was found to beat for thirty-six hours after the death of the body by decapitation. There is therefore a possibility of long persistence of life in those organs. And the great cause why we see those organs stop at death so quickly is that the phenomena of arrest of their activity have taken place at the time of death.

MOTION WITHOUT NERVE FORCE
A very singular fact is that movements, voluntary in ap. pearance, can exist without nerve force, and Dr. Séquard related the following remarkable case:
"I was called," he says, " to see a patient who was indeed no more a patient; he had died before I reached him. I was told that he was making certain movements, and his family and friends all thought him alive. I examined him and found that he was certainly dead without any chance of returning to life, at least according to our very limited knowledge. I found that he was performing slowly move. ments that he had been performing with great vigor before I came. He would lift up his two arms at full length above his face, knit the fingers together as in the attitude of prayer, then drop the arms again and separate them. The movements were repeated a good many times with less and less force, until at last they ceased. There was no trace of sensibility anywhere, no reaction to the operation of galvanism or burning adywhere, as I had to make use of these means to satisfy the family. A needle was pushed into the heart as there was no danger from this experiment, a certain physiologist having, for the mere sake of showing what the Japanese had done that way, introduced one many times into his heart. The needle introduced slowed that the hear of my cholera patient did not beat.
Dr. Dowler of New Orleans has amputated limbs from cholera patients after death, and has found that the memDers amputated continued to move after having been sepa rated from the nervous centers; so that, if there were nerv force acting, therit was nerve force existing in trunks nerves and not the nerve force that comes from the will.
The lecturer then proceeded to give several curious in stances of movements apparently voluntary but really with out the control of the person. One ease was of a young lady in Paris who every Sunday at ten o'clock ascended a bed, and, putting her back on the top of the edge or border of the bed, took an attitude of prayer and began to address prayers to the Virgin Mary. She continued in that attitude, fixed like a statue, cscept thes her chest continued to move and her heart to beat; herlips were giving utterance to sounds All the other parts of the bo ly were absolutely motionless This was a feat that you could not perform on level ground Standing rigidly on tiptoe, even without shoes, is an utter impossibility, beyond a short time. Sometimes a movemen forward is made, sometimes backward, and often rotary mo tions take place. Two cases of the last mentioned class happened in persons who exhibited their strange contortions standing on their heads. A girl who had received a sever blow on the head had a rotary movement on that account. She knew well what was the matter with her, and had come to be able to prevent any bad effect of it. If she wanted to go in a contrary direction, she turned herself in a direction almost at right angles to it, and the irregularity of hermove ment brought her to the right place.
Paesing to another branch of his subject, Dr. Séquard proceeded to show that the

central nervous syatem

has power to act on all regions of the body through the medium of che vaso-motor system, which is "capable of diminishing the size of blood vessels and thus regulating circulation; also, that a suspension of the activity of the vaso motor nerves produces a passive dilatation of the blood vessels with increased afflux of blood. Increased circulation in any part of the body may be due to chemical processes,going ou in the tissues, which attract the blood into the veasels supplying the tissues in question. Professor Draper of New York has shown that these chemical changes do cause an increase in the rapidity and ampunt of circulation. And such chemical force the lecturer believes to arise from a direct transmutation of nervous force. The circulation depends more on the general tissues of the body, and much less on the heart, than is commonly supposed. Indeed it may be said that the heart is formed by the circulation instead of vice versa. The curious rapidity with which an engrafted organ will not only grow to its stock, but will show evidence of partaking in its circulation, should be remembered in esti mating the causes of the latter. The lecturer told an anec dote of his engrafting a cat's tail on a cock's comb.
Another influence belongs to the nervous system, which is that it regulates the nutrition, secretion, and other function It is not essential to nutrition, though it is of great use.

THE POWER OF THE MIND OVER THE BODY

through the nerve force is infinitely greater than most of us can imagine, in extent and variety. Mesmerism, animal magnetism, the Od force, Perkins's tractors,-all these have some ground in Nature, that ground being simply the immense power of the imagination on the body. John Hunter made some curious experimgnts in willing pain into a part he failed, however, to will the attacks of his gout into his great toe, though he tried to do it. Swedenborg,though subject to illusions and hallucinations, had an equally clear view of the way in which the brain can convey various kinds of sensation, etc, into any part of the body. Bennett of Edinburgh tells of a man whose sleeve was caught in a hook the man, thinking his arm was pierced, suffered excruciating pain until he was extricated. As for mesmerism, the senses are exquisitely exalted; but the feat of reading a watch placed out of sight may be (parhaps) explained by the ob-
ecure faculty we possess of estimating the lapse of time,even
in sleep. The convulsionnaires of St. Médard suffered
themselves to be trampled under foot in the most shacking way without feeling pain; this is one instance of the sup pression of feeling by mental influence, of which the mes meric anesthesia is another example.
The secretions are arrested or made active by nerve influ ence. Nursing mothers who give way to anger or other emotions poison their own milk, whereby the infant's health is often injured for life, if he be not killed outright. The bowels are purged by bread pill (as was once proved on a large scale by the Emperor Nicholas) provided people are told they are to be purged; eighty out of one hundred hospital patients have been vomited by a neatral remedy, when told " there had been a mistake made and they had all taken emetics." Much sea sickness would be avoided if people could be made to believe they were not going to have it. The stigmata, or marks of tha nails on the Saviour's hand and feet,have been plainly eeen to appear on the correspond ing portions of the bodies of certain of his more devout fol lowers, among whom St. Francis of Assisi must be specially named. Yet ought we not to lose from our sight the possi bility that these occurrences, however anquestionable they be, are yet simply owing to an action of the imagination whereof a notable instance is related upon authority o great weight: A mother saw a window sash descend with violence upon her little child's fingers, whereupon she her self-was instantly seized with extreme pains in her own fingers which did afterwards swell and inflame in such a manner that she was long in being cured. The fakirs of ndia are sometimes able to divest themselves of the signs of life-respiration and circulation being stopped and bodily temperature lowered-for months continually. This well at tested fact becomes less strange in view of the fact, once observed by the lecturer in his own laboratory, where a dog emained several months after death in a temperature from 40° to 60° without undergoing putrefaction; here is evidence of a power to arrest metamorphosis, even when the volun ary, and indeed all, the motions are at an end. The pain f toothache vanishes at sight of a dentist's chair; neu ralgia once disappeared as the lecturer was about to enter on an operation for its relief; most functional, and even someorganic, affections (as dropsy) may be cured by giving a patient the idea that he is to be cured! and the well at tested list of modern miracles is in the same category of facts.
Nervous force is generated through the blood; it result n this case from a transmutation of chemical force. It is accumulated by rest, but too prolonged rest stops its pro duction, and an auæmic condition, with degeneration,occurs Too prolonged action of a part or organ does the reverse n producing congestion and the diseases incident to con gestion. The principal rule of hygiene is deducible from these principles: It is,not to draw blood by exertion to one part of the nervous system alone, exclusive of the rest We may not despise the doctors, but must attend to cer ain cautions, which are summed up in one, as follows: W ought not to spend more than our means allow. We ought also to use all of our organs pretty equally. Regularity in the time of meals, sleep and exercise must be acquired; it is not natural to us, it must be gained by habit.

in the laboratory with agassiz
 by a former pupil

It was more than fifteen years ago that I entered the la boratory of Professor Agassiz, and told him I had enrolled ny name in the scientific school as a student of natural his tory. He asked me a few questions about my object in com ing, my antccedents generally, the mode in which I afterwards proposed to use the knowledge I might acquire, and inally, whether I wished to study any special branch. To the latter I replied that, while I wished to be well grounded in all departmonts of zöology, I purposed to devote myself pecially to insects.
"When do you wish to begin?" he asked.
" Now," I replied.
This seemed to please him, and with an energetic 'very well," he reached from a shelf a huge jar of specimens in ellow alcohol.

Take this fish," said he, "and look at it; we call it æmulon; by and by I will ask what you have seen.'
With that he left me, but in a moment returned with ex plicitinstructions as to the care of the object entrusted to me.

No man is fit to be a naturalist," said he, "who does no now how to take care of specimens.
I was to keep the fish before me in a tin tray, and occa sionally moisten the surface with alcohol from the jar,alway taking care to replace the stopper tightly. Those were not the days of ground glass stoppers and elegantly shaped ex hibition jars; all the old students will recall the huge neck less glass bottles with their leaky, wax-besmeared corks, hal eaten by insects and begrimed with cellar dust. Entomology was a cleaner science than ichthyology, but the example of the Professor, who had unhesitatingly plunged to the bottom of the jar to produce the fish, was infectious; and though this alcohol had " a very ancient and fishlike smell," I really dared not show any aversion within these sacred precincts, and treated the alcohol as though it were pure water. Still I was conscious of a passing feeling of disappointment, for gazing at a fish did not commend itself to an ardent entomo logist. My friends at home, too, were annoyed, when they discovered that no amount of eau de Cologne
In ten minuth haunted e lis.
In ten minutes I had seen all that could be seen in that fish, and started in search of the Professor. who had how
over left the museum; and when I returned, after lingering ome of the odd animals stored in the upper apartment my specimen was dry all over. I dashed the fluid over the fish as if to resuscitate the beast from a fainting fit, and looked with anxiety for a return of the normal sloppy ap pearance. This little excitement over, nothing was to be done but to return to a steadfast gaze at my mute companion. Half an hour passed,-an hour,-another hour; the fish be gan to look loathsome. I turned it over and around; looked in the face,-ghastly; from behind, beneath above, side ways, at a three quarters' view, just as ghastly. I was in despair; at an early hour I concluded that lunch was neces sary; so, with infinite relief, the fish was carefully replaced n the jar, and for an hour I was free.
On my return, I learned that Professor Agassiz had been at the museum, but had gone and would not return for several hours. My fellow students were too busy to be dis urbed by continued conversation. Slowly I drew forth that hideous fish, and with a feeling of desperation again looked tit. I might not use a magnifiying glass; instruments of all kinds were interdicted. My two hands, my two eyes, and the fish: it seemed a most limited field. I pushed my inger down its throat to feel how sharp the teeth were. I began to count the scales in the different rows, until I was convinced that that was nonsense. At last a happy though truck me-I would draw the fish; and now with surprise began to discover new features in the creature. Just then he Professor returned
"That is right," said he "a pencil is on 3 of the best of yes. I am glad to notice, too, that you keep your specimen et and your bottle corked.
With these encouraging words, headded
" Well, what is it like? '
He listened attentively to my brief rehearsal of the struc ure of parts whose names were still unknown to me: the ringed gill arches and movable operculum; the pores of the head, fleshy lips and lidless eyes; the lateral line, the spinous ins and forked tail; the compressed and arched body. When had finished, he waited as if expecting more, and then, ith an air of disappointment:
You have not looked very carefully; why," he continued ore earnestly, "you haven't even seen one of the most conspicuous features of the animal, which is as plainly be ore your eyes as the fish itself; look again, look again! nd he left meto my misery.
I was piqued; I was mortified. Still more of that wretched fish! But now I set myself to my task with a will, and discovered one new thing after another, until I saw how just he Professor's criticism bad been. The afternoon passed quickly; and when towards its close, the professor in quired :

Do you see it yet?"
No," I replied, "I am certain I do not, but I see how "ttle I saw before."

That is next bfst," said he, earnestly, "but I won't hear you now; put away your fish and go home; perhaps you
will be ready with a better answer in the morning. I will xamine you before you look at the fiskr."
This was disconcerting : not only must I think of my fish all night, studying, without the object before me, what this unknown but most visible feature might be: but also, without reviewing my new discoveries, I must give an exact account of them the next day. I had a bad memory; so I walked home by Charles River in a distracted state, with my wo perplexities.
The cordial greeting from the Professor the next morning was reassuring; here was a man who seemed to be quite a axious as I, that I should see for myself what he saw.

Do you perhaps mean," I asked, "that the fish has sym etrical sides with paired organs :"
His thoroughly pleased "of course! of course!" repaid he wakeful hours of the previous night. After he had dis coursed most happily and enthusiastically-as he always did-upon the importance of this point, I ventured to ask what I should do next.
"Oh, look at your fish!" he said, and left me again to my own devices. In a little more than an hour he returned and eard my new catalogue.
That is good, that is good!" he repeated; "but that is not all; go on;" and so for three long days he placed that fish before my eyes, forbidding me to look at anything else, or o use any artificial aid. "Look, look, look," was his re peated injunction.
This was the best entomological lesson I ever had,-a les son whose influence has extended to the details of every subsequent study; a legacy the Professor has left to me, as he has left it to many others, of inestimable value, which we could not buy, with which we cannot part.
A year afterward, some of us were amusing ourselves with chalking outlandish beasts on the museum blackboard. We drew prancing starfishes ; frogs in mortal combat; hydraheaded worms, stately crawfishes, standing on their tails, bearing aloft umbrellas; and grotesque fishes with gaping mouths and staring eyes. The Professor came in shortly after, and was as amued any at our experiments. He ooked at the fishes
"Hæmulons, every one of them," he said; " Mr. __drew them."
True; and to this day, if I attempt a fish, I can draw nothing but hæmulons.
The fourth day, a second fish of the same group was placed beside the first, and I was bidden to point out the resemblances and differences between the iwo; another and an other followed, until the entire family lay before me, and a whole legion of jars covered the table and sarrounding whole legion of jars covered the table and surrounding
shelves; the odor had become a pleasant perfume; and even
now, thesight of an old, six inch, worm-eaten cork bringa fragrant memoriss.
The whole group of hæmulons was thus brought in review; and, whether engaged upon the dissection of the inview: and, whether engagad upon the dissection of the bony
ternal organs, the preparation and examination framework, or the description of the various parts, Agasesiz' training in the method of observing facts and their orderly arrangement was ever accompanied by the urgent exhortation not to be content with them.
"Facts are stupid things," he would say, " until brought into connection with some general law.
At the end of eight months, it was almost with reluctance that I left these friends and turned to insects ; but what I had gained by this outside experience has been of greater value than years of later investigation in $m y$ favorite groups. Every Saturday.

Cortespoudence.

The Screw Propeller

To the Editor of the Scientific American:
Having been intimately connected with the introduction of screw propulsion in the United States, the biographical notice of Sir Francis Pettit Smith, in your issue of March 7, 1874, induces me to present the following statement:
Francis P. Smith obtained a patent in England, dated May 31, 1836, for a propeller consisting of a continuous screw, formed and applied as slown by the : ngraving which accompanies your biographical sketch referred to. John Ericsson obtained a patent in England, dated July 13, 1836, for a propeller consisting of several blades or segments of a screw, the twist of which was determined in ac cordance with the principle new univereally adopted in the construction of screm propellers.
That Ericsson carried his invention into practice immediately after having obtained a patent in England will be seen from the following notice in the London Mechanics' Magazine, June 3,1837 , vol. xxvii., f. 130, relating to the screw steamer Francis B. Ogden;
"Captain Ericsson's New Propeller.-The American packet ship Toronto, of 630 tuns burden, and drawing 14 feet 6 inches water, was on Saturday last towed down the Thames at the rate of full $4 \frac{1}{2}$ knots an hour, against wind and tide, by an experimental steamboat called the Francis B. Ogden. We subjoin a copy, with which we were favored, of the certificate given by the pilot and mate of the Toronto, of the performance of the Francis B. Ogden on this occasion:
" ' P Packet ship Toronto, in the Thames, May 28, 1837:
' We feel pleasure in certifying that your experimental steamboat, the Francis B. Ogden, has this morning towed our ship at the rate of $4 \frac{\mathrm{t}}{\mathrm{t}}$ knots an hour through the water, and against the tide.
(Signed)
" E. Nashby, Pilot.
' To Captain Ericsson.'
H. R. Hovey, Mate.

Bennett Woodcroft, in his celebrated work on steam navigation, published in London, 1848, thus rotices the Robert F. Stockton, the second vessel built in England propelled by Ericsson's screw propeller:
"On the 7th of July, 1838, a new iron vessel, built by Mesers. Laird \& Co., of Birkenhead, and fitted with a screw propeller, was launched into the Mersey. This vessel was constructed for Captain Stockton, of the American navy, who has been already mentioned, and consequently received the name of Robert F. Stockton. To the kindness of Mr. John Laird I am indebted for the drawing of this vesel, as she was rigged for her first voyage across the Atlantic; and from one of the acientific journals already quoted the following particulars: Several experiments have been made with
her (the Robert F. Stockton), the reeults of which appear her (the Robert F. Stockton), the reeults of which appear
very satisfactory, both in relation to the application of the propellers to inland and to ocean navigation; and these experiments derive additional weight from the fact of their having been performed and approved of in Liverpool, the great emporium of shipping and commerce.
"The Robert F. Stockton left England for the United State日 in the beginning of April, 1839, under the command of Cap tain Crane, of the American merchant service, a most intre pid sailor. His crew consisted of four men and a boy
"Captain Crane made a forty days' passage, under sai only; and for his daring in thus crossing the Atlantic in this small vessel, he was presented with the freedom of the city
of New York. of New York.
"Prior to Captain Ericsson leaving this country for America, he had built, for Mr. John Thomas Woodhouse, an iron screw propeller vessel to run as a passenger boat on the Ashby de la Zouch canal.
"She was named the Enterprize; her length is about 70 feet, beam 7 feet, and her engines about 14 horse power; her speed, where the water is wide and deep, is from 9 to 10 miles an hour.
"She was delivered and commenced to run on that canal in the middle of the month of August, 1839 ; and having run during a season without being profitable, she was then used as a steam tug on the Trent and Mersey, for a certain coal
traffic, with great auccess." traffic, with great success.'
Mr. Wooderoft adds (see p. 102 of the work referred to): "It will thus be seen that Captain Ericsson accomplished for the screw propeller in America and in England what Fulton aid for the paddle wheel in the former and Bell the latter country, namely, ite practical introduction." The history of the introduction of steam navigation in the United States shows that, several years before screw
propulsion had assumed any commercial importapce in

England, the zarrying trade on our lakes was, to a great extent, conducted by screw vessels. Already in 1843, the Errcsson line of screw steamers was in full operation beween Philadelphia and Baltimore, running through the Delaware and Chesapeake canal, seriously damaging the reight bueinees of the Philadelphia and Baltimore Railroad Company.
Permit me to add that the sum which you mention in your biographical notice, as having been awarded to Sir Francis P. Smith, was paid at a recent period, and divided, in various proportions, among several (I believe seven) patentees who had in the meantime obtained patents for modifica tions of detail which the Admiralty desired to a vail itself of. It is scarcely necessary to mention that Captain Ericsson received a fraction of the sum paid by the British Govern ment.

New York city.

The Attraction or the Sun and the Earth.

To the Editor of the Scientific American:
It appears that some of your correspondents are still in doubt about the exactness of the data in regard to the size and density of the sun and earth, and their consequent relative attractions, as established by astronomy. I made some remarks on this subject in your issue of February 7 (page 84, carrent volume) wherein I pointed out the impracticability of the proposition of Mr. Slaughter, who wished to find by he belance how much a few tuns weight would increase or diminish in gravity at certain hours, and I mentioned Her schel's method of illustrating the variation of terrestrial at traction from the equator to the poles by a spring balance After this communication, a correspondent (Captain Erics son) communicates that he has constructed an apparatus fo measuring these changes, consisting of a heavy iron globe loating in mercury, and Mr. Slaughter now proposes a spring balance with a mirror attached. In regard to the first con trivance, I must remark that a floating object is identical with a lever scale, as the liquid balances the floating body and any change in the gravitation will equally affect both so that such an apparatus would showno change whateoever even when transported to the moon or to Jupiter. It is,
therefore, not in the least surprising that Captain Ericsson, therefore, not in the least surprising that Captain Ericsson, according to his own showing, had no results. In regard to a spring balance with a mirror, this might show differences of attraction, but could not possibly be delicate and reliable enough for purposes of measurement, beingaffected so strong ly by other causes as to be unfit for such delicate measure ments as the minute changes in gravitation in question.
The best method is with the pendulum, by watching the changes in the periods of its oscillations at different hours of the day and night; but with what standard can we compare it, as all pendulums will be equally affected? Fortu nately wo have au equivalent instrument, of which the os cillations are not affected by gravity, and which is thus in dependent of changes in the same. I refer to a good, well compensated chronometer, in which the mass of the balance wheel and the elasticity of the spiral spring are substituted for the weight of the pendulum and its gravitating tendency. If therefore a criterion of the solar and lunar attraction is judged desirable, all we have to do is to compare the oscilla. tions of the pendulum of a regulator with those of the balance of a chronometer, at different hours of the day and night. At those hours when gravitation is less by solar or lunar attraction, that is, when the sun or the moon crosses the meridian, the pendulum clock must be found to move more slowly, making the seconds longer, going behind the chronometer, and indicating less than 3,600 seconds for the hour as recorded by the chronometer. When the sun or moon is in the meridian of the antipodes, the opposite effect must be observed. These results differ from the ocean tides, which rise equally at the two periods.
I intend making these observations shortly on an astrono nomical pendulum clock driven by electricity, of which the weight attached to the pendulum is unusually large. I will communicate the resulte, if any are obtained worthy of no tice.
P. h. Vander Weyde.

New York city.

Calming the Sea by Means of OII.
To the Editor of the Scientific American:
The communication on page 212 of the current volume of our journal interested me very much. I have read of a whale ship in distress being lightened of a part of her cargo of oil by pouring it overboard, and the sea, for some distance around the vessel, became comparatively smooth. The writer when a boy, living on a farm in Vermont,remembers
that, in making maple sugar (by boiling the sap in deep cas that, in making maple sugar (by boiling the sap in deep cas iron kettles, as the custom then was), we had a small piece, foamed and would be in danger of boiling over, we dipped the pork in the eirup,and the foaming would cease instantly Some years ago we owned a small hoisting engine that we could do no work with on account of foaming in the boiler By advice of a boiler maker we forced a emall quantity of lard oil in it and the cure was complete. It was only neces
sary to force in about two tablespoonfuls once or twice a day sary to force in about two tablespoonfu
to keep things perfectly quiet inside.
Hartford, Conn.
John MoClay.

The Electro-Capillary Machine.

Io the Editor of the Scientific American:
La Nature erroneously describes this motor, illustrated on page 195 of your current volume, as a French invention. The original description of the machine may be found in P uggen orff" Annalen, 1873, vol. 149, pp. 546 to 561 . The machin
ry at Heidelberg; and it was built by the instrument maker ung, at Heidelberg.
This very interesting machine works economically with feeble currents. It ran once continuously five days and nights by the current of one single Daniell. The power of any electro-capillary motor is independent of its volume, being proportional to the variation of the surface of contact of the two liquids. If \mathbf{S} be the variation of the surface (in quare meters) of contact under one Daniell, then the work of the machine will be ($\mathrm{S} \div 100$) kilogrammeters for each stroke.
Iowa City, Iowa.
G. Hinriche.

The Beech Blight.
 To the Editor of the Scientific American:

In your issue of March 28, Mr. Jacob Stauffer calle attention to an article in the Science Record for 1874, on the blight recently observed on beech trees in Westphalia, and states that he had noticed the same thing as early as the summer of 1857. I can go farther back still. In the fall of 1838, I noticed the same white cotton-looking insect on beech trees in Lapeer county, Mich., presenting the wavy undulating motion menioned by your correspondent. I asked one of the native Indians, who was present at the time, what they were; and he said that they were called " me mes."
New York city.
Edmis Leach.

The Emerald Mines of Mazo

Within four days' journey from Bogota, a French company has been enjoying a monopoly for the last ten years of all the emeralds found in the neighboring mines, and indeed of all the emeralds found in Columbia. The lease expires shortly, and the government think theycan get better terms in the open market for a fresh contract, than by granting a renewal to the present leaseholders. The annual payment now is 14,700 dollare, for which the government bound themselves to prohibit the working of any other mines, existing in the territory of the Union.
The mines were known and worked long before the discovery of America and the conquest of New Granada by the Spaniards. When an expedition arrived in that part of the country, about 1553, to redace the tribe Los Muzos to the Spanish rule, these Indians were found to possess a large quantity of emoralds. It is, however, not easy to see how they worked the mines, as they had no tools of iron it is sup. posedthat they foundthe stones in the beds of the mountain torrents; for it sometimes occurs that the winter rains produce great land slides which lay bare large veins of emeralds, in which they are washed out by the waters. But report speaks unfavorably of the quality of these gems; they resemble those which are still found in the Indian burial places, or in the lakes into which the Indians used to throw their relics during their struggle with the Spaniards. Let, however, this be as it may, the mines of Muzo were worked soon after the arrival of the Spaniards on a large scale, both in the open air and by means of subterranean galleries; but about the middle of the eighteenth century, the mines were abandoned no one knows why. And it was not until the war of independence and the expulsion of the Spaniards that working operations were again resumed. The mines were naturally taken possession of by the Republic, and let out to individuals and companies.
The principal mine now in work is pierced in every direc. tion by galleries made by the Spaniards. Since 1825 it has been worked in the open air. An immense nnmber of gems have been found, many of them of great value. After this mine shall have been exhausted, which will not be for many years, not a thousandth part of the ground containing emeralds will have been touched.
About two days' journey from Muzo there is another mine called Lasquez, which was just touched by the Spaniards, and is evidently very rich. All this ground, including Lasquez, bears traces of the presence of the Spaniards; and as the geological formation is the same in the whole neighborhood, it is clear that the day is far distant before these mountains will be exhausted.
The mountains of Muzo belong to the lower formation of chalk. The emeralds are found in two distinct layers; the first or upper one composed of a calcareous bitumen, but hard and compact. These two layers are generaliy separated from each other by a distance of from seventeen to twenty-two yards. In the open layers are found the veins which yield the "nests" of emeralds-that is to say, a number of these jems massed together. But after one of these nests the vein disappears, being crossed by others of a different kind, which run in a different direction to those containing the emeralds. These latter veins are called "ceniceros" from their ashy color; they are generally horizontal, while the emerald veins are perpendicular. They all run from N.E. to $\mathbf{S} . \mathrm{W}$. The veins of the lower layer are more regular, and are followed for fifty or sixty yards, and even more. "Nests " of emeralds are seldom found in them, but they are more easy of extraction. When veins of fluor spar, well crystallized. are met with, the emerald is not far off; the presence of rock crystal is also a good sign, as likewise that of a pretty pyramidally shaped stone, of the color of honey.-Iron.

It is hardly possible to introduce successfully an improve ment in machinery of any class without the aid of a good engraving. It not only serves to show at a glance the raluable features of the machine, more effectually than the longest erbal desciption can do, but it also constitutes the very best method of advertising an invention, its attractive appearance securing the attention of the reader, while a column of read ing matter, without illustration, might be overlooked.-Na tional Car Bulden,

