MODERN AMERICAN LIGHTHOUSES.

We publish herewith views of two lighthouses recently erected on the Great Lakes. The first, that at Cleveland, Ohio, is situated on the shore of Lake Erie, and is chiefly noticeable for the substantial elegance of its architecture; the second is on Spectacle reef, in Lake Huron, and is in many respects a remarkable engineering work. We areindebted to Engineering for the engravings, and we extract the following description of the Lake Huron structure from a report of the Lighthouse Board :
A crib, of 92 feet square, with a central opening of 48 feet square to receive the cofferdam which was to form the pier of protection, as well as a landing place for materials during the building of the lighthouse, was in 1873 constructed at Scammon's Harbor. The original intention was to ted at Scammon's Harbor. The original intention was to
put the crib in position in four sections, but upon further
hight, and by the 20th, quarters for the workmen had been completed upon it, which were at once occupied. By means of a submarine diver, the bed rock within the opening of the pier was then cleared off, and the work of constructing the cofferdam was taken in hand. The cofferdam itself consisted of a hollow cylinder 41 feetin diameter, composed of wooden staves, each 4 inches by 6 inches and 15 feet long. The cylinder was braced and trussed internally, and hooped with iron externally, so as to give it the requisite strength. It was put together at the surface of the water, and when complete was lowered into position on the bed rock by means of iron serews. As soon as it rested on the rock (which was quite irregular in contour), each stave was driven down soas to fit as closely as it would admit, and a diver filled all openings between its lower end and the rock with Port

Paraffin.

At a recent meeting of the Society of Arts, London, Mr Frederick Field gave the following interesting information In pursuing his celebrated researches upon the tar ob ained from the red beech, Reichenbach discovered in the ul imate portion of his distillates a whitetranslucent substance to which he gave the name paraffin (from parum and affinis), owing to the comparatively slight action exerted upon it by most chemical re-agents. The tar was submitted to repeated ractional distillation, and the portions passing over las were mixed with strong sulphuricacid and violently agitated. After standing in a warm place for some hours, the paraffin loated upon the carbonized residue in the form of a pale colored oil, which, after cooling, soliditied, and was pressed between folds of bibnlous paper. By frequent crystalization from boiling ether, it was obtained as a brilliantly white bcdy,

LIGHTHOUSE AT CLEVELAND, OHIO.

LIGHTHOUSE ON SPECTACLE REEF, LAKE HURON.
consideration it was decided to attempt placing it as a whole upon the reef, which was successfully accomplished.
The depth of water on the reef at the points to be occupied by the four corners of the pier of protection was found to be as follows: At northeast corner, 10 feet 6 inches; at northwest corner, 13 feet; at southwest corner, 14 feet 6 inches; and at southeast corner, 9 feet 6 inches: the position to be occupied by the pier of protection having been so chosen that the sides would correspond to the cardinal points of the compass.

On the evening of the 18th of July, 1871, everything being in readiness, at 8 P. M., the tugs Champion (screw propeller) and Magnet (side wheel) took hold of the immense crib and started to tow it to the reef, 16 miles distant, followed by the Warrington (screw propeller), having in tow the schooner Belle (the two having on board a working force of 140 men), the tug Stranger (screw propeller) with barges Ritchie and Emerald, and the tug Hand with two scows of the lighthouse establishment. The barge Table Rock, with fifty cords of stone on board, was left in reserve at the harbor. The construction scow, with tools, etc., on board, was towed with the crib. At 2 A. M., next morning, six hours after starting, the fleet hove to off the reef, awaiting daylight and the abatement of the wind, which had again freshened up. At $6 \frac{1}{2}$ A. M., it having moderated, the pier, with considerable difficulty, was placed in position; and after being secured to the temporary pier and the moorings previously aet for the purpose, all hands went to work tbrowing the ballast stone into the compartments, and by 4 P . M., succeeded in getting into it about 200 cords (1,200 tuns). By this time the wind was blowing freshly and the sea running so high as to makeit necessary to stop work for the time; but early next morning all the reserve stone was put into the compartments.
By September 12, the pier had been built up to its full
pressed close down into the exterior angle between the cof-
ferdam and rock, and outside of this a larger rope made of hay. The pumping machinery having meanwhile been placed in readiness, the cofferdam was pumped dry, and on the same day (14th October) a force of stone-cutters descended to the bottom and cemmenced the work of leveling off the bed rock, and preparing it to receive the first course of masonry. The bed rock was found to consist of dolomitic limestone (confirming the previous examinations), highest on the western side toward the deepest water, and sloping gradually toward the eastern. In order to make a level bed for the first course of masonry, it was necessary level bed for the first course of masonry, it was necessary
to cut down about 2 feet on the highest side, involving a large amount of hard labor, rendered more difficult by the water forcing its way up through seams in the rock. But the work wasfinally accomplished, the bed being as carefully cut and levelled as any of the courses of masonry. The first course of masonry was then set, completing it on the 27th of October.
The degree of success of this novel cofferdam may be inferred from the fact that, although prepared with pumps of an aggregate capacity of 5,000 gallons per minute, not more than a capacity of 700 gallons was used, except when emptying the cofferdam, and then only to expedite the work. Once emptied, a small portion of this capacity was ample to keep the cofferdam free from water; and this at a depth of 12 feet of water, on rock, at a distance of nearly 11 miles from the nearest land. Every person connected with the work may well feel a just pride in its success.

A bullding in San Francisco that has 500 rooms is to have a clock with 500 dials, a dial for each room. The dials will be operated with compressed air, condacted in pipes all over the building. The clock hasbeen built by the Seth Thomas
Clock company, of Thomaston, Conn.
highly plastic and somewhat unctuous. For many years i^{t} was regarded as simply a chemical curiosity. It is now annually made, as will , presently be shown, by thousands of tuns.
Parafin is a pure hydrocarbon, havingnooxygen whatever, and its analysis has given the following percentage compo. ition : Carbon, $85 \cdot 16$; hydrogen, $14 \cdot 76$.
Paraffin, when pure, is perfectly colorless and translucent; after slightly warming, it becomes highly plastic, and can be easily molded with the greatest ease. Hence, it differs in some respects essentially from spermaceti, with which it las often been erroneously compared, as well as from stearic acid and other bodies used for the manufacture of candles.
From this plasticity, in warm rooms, paraffin candles (if not of a very high melting point) are liable to bend; while on the other hand, those made of sperm or stearic acid, althougl of a lower melting point, remain erect. Of course, as hass been observed, this very much depends upon the fusibility of the substance, and the harder deecriptlons of paraffin are always selected for candles which have to be subjected to much heat.
Liquid paraffinis very mobile, and can be flltered through paper almost as readily as water itself.
It is scarcely acted upon, even by fuming sulphuric acid, un less at very high temperatures, so that it can be purified by this means frommany other organic substances with which it may have been associated, they being immediately cbarred by contact with sulphuric acid.
When submitted for a length of time to the action of chlorine or bromine, chlorinated or brominated compounds are formed with disengegement of torrents of hydrochloric or ydrobromic acids.
Mr. MacIvor, who has devoted many years to the study of parafin, says that, after this body is acted upon by chlorine, it first becomed a gummy looking solid, af ε : vards в Iipuid c
orless and transparent; and as the passage of the chlorine is continued, a hard brittle resin is the result. The substance consists of -

Carbon.	29,55
Chlorine	66.82
Hydrogen	$3 \cdot 39$

99.78

This gentleman has also remarked that the paraffins having the highest melting point are those which are most easily acted upon by the gas.
Iodine dissolves in parafn, imparting to it a beautiful violet color, which becomes brown as the paraffin solidifies; but the action of this element upon the hydrocarbon is very feeble, no apparent decomposition taking place after prolonged heat ng for many hours.
By the action of strong nitric or sulphuric acids, M. Camion discovered a new body, which he calls parafinic acid, and describes it as a bright, transparent liquid, of a very inflammable nature.
Strong nitric acid yields a series of interesting compounds, lately studied by Schorlemmer and others.
Mr. Fordredinformed me some years ago that, when paraffin is acted upon by sulphuric acid to which a few crystals of permanganate of potash have been previously added, the action is so violent that light and heat are involved, and even at times accompanied by explosion. The best way of trying the experiment is to heat up the acid and permanganate in a tube, and drop a small piece of parafin in the warm liquid. When they are all three placed together in the tube and heated up, the action is not nearly so violent. Success does not always attend the experiment, but it can be tried. The decomposition convinces us that the word parafin (little affinity) is slightly a misnomer.
Paraffin is insoluble in water, very sparingly soluble in alcohol, even when boiling, more so in ether, exceedingly in naphtha, sulphide of carbon and aniline.
When heated with sulphur at a moderately high temperature, it is decomposed, carbon separates, and abundance of sulphuretted hydrogen is evolved. This fact may be of interest to chemists, as a ffording a ready source of this indispen. sable reagent in the laboratory. The two substances, the parafin being in large excess, are heated together in a flask, when a steady and copious flow of the gas is obtained, and When a steady and copious flow of the gas is obtained, and
the characteristic action of the gas upon lead salts will be seen the characteristic a
by the experiment.
With the regard to the beautifal translucency of paraffin, which, in spite of certain drawbacks, has made this body such an unusual favorite as a means of light, Mr. MacIror informs me that, if, when melted, it is cooled very gradually and subjected to a slight and steady pressure, it becomes actually transparent, like ice, but that a blow, or even a scratch, will alter its molecular structure, and cause it to re-assume its normal appearance. As this change is also produced up. on re melting it, however cautiously, that triumph of manu facture in this department of industry, namely, making a transparent candle, is yet in the distance.
Mr. Gellatly has shown that the specific grevity rises with the melting point of paraffin. Thus paratin melting at about $60^{\circ} \mathrm{Fah}$. has only a specific gravity of 0.823 ; at 128° Fah., which may be considered a very good average (rather high, perhaps), it has a specific gravity of 0.911 ; and aspecimen of an extraordinarily high melting point ($176^{\circ} \mathrm{Fah}$.) was as high as 0.940 , more than 10 per cent above that at 90° Fah.

Parafin is obtained in large quantities by distillation from oil shales.

To Render Glass Opaque or Frosted.

According to Dingler's Journal, a sheet of ordinary glass, whether patent plate or crown does not matter, is cleaned; and if only portions of it are to be frosted, those are left bare, while the others are protected by mechanical means in any simple manner. Some fluor spar is rubbed to a fine powder and mixed with concentratedsulphuricacid, so as to make a thin paste, and this is then rubbed by means of a piece of lead upon those parts of the glass required to be rendered opaque A fine frosted outline or design may thus be produced upon a sheet of smooth transparent glass. To finish the operation the glass is gently heated in an iron vessel covered with funnel passing up the chimn y, to get rid of the noxious fumes that are given off; on cooling, the plate is washed with a dilute solution of soda or potash, to remove any acid yet remaining, and is then rinsed in water. Focusing glasses for the photo camera, and development glasses for pigment printing, can be prepared in this way at very little expense.

Decline of Medical study in Franco.
The Union Medicale says that in France the number of medical students, as well as that of practitioners, is on the declite, the medical recruital, both in civil and military life, becoming more and more difficult. Medical studies havenow become so long and laborious (the physical and chemical sciences being now far more than mere auxiliaries, and form ing an important part in the preparation for examinations) that the student, after his laborious and costly career, finds, on gettiog into practice, that he has no effective protection from the encroachment of charlatans and parasites.

Oחl and repair the harness. Unbuckle all the parts and wash clean with soft water, soap and a brush. A little turpentine or benzine will take off any gu amy substance which the soap fails to remove. Then warm the leather, and, as soon as dry on the surface, apply the oil with a paint brush
or a swab. Neat'sfoot oil is the best. Hang up the har-
meas in a warm place to dry, but do not let it bura,

Railroads in Europe and America in 1873.			
	Railroads,		${ }_{\text {Area }}{ }^{\text {area }}$ Miles.
United S	;71,565	40,232,000	2,492,316
Germany	12,207	40,111,265	212,091
Austria	5,865	35,943,592	227,234
France.	10,333	36,469,875	201,900
Russia in Europe.	7,044	71,207,794	1,992,574
Great Britain, 1872	15,814	31,817,108	120,769
Belgium.	1,301	4,839,094	11,412
Netherlands	886	3,858,055	13,464
Switzerlan	820	2,669,095	15,233
Italy.	3,667	26,273,776	107,961
nm	420	1,784,741	14,453
Spain.	3,401	16,301,850	182,758
Portugal	453	3,987,867	36,510
Sweden and Norway	1,049	5,860,122	188,771
Greece...	100	1,332,508	19,941

NEW BOOKS AND PUBLICATIONS

The Carpenter's and Builder's Assistant and Wood Woriser's Guide. By Lucius D. Gould, Architect and Practical Builder. Fully Illustrated. Price
York: A. J. Bicknell \& Co., 27 Warren street.
This well gotten-up volume will be practically useful to any carpenter or bullderwho will read it. It 1s not so elaborate a work as Tredgold (to whom
Mr. Gould makes his acknowledgments), but 18 likely to be more used by Mr. Gould makes his acknowledgments), but is likely to be more used by
mechanics and workmen than tbat complete and valuable, but somewhat mechanics and workmen than tbat complete and valuable, but somewhat
complicated manual. Mr. Gould's work will well repay attentive perusai. Ropp's Ready Reckoner and Commercial Calculator By Christian Ropp, Jr. Price \$1.00. Bloomington, Ill. : Pnblished by the Author.
Mr. Ropp is a practical farmer, and hence 18 well posted as to how much
mathematics farmers need in the routine of thetr business. He also clates the value of time, and doubtless 18 aware of the puzzing which very frequently takes place over long sums in obstinate fractions, when the farm accounts are made up. Hence, he proceeds in a practical manner to the volume in pocket-book shape in which is condensed an immense amoun of usefulinformation, in the shape of short cutsthroughcalculations which ordinarily bristle with a formidable array of perplexing figures. There are grain tables, showing the corresponding prices of bushels and hundred
welghts, and time, interest, wages, and lumber tables. The book also conwelghts, and time, Interest, wages, and lumber tables. The book also containsclear explanations, of contractions in the various processes of ants
mettc, of measures of all sorts and kinds, of bookkeeplng, and, in fact, metic, of measures of an sorts and wide, in mair of enumerating all, and leave the reader to the pleasure of discovering for himself when he buys the book. There are several blank pages to serve for memoranda, a pocket for papers, and a sllicate slate for rough notes. Altogether, it is a very useful manual, and one
the business man.
Babbitt's Health Guide. Price \$1. New York: Pub
lished by E. D. Babbitt, D. M., 437 Fourth Avenue.
A philosophy of cure, founded on the 1dea that healling elements are
potent in proportion as they are subtle and reftned, and weak in proportion as they are gross; that sunlight, electricity, and espectally the still finer ife forces, being subtle next to epirit itself, are the most potent to heal, whlle mineral substances, betng from the coarsest department of Nature, are the weakest and least penetrating. This constitutes the law of power The law of harmony is stated to be a nicely balanced contrast of elements. Magnetism, orthe warm positive principle, and electrictit, the cold nega
tive princtple, are stated to be the propelling princtples of the universe and these are comblned equally to bring about barmony and health. Too much of the cold principle in the human system brings about chills, paraly sis, and chrontc diseases-too much of the warm princtple, fevers and infammatory diseases. While sunlight, baths, food, clothing, the socla relations, etc., are explained and commended, a strong magnetic hand with a new life power, and for tqualizlrg ill balanced conditions. DirecHons are given for the practice of manipulation, and the treatment for one hundred different diseases. without drugs.
Tie Apprentice, or First Book for Mechanics, Machinists and Engineers. By Oliver Byrne, Mathematician and Civil, Military, and Mechanical Eng
York: A. J. Fisher, 98 Nassau street.
A new edition of a book which is well enough known to the engineering
profession, but which presupposes an apprentice professton, but which presupposes an apprentice of a very advanced
mathematical education. The reduction of all the results to units of work 18 an espectally commendablefeature in this volume, and its fret few chapters are full of practical ideas, clearly expressed; but the profuse
employment of the calculus hinders the value of the book in the hands of those for whom it was ostensibly written.
$\begin{aligned} \text { Skin Grafting. } & \text { By R. J. Levis, M.D., Surgeon to the } \\ \text { Pennsylvania } & \text { Hospital and to the Wills Ophthalmic }\end{aligned}$ Pennsylva
Hospital.
Dr. Levis has done much valuable service to therapeutic sclence in studying and utllizing this process, which, together with the now much practised transfusion of blood, opens up the ques.
whole corpus may not ultimately be reconstructed.
Inventions Patented in England by Americans,
[Complied from the Commissloners of Patents' Journal.]
From March 17 to March 28, 1874, inclustve.
boor Siming Mafiline.- H. G. Thompson, milford, Cond
Cabtros.-J. H. Redfeld, New York city.
Clothes' Hoox.-C. G. Cole, Bennington, V

dribsing Stone.-A. S. Gear, Boston, Mabs.
Signai Lantern.-T. A. Davies, New York city
riligabapi.-M. Gally, Rochester, N. Y
Trlegraph, etc.-G. d'Infreville et al., New York city.
Thrust bearing.-C. Godfrey, Huntington,
Treating Hydbocabbon Oils.-R. A. Cheseurough, New York city.

IMPORTANCE OF ADVERTIBING.

The value of advertisingis so well understood by old estabished busines rms that a hint to them is unnecessary; but to persons establishing a new business, or having for sale a new article, or wishing to sell a patent, or find
manufacturer to work 1 : upon such a class, we would 1 mpress the 1 mpor ance of advertising. The next thing to be considered is the medtum through which to do it .
In this matter, discretion 18 to be used at arst ; but experience will soon determine that papers or magazines having the largest circulation, among the class of persons most likely to be interested in the article for sale, will be the cheapest, and bring the quickest returns. To the manufacturer of nechanical line, we belleve there is no ether source from which the adver Scientific American.
We do not make these suggestions meroly to increase our advertising patronage, but to direct persons how to increase their own business. The Scientific Amreioan has a circulation of more than 42,000 cople per week, which is probably greater than the combined circulation of all
the other papers of thatad published in e woria.

Improved Combined Blind and Bash Fastener.
Willam O. Pond, Moblle, Ala.-This is a comblned fastening for or shutters and for window sashes, consisting of an adjuatable for blind bar attached to the blind, a stationary hook in the casing, and a hinged hook attached to the sash. As the sash 1s lowered, the hook catches inio
the stationary hook sutomatically, and securely fastens the sash down the stationary hook sutomatically, and securely fastens the sash dow
Improved Combined Car Starter and Brake. Willam T. Beekman, Petersburg, Ill.-Thts inven and Brake. more espectally for application to street cars, has for tor object de igned the force expended in braking the cars, for the purpose of stort to atilize
the to be subsequently used as an ald to propulston. To this end a friction clutch, a chain pulley, and ratchet mechanism are employed, and a spring, these elements or devices belng so combined and attached to the axle, wheel, and draft bar, that whenever the brake mechanism is brought into action the spring will be compressed correspondingly to the force thus
expended or necessary to overcome the momentum of the car and re. expended or necessary to overcome the momentum of the car and re-
duce its speed, or bring it to rest. The power thus stored is Immedfately duce its speed, or bring it to rest. The power thus stor
or remotely avaliable in starting or propelling the car.

Improved Combined Seed Drill and Fertilizer. John F. and Samuel C. Thomas, Adamstown, Md.-This invention conand one around the other, so that the seed and manure will be left on the ground in close proximity but not in contact. thus avolding the destructhon of the vitality of any of the seeds; in protecting the rectprocating stirrer of the hopper by an apron; in combining with each endless cargate a spring-held spool which will allow the gate to yield to a atcne os other hard substance.
$\underset{\text { Thomas H. Price and }}{\boldsymbol{A}}$ Apparatus for Sleighs, Carriages, etc. of this invention is to provide an 1mproved foot-warming attachment for sletghs, carriages, etc. It consists in a metal case containing the burners,
which is applied to the sleigh or carriage bottom, and provided with a which 1s applied to the sletgh or carrlage bottom, and provided with a
concave top that forms also the bottom of a box from whtch heated air concave top that forms also the bottom of a box from which heated air
is discharged upward through its perforated top. Sald perforated top is is discharged upward through its perforated top. Sald perforated top is
practically a part of the sletgh bottom. The invention also includes a practically a part of the sletgh bottom. The invention also includes a
heat-conducting bar arranged beneath the concave bottom of the alr heating box for the purpose of equalizing the distribution of heat, and thereby securing a better effect with the consumption of a given quantity of oll or burning fiuld.
Improved Bracket lnsulator for Telegraph Wires. Charlas in. Le Baron, Pensacola, Fla.- The insulator is preferably recral, and has a closed slot to adapt th to be hung on a splke, and an open解, right angles to the closed slot, to receive the nike. The wire may, in many cases, be dispensed with.

Improved Telegraph Wire Insulator.
Charles L. Le Baron, Pensacola, Fla.-The insulator 18 made of glass,
crcular in form, and has a ctrcumferentlal groove to recelve the the wire hat supports the line wire, and end cavitles to tocrease the tie wire electrically between the conducting wire and spike, which latter passes hrough the insulator longitudinally.

Improved Surface Planer.
dant, Hamilton,'O.-This invent
willam C. Margedant, Hamilton, \mathbf{O}.-This invention consists of the comblnaticn in surface-planing machines with a single rotarv tool, of two he whole adjustable together vertically, and one ormed in two sections dently adjustable, horizontally and vertically, so that the warp may b raken out of one plece of timber on the upper table, while another is betng surface planed on the lower table.

Improved Package Envelope.
Charles C. Kelly and Jullus Cobl, St. Paul, Minn.-This invention re lates to the construction of package envelopes with a view to makdng
them more secure and rellable. It conslsts in providing the body with end and side flaps, connecting tongues, and silts.

Improved Torch and Fire Kindler.
Robert Wiehle and Christian Feuchter, Ironton, 0.-This superior kind er 18 formed of cornstalks soaked in petroleum, then dried, and next
ipped in melted rosin, and finally wrapped in paper, which latter sub erves important functions.

Charles E. McBeth and William C. Margedant, Hamilton, O.-This in ention consists in combining, with a part table and its adjutable ald a socke
ment.
.

Improved Reverberatorv Farnace for Roastiug Ores.
Emast Helligendorfer, Belmont, Nev.-The object of this invention 1s t. Ernst Helligendorfer, Belmont, Nev. -The object of this invention is t ree from smoke and of the highest oxidizing power, 1s obtained by cur rents of heated air, which are introduced between and sidewise to the and the grate applied effectively to roast sllver ore, galena, and zinc lende. The invention conststs in the introduction of partitions of cas bars and the fireplace, extending as high as the fuel is accumulated of them.
Improved Boot Stretcher.
John C. Compton and Henry V. Hartz, Cleveland, O.-This invention con sista in combining, with a two part grooved toe plece and an inclined in step plece, a single silde having tongues and incline; and also in com-
bining a hollow toe and heel plece with a pivoted bar susceptible of being bining a hollow toe and heel plece with a
locked at several points of adjustment.

Improved Molding Machine.
Willam C. Margedant, Hamiliton, 0 . This invention consists in a sticker bed formed of two frames and two sections, both of the latter adjustable molder, shaper, matcher, surface planer, or sand-papering machine; also in feed roll arbors having hollow sockets, the former belng thus allowed oside in and out of the latter; also in comblning yokes, weighted levers, connections, and end slotted levers, to compel the feed rolls always to remain in a horizontal plane at all altitudes to which they may be ralsed
by the subjacent timber ; also in combining slotted plates and frames with bolts, to enable the fence to be adjusted in various positions ; also in a filing plece sliding under the table sections, and apertured to recetve the shaft of a shaper or other head.
Charles L. Barnes, New York ctty.-This invention is an awning comosed of concentric or telescopically movable sections, of wood or metal one or more of whtch sections is provided with ventilators, which ar
closed in an automatic manner as the sections are drawn into each other.

Improved Spring Clasp for Stocking Supports. Edward Haiser, San Jose, Cal.lasp for use in Improved Wheel Plow.
Isaac B. Green, Gillespie, two bar or double beams, the bars of which are connected and held at the
proper distance apart by blocks of the requiste thtckness interposed beween them, and to which theyare secured. Theforward end of the plow bense may be ralsed and lowered to adjust the plows to work shallower or deeper in the ground. Meansare provided to keepsaldplow beams always
in line, and prevent lateral movement of the plows. By loosening wedges in line, and prevent lateral movement of the plows. By loosening wedges
the standardsand beam may be moved laterally to adjuat the plows further apart or closer together, as may be destred, and by rcmovingpins the plow
beamsmay be detached and exchanged, so as to throw the soil toward of rom the plapte, as circumetapere pay requite.

