Pulley, expanding, W. C. Margedant	
ł	Bolt and rod cutter, J. G. Hirzel 148,954	Pump, D. N. B. Coffin, Jr.	
if	Boiler regulator, feed, M. S. Vosburgh 149,011	Pump filter, J. Christman, (r)	
n	Boilers, etc., covering, C. M. O'Hara 148,972	Pump, steam, R. J. Gould	
to	Boot screw-nipping device, C. Tyson 149,010	Pump, steam vacuum, W. E. Prall (r)	
g :	Boots, manufacture of, S. S. Hall 148,948	Punch, conductor's, J. Sangster	
ld	Boots, screwing uppers, C. Tyson 149,007,149,003,149,009	Purifier, middlings, G. W. Dellinger	
th	Bottle for perfumery, etc., Whiting et al 149,018	Railway cattle guard, Cleveland & Beal	
ar	Bottle, perfume, W. D. Whiting 149,017	Rail joints, fastening, Tift & Cobb	
en	Bottles, capsuling, J. Paterson 143,976	Rake, horse hay, L. Litchfield	
p-	Bottles, etc., capsuling, J. Paterson 148,977	Razor strop, C. C. Reeves	
se	Brick machine, P. Harnist 148,882	Respirator, S. Barton	
pp	Brickmachine, G. E. Noyes 148,971	Rivet holder, flange, M. Adler	
r :	Bronzing compound, A. Towns 149,004	Roof, fireproof, M. H. Fowler	
w,	Burner, gas, J. R. Wigham 148,909	Saddle tree, gig, H. H. Hedrick	
ls,	Buttons, threading, W. F. Brenenstuhl 148,805	Sadule, safety stirrup for, T. Harris	
ls,	Canal boats, construction of, N. Jackson 148,957	Sash fastener, S. G. Blackman	
en	Car brake, J. Grove 148,820	Sash fastener, A. Iske	
th	Car coupling, Condon & Clem 148,934	Sash holder, G. B. Smith	
e-	Car coupling, D. P. Dow 148,813	Sash holder, E. Stouffer	
he	Car coupling, D. B. Reed 148,847	Saw jointer, G. S. Prince	
e-	Car for single track railways, T. M. Rankin 148,846	Saw set, M. E. True	
m-	Car, railway, G. H. Howard 148,825	Saw, feed roller, J. Mutty (r)	
al-	Car replacer, A. Kissell 148,834	Sawing machine, S. G. Rosenberger	
er	Car, safety, S. W. Emery 148,815	Scaffold clamp, J. R. Crockett	
	Car spring, C. T. Schoen 148,991	Scoop and sifter combined, J. Baker	
	Cars, bending links for, G. H. Weaver 149,016	Scraper, S. Rossman	
8-	Carriage clip blank die, Clapp & Van Patten 148,873	Scraper, road, C. Fisher	
et	Carriage tip, children's, H. W. Warner 149,014	Sewing machine, J. H. Smith	
of	Churn, Brown & Ross 148,922	Sewing machine attachment, A. F. Comings	
er,	Clod crusher, H. Feenders 148,879	Sewing machine gatherer, A. Johnston	
y.	Coach pad, P. Burns 148,925	Shank laster, J. H. Bean	
,8	Cock, stop, G. R. Moore 148,969	Sheet metal blanks, cutting, E, P. Sherwood	
er	Coffee roaster, A. B. Jones 148,832	Shing bes, edging, J. E. Austin	
ve	Cooler, water, S. J. Chapman 148,928	Shoe sole, expansion last, B. J. Tayman	
n)	Cotton cleaner, T. Taylor 148,922	Shoes, fastening, T. P. West	
	Coupling and elbow, union, T. J. Trapp 149,005	Spinning jack, self-acting, Thompson & Orr	
as	Cultivator, W. D. Miller 148,839	Stamp, hand, W. P. X. Smith	
hē	Cutlery handle, Seaver & Milligan 148,900	Still, oil, W. J. Brundred	
nd	Dental drill and lathe, W. G. A. Bonwill 148,920	Stove, E. A. Osborne	
re	Ditching machine, B. J. C. Howe 148,955		
-	Dolls, hands and feet for, J. Lacmann 148,835	Stove, portable, R. Moore	
	Dovetailing machine, W. F. Moody 148,840	Stove, cooking, W. H. H. Larduskey	
to .	Dovetailing machine, J. M. Seymour 148,855	Stove, fire box, W. Tinsley	
ch :	Drawer pull, J. C. McClellan 148,893	Stoves, etc., grate for, Salt & Cavanaugh	
90	Drill, grain, W. Wusthoff 148,906	Swing, revolving, W. A. Lowery et al	
ng	Drill, rock, J. A. Beamisdarfer 148,917	Table, folding, E. B. Francis	
i	Drilling machine, rock, Brydon et al 148,924	Table, ironing, Fling & Land	148,948

Drilling machine, valve, J. B. Waring	
Ear ring, G. D. Stevens Eaves trongh hanger, J. F. and L. Hess	. 148,996
Eggs, apparatus for cooking, H. Fowler	
Elevator, J. Bernhard	. 148,802
Engines, reversing gear for, B. Chambers Equalizer, draft, A. March	
Faucet and air vent combined, J. Heilbronn Faucet bush, G. S. Collis	
Fire brick, J. D. Jones	. 148,887
Fire place, A. E. Smenner: Furnace grate, W. Brown	
Furnace, steam boiler, W. H. Phelon	. 148,981
Furnace, straw burning, Head et al	
Game apparatus, H. C. Griffin Game board, J. D. Spang Gas check, gravitating, P. Keller	. 148,995
Gas check, gravitating, P. Keller Gas retort charger, P. Munzinger	. 148,962 148,841
Gear wheel patterns, making, J.L. Hewes	148,884
Glass mold, S. G. Swain Governor, M. Andrade	
Graindryer, Coe & Holmes	. 148,931
Grain dryer, P. B. Hunt Grate for fuel magazines, G. S. Horn	. 148,886 . 148,885
Hammer, drop, L. L. Whitlock	. 148,867
Harness maker's clamp, J. Smith Harvester rake, T. G. Glover	
Heating drum, G. H. Pedlar	. 148,978
Heating dwellings, J. J. Johnston	. 148,939
Hinge for doors, spring, J. Peyer	
Hook and clevis, W. Warne	. 148,905
Hook, trolling, M.V. B. Cahoon Horseshoes, manufacture of, R. Austin	. 148,926
Indicator, station, G. A. Brown	. 148,871
Indicator, train, J. H. Parsons Inkstand, C. W. Belts	. 148,844
Inkstand, A. Teysonnière	. 148,999
Iron moldboards, hardening, J. S. Robinson Kiln, brick, J. and J. K. O'Neal	
Knitting machine, G. W. Cummings	. 148,937
Lamp, F. A. Taber Lamp and gas lighter, H. W. Pray	
Lantern, T. Langston	. 148,964
Lantern, R. Nutting, Lantern or lamp cap, reflecting, T. H. Braisted	148,842
Latch, locking knob, P. Lafiin	. 148,963
Lathe for irregular forms, C. H. Morgan Lathe, metal shaft turning, A. Wood	
Lathes, chuck for metal, G. W. Jopson	. 148,961
Lead, manufacture of white, Tuttle et al Leather, machine for pricking, J. H. Walker (r).	
Lifting apparatus, portable, L. L. Whitlock	. 148,866
Lock for doors, etc., A. J. B. Berger Locomotive, Harris & Bogardus	
Locomotive water feeder, M. N. Lynn	148,892
Loom picker, G. Crompton Magnesia, hydrate of, L. Reid (r)	. 148,936 5,808
Meat scraps, pressing, S. Booth	. 148,870
Mechanical movement, H. C. Work Meter, fluid, Swann & Connell	
Meter, fluid, Ball & Fitts (r)	
Mitten, knit, O. F. Tripp (r) Mosquito screen, J. P. Miller	. 148,894
Motion, reversing, L. L. Whitiock Nail and bolt making tool, hand, W. F. White.	
Neck tie holder, E.A. Johnson	. 148,830
Newspaper file, A. L. Whitehall Nut lock, J. Ellenberger	
Oakum, manufacture of, M. Howe	148,820
Oil tank, J. Robinson Ornamenting enamel, F. W. Rhinelander	
Paint compound, H. C. Metcalf	148,838
Pantaloons, shaping, E. B. Viets Pantaloons, pressing, G. F. Pond	
Paper barrels, head for, G. A. Houston	148,824
Paper collar die, J. E. Crisp Paper file, H. W. D. Dunlop	
Pavement block, J. C. Goodrich, Jr	148,818
Photographic plates, drying, T. M. Saurman Plano attachment, C. P. Zoncada	
Pipe for reservoirs, receiving, J. Osborn	148,974
Pipe tongs, A. Kotzum Pistol barrels, drilling, etc., Johnson & Bye	
Planter, hand corn, J. Riebe	148,899
Plow colter, J. and G. Armstrong Plow, reversible, J. P. Dexheimer	
Polishing machine, R. Bathbone Printers' roller composition, I. L. Jackson	
Printers' rules, dressing, A. Neilsen	148,896
Printing press, B. F. Allen Printing press, R. Clay, Jr	148,912
Pruning shears, A. P. Bettersworth	148,918
Pruningshears, T. J. Secor Pulley, expanding, W. C. Margedant	
Pump, D. N. B. Coffin, Jr	148,809
Pump filter, J. Christman, (r) Pump, steam, R. J. Gould	148,81
Pump, steam vacuum, W. E. Prall (r)	5,80
Punch, conductor's, J. Sangster Purifier, middlings, G. W. Dellinger	148,989
Railway cattle guard, Cleveland & Beal	148,87
Rail joints, fastening, Tift & Cobb Rake, horse hay, L. Litchfield	
Razor strop, C. C. Reeves	148,84
Respirator, S. Barton	148,78
Roof, fireproof, M. H. Fowler	148,94
Saddle tree, gig, H. H. Hedrick Sadole, safety stirrup for, T. Harris	148,92
Sash fastener, S. G. Blackman Sash fastener, A. Iske	148.91
Sash holder, G. B. Smith	148,85
Sash holder, E. Stouffer	148,85

same. 2. Did the trilobite have feet or legs? A. No traces of habs have been discovered. 3. How are cod lish and cocoa nuts desiccated? A. The water is exhausted from them, and they are then pressed.

C. says: Will carbonic acid gas completely extinguish fire when it exists at a dead red heat, or are its virtues confined simply to a blaze? A. We once tried some experiments with carbonic acid gas as a fire extinguisher with the following results: The gas used was compressed in an iron reservoir, to from 200 to 300 lbs. per square lnch, so that a stream of gas of any de-sired force could be obtained. When a current of carbonic acid gas was directed upon burning shavings at bottom of a barrel, the flame was instantly extinguished, but was rekindled after a few minutes. The shavings had been saturated with kerosene and allowed to burn some time before applying the gas. A series of experiments in this way showed that carbonic acid gas will instantly extinguish fiame. When the shavings had become a mass of incandescent fuel, the gas, direct, ed against it, destroyed combustion at the surface, but the interior heat of the mass soon rekindled the blackened surface. The interior fire; and heat were not removed, though an atmosphere of carbonic acid lay above the fuel for some time. When a strong current of gas under high pressure was directed upon fiame at

J. H. W. says, in answer to M. V. D.'s question as to condensation: I will say that a worm 4 feet in diameter, s coils deep, and 2½ inches diameter of pipe, if kept cool by a continuous stream of cold water, will condense easily 2,000 gallons of proof spirit per day. A worm of ½ inch pipe and coiled 1 footin diameter, 8 coils deep, will condense 1½ gallons proof spirit per hour, if the coil of pipe or worm is kept cool as above stated. This would make the latter condenser (worm) 44 feet long; the former one would be 86 feet.

H. W. G. replies to W. P. S. P.'s query as to the area visible from an elevation of 400 feet: The hightyou mention gives a range of 20.25 miles all around giving a surface of, in round numbers, 1,230 square miles.

H. W. G. replies to R. H. D's query as to Do the sinking of the 1,000 feet tower: A sinking of χ inch on one side would throw it out of perpendicular 4'90 Dr inches at top. Settling χ inch on one side and raising Dr χ on the other would throw it 9% inches away at top.