Cotregyoudente.

Harmony of the Planetary Syatem.
To the Editor of the Seientific American:
Allow me to remark that the so called new harmonic law xisting between the planetary distances and motions, pub lished " to the world" in your issue of March 21, 1874, page 31, by Mr. Alfred Luther, as superior to Kepler's third law s only a deduction from the same, as is easily proved by ex pressing it in a formula.
The rule given by Mr. A. Luther is this: "The square root of the quotient arising from dividing the distance of any ex terior planet by the distance of any interior planet, multi plied by the velocity of the exterior planet, shall equal the velocity of the interior planet." Calling the distances D and d and the velocities V and v, then the formula corres ponding to the rule is this: $V_{\overline{\mathrm{D}} \div \boldsymbol{d}} \times \mathrm{V}=\boldsymbol{v}$. From this w deduce nuccessively

$$
\|_{d}^{\overline{\mathrm{D}}}=\frac{v}{\mathrm{v}, \text { or, by squaring, } \frac{\mathrm{D}}{d}=\stackrel{v^{2}}{\mathrm{~V}^{2}}, ~}
$$

giving the proportion $\mathrm{D}: d:: \mathrm{o}^{2}: \mathrm{V}^{2}$, which meane that the
distances are inversely proportional to the squares of the distances
velocities.
According to Kepler's third law we have (calling the times of revolution R and r) $\mathrm{R}^{2}: r^{2}:: \mathrm{D}^{3}: d^{3}$, or, by extracting the square reot, $\mathrm{R}: r:: V_{\mathrm{D}^{3}}: \sqrt{d^{3}}$
As the time of revolution is, for equal velocities, in th atio of the distances, and for equal distances in the inverse atio of the velocitiep, we have $\mathrm{R}: r:: \mathrm{D} \div \mathrm{V}: d \div v \ldots$.
By combining the proportions (1) and (2), we obtain
$\mathrm{D} \div \mathrm{V}: d \div v:: \sqrt{\mathrm{D}^{3}}: \sqrt{d^{3}} . \quad$ Multiply with
$\mathrm{V}: v:: \mathrm{V}: v$; we obtain $\mathrm{D}: d:: \mathrm{V} \sqrt{\mathrm{D}^{3}}: \sqrt{d^{3}}$, or

$\mathrm{D}: d:: \sqrt{\overline{\boldsymbol{V}^{2} \mathrm{D}^{3}}: \sqrt[V]{v^{2} d^{3}} .}$

Squaring this equation, to eliminate the root sign, we have $\mathrm{D}^{2}: d^{2}:: \nabla^{2} \mathrm{D}^{3}: v^{2} d^{3}$, a deduction from Kepler's third law, in which velocity is substituted for time of revolution. Dividing this proportion by $\mathrm{D}^{2}: d^{2}:: \mathrm{D}^{2}: d^{2}$, we have $1: 1:: \mathrm{V}^{2} \mathrm{D}: \boldsymbol{v}^{2} d$. Hence $V^{2} \mathrm{D}=v^{2} d$, or $\mathrm{D}: d:: v^{2}: \mathrm{V}^{2}$, showing that the state ment that the distances are inversely' proportional to the squares of the velocities is nothing but one of the diegnises in which it is possible to clothe Kepler's third law. From this proportion, it follows directly that
$V^{2}=\frac{D \times V^{2} .}{d}$ and $V=\sqrt{\frac{\mathrm{D}}{d}} \times V^{2}$,
which is the identical formula expressing the rule given by Mr. A. Luther.
P. H. Vander Weyde, M.d.

New York citr.

Calming the Sea by Mreans or oll.

To the Editor of the Scientifto American:
I have a suggestion to make which may be of much im portance to navigation in steamers. Although I have never tried my plan on so large a scale as is now proposed, I have tried it successfully on a small scale. It is simply to use oil in subduing or mitigating the force of the breaking wave. Some seventeen years ago. I fitted out a small iron steamer to go to the La Plata. She was of light oonstruc. tion and shallow draft of water, and was temporarily rigged as a three masted schooner. Her paddle wheels, minus one half the buckets, were shipped and lashod; the deck or covering of the guards was omitted, so that nothing save the iron arms of the wheels and the supports of the guards, also of iron, remained to interfere with the sailing qualities of the vessel. She ieft Boston abont January 12, and arrived in the La Plata in sixty days, during which time the floats were occasionally shipped in full to carry her over calm spots. She had a keel put on with tap bolts, so contrived as to be taken off on arrival without docking, if required. Considering the stormy season of the year, and ignoring the fact that her officers and crew might more reasonably expect to be hanged rather than drowned, I made every provision for her safety; and among these, I lashed a balf barrel of oil on the tafril rail and one on each side, and ordered the captain to allow a li.tle to escape from the first in scudding, and a little from the one on the weather side in laying to. She had some rough weather on the coast and in the Gulf, and this afforded ample opportunity to test the calming effect of oil poured upon the
waters. It answered the purpose admirably, no sea ever waters. It answe
breaking on board.
Now let me suppose a large cask of oil, stowed securely some ten feet, more or less, above the water line, on deck or under deck in an ocean steamer; attach to this a suitable hose of vulcanized rubber, with a emall orifice, perhaps half an inch, aud let this be fitted to rig out by means of a spar something like the bowsprit of a cutter; have it fitted with guys and topping lift, and shove it out ahead thirty to filty feet; to the hose attach a cock, to be under command of the officer of the deck, and let him discharge oil on the water whenever he sees a wave coming. Steam. ers going head to a heavy sea, as is well understood, must reduce their speed materially and thus consame much time, or run the riek of getting heavy seas on board. Keen competition and the demand fur rapid runs cause the ribk to be frequently incurred, and we hear of serious disasters every day. While I do not imagine that pouring oil on the a powerful steamer going head to a gale, I do religiously beliere that it would do much to keep down the crest of a breaking wave, and that it would ena'le steamers to go directly against the sea, when, without the oil, they might be compelled to take the sea "on the shoulder." No one
over heard of a whaler with blubber about decks being boarded by a sea.
It would be certainly effective when the steamer is obliged to slow down to three or four knots, and also when laying to slow down to three or four knots,
For light ships riding in exposed places, such as Nantucket South Shoal, Sandy Hook, and many other localities, the oil would be very satisfactory.
The only question in my mind is whether at high speed for a gale and large sea), say nine or ten knots, the oil could be dropped far enough ahead to have the desired effect. The experiment can be tried very easily and at no great cost, by squirting out oil by a force pump, and if it should prove successful a more economical plan can be adopted. The dea will, by some who have never thrown grease over in cudding off the Cape, be deemed somewhat Quirotic, and it may be derided by some old salts who think they have no hing to learn. Let these go down to the Jersey coast and run a lifeboat off or on through a sharp surf, and they being supplied with a bucket of oil, can be convinced of it tficacy in keeping the sea from breaking.
Milton, Mass.
R. B. Forbeb.

The Greatest Mine in the World-a-Ten millions

 and a Half in One Year.The Belcher gold and silver mine in the Comstock lode, Nevada, is without doubt the greatest bullion-producing mine in the world. It has produced in the last two and a half years the immense sum of $\$ 16,772,965$. In 1873 it produced $\$ 10,779,171$ and paid out as dividends $\$ 6,760,000$ during the year, a larga surplus being carried forward. By adding the dividende under the old organization and deduct ing the assessments levied, we have the following results up to March, 1874:

Dividends, June 1864 to May 1865 inclusive........\$ 421,200
" to 1872.
" 1873.
in Jan. and Feb. $187 \ddot{4}$.
Total dividends $2,184,000$
$6,670,000$ 6,670,000
$1,040,000$ Assessments Dec. 1865 to April 1871.
. $\$ 10,405,200$ 660,400
. $\$ 9,744,800$
The cost of crushing the ore was $\$ 12.10$, and the cost of mining was $\$ 8.51$ per tun; total $\$ 20.61$. The number of tuns worked in 1873 was 154,664; the total receipts of bul lion in 1873 were $\$ 10,779,171.07$; the average yield per tun in 1873 was $\$ 69.69$.
The bullion statement is as follows, from the stamped value of bullion as per assay cortlicates: Value in gold, $\$ 5,725,247.50$; value in silver, $\$ 5,009,520.51$; assay grains, $\$ 44,403$. 06 ; total, $\$ 10,779,171.07$. Namber of ounces of re fined bullion, $4,173,535 \cdot 74 \cdot 100$. Average fineness of gold, 66it thousandths; average fineness in silver, 0.929 thousandths. Value per ounce in gold, $\$ 1.37$ 19.100; value per ounce in silver, $\$ 1.20$ 2-100. Value of bullion perounce, $\$ 2.57$ 21.100 verage value per tun in gold, $\$ 37.16$; average value in sil ver, $\$ 32.53$; total value per tun, 69.69. This statement will appear strange to those who suppose the Comstock lode produces nothing but silver, as it shows that in this, the greatest producing line on the lode, the gold predominated.
This mine has no parallel in the world, the Crown Point, adjoining it, being the only one approaching it in richness. The mine produced in two and a half years nearly seventeen millions of dollars, and since its opening has paid nearly ten millions of dollars as dividends above all assessments. The success of this and the Crown Point has encouraged mine owners on the whole Comstock to pursue developments at greater depths. The circumstances connected with the development of the Belcher into a first class mine furnish an example for other mines in similar circamstances. After their ore gave out, they worked systematically and uninterraptedly until they developed the largest ledge ever opened in any mine in the world.-Scientific and Mining Press.

Pacific Ocean Deop soa soundinge.

At a recentmeeting of the Californis Academy of Sciences, Profemsor Daridson announced some of the results of the soundinge made by Captain George T. Belknap, of the United Statos steamor Tuscarora, during last year, with reerence to the projected laying of a talegraphic cable from this coast to Japan. This work hed accomplished a remarka ble development of the depths of the Pacific Ocean, which had no parallel in the plateaus of the Atlantic. The Tusca roza first started in her line of eoundings from the entrance to the Straits of Fuca,across that portio. of tho North Pacific designated as the Gulf of Alaska, toward the Asiatic coast. After leaving the entrance to the straits, the bottom slopes gradually to a depth of 100 fathoms, and then a sudden descent occurs, which reaches a depth of 1,400 fathoms, at distance of 150 miles from the coast. The temperature of the water at the greatest depth on this line of survey wa 34 degrees.
Commander Belknap then returned, prosecuting off and on soundings all along the coast to the entrance of San Francisco Bay. This work determined the fact that the sudden descent at the bottom of the Pacific to a great depth is continuous down the entire coast, varying from twenty to seventy miles out. In the latitude of San Francisco Bay,the great bench is reached a short distance off the Farallones, where the bottom suddenly descends to a depth of two miles. Off Cape Foulweather, the bottom descends precipitately from 400 fathoms to a depth of 1,500 fathoms, and then the plateau continues westward for bundreds of miles, and comparative ly as legel as a biliard table. Off Cape Mendocino, where seaward ju been erroneously supposed to exist, from the
is reached eighty miles fron the shore. Thirty miles off the Golden Gate,the bottom is reached at 100 fathoms; at 55 miles, it has deacended to 1,700 farhoms; and 100 miles out, the enormous depth of 2,548 fathoms has been measured without reaching bottom.

Improved Shifing Engine.

A new improvement on the shifting engines on the Penasylvania Railroad has been introduced, which is in great favor with those running them, and fully meets the expectations of the company, at whose shops in Altoona they were constructed. The ordinary tankless "dinkey" bas to be supplied three times a day with coal and water, while enough fuel can be stored in the tank of the improved engine to last three days, and water enough to supply the necessary steam for a day and a half. The engine is also supplied with the steam bell, an invention perfected at the shops of the Penneylvania Railroad Company. By pulling an apparatus in the cab by the engineer, the bell rings and continues to do so until he pushes it back to its natural position. The tank of the tender connected with the evgine has a capacity of 1,200 gallons of water and about three tuns of coal. The engineer is also enabled from his position to see the brakeman while coupling, which has a tendency to diminish accidents.-American Railroad Journal.

Tunnels.

The completion of the Hoosac tunnel and the rapid progress of the Sutro have caused the miners both in the East and in he West to look with interest upon what has been and is projected in connection with tunnel driving. It is in Germany, says the Mining Journal, that the zeat tunnels bave been construcced, and these have been made exclusively for mining. There is the great tunnel at Freiberg, twenty-four miles long; the Ernst-August and the Georg at Clauethal, hirteen and a half and ten and three quarters miles respect vely; the Joseph II. at Schemnitz, nine and a quarter miles; the Rotschonberg at Freiberg, eight miles; the Mont Cenis, seven and a balf miles, which about completes the European list. In the United States we have the Hoosac, in Massachusetts, five miles long; the Sutro, in Nevada, for pening up the celebrated Comstock lode: this tuncel, at bough only four miles long, will, with its ramifications to various mines of the district, prove one of the most important in America: the Sierra Macre tunnel at Black Hawk, commenced during the present year, and which will be twelve miles long, as well as San Carlos and Union Pacific tunnels, which are under two and a half miles. The Erost-d"guet unnel was driven at the rate of a mile per annum, and it will e interesting to notice how long it will take the Americens with all the approved appliances at present at command, to complete the nearly similar Sierra Madre turnel.

The New Geyser Basin.

That a new and most important geyser basin has been dis. covered in Eastern Montana, seems now unquestionable. It was visited last fall by the well known mountaireers Jack Baronett, John Dunn and John Allen. It is represented as much moreextensive than any of the already explored basins, and to contain geyeers of much greater force and volume than any yet described by tourists. One of these newly discovered geysers is estimated to throw a volume of water forty $f \in \in t$ in diameter over fivehundred feet high, and to continue in erup ion from ten to fifteen minutes. It is also reported that in his newly discovered basin there are "mud volcanoes" far surpassing in volume and eruptive force those on the Upper Yellowatone. This unexplored spot of the most wonderful of all our natural wonders is about twenty-five miles south east of the summit of Mount Washbarn, from which point the greater geysers, when in action, when the air is clear, are visible to the naked eye.-Avant Courier

In a recent article upon "Swindling Patent Sellers," allu sion was made to a concern styled the Western Michigan Patent Agency, formerly of Albion, Mich. Messrs. G. L Jocelyn \& Co., of Grand Rapids, proprietors of an establishment at that place entitled " Western Michigan Patent and General Collection Agency," write to us, requeeting that our eaders may not confound their enterprize with any of the awindling concerns intended to be exposed by our article The similarity in name, they fear, may lead to misapprehenion, and they wish it understood that theirs is an honest and reliable concern, in proof of which they send us certif cates from leading citizens of Grand Rapids. These documents speak well of the personal and business merits of the Messrs. Jocelyn, and indicate that they are engaged in a usefu line of operations. Individuals who can so fully command the confidence of their fellow citizens as do these gentlemen have, we think, little reason to fear that the public will couple them with the professional cheats against whom our former article was especially directed.

Object for the Polariscope.-Rev. William Law in forms the English Mechanic that the following are two of the finest subjects for the polariscope which animal tissues can supply: Thin slices of the upper part of a pig's claw, cut transversely, and of the paw of the polar bear. Both are in describably beautiful. They are, when cut, dropped into strong spirits of turpentine and mounted in Canada balsam. The bristles of the hedgehog also form very beautiful ob jects for the polariscope.

The Optic Nerve.-By a microscope examination of the retina and optic nerve and the brain, M. Baucr found them to consist of globules of $\frac{28}{8} \delta \sigma$ to $\frac{1}{40 \delta \sigma}$ of an inch in diameter, united by a transparent viscid and coagulable gelatinous
fluid. $-E$. Lovett.

Lolseau's Artificlal Fuel manufacture.
Mr. Emile T. Loiseau, of Mauch Chunk, Pa., the inventor of a very complete and, we believe, etficient process for the manufacture of artificial fuel out of coal waste (which, it will be remembered, was not long ago illustrated and described in these columns), has recently obtained five patents through this oftice which cover the essential points of his improved machinery and system.
Mr. Loiseau, we also notice, has lately delivered an excel lent and able lecture on the subject of "Artificial Fuol" before the Franklin Instituce in Philadelphia, which has been printed in the Journal of that association. The subject has created considerable interest among those practical coal miners and owners of mines who realize the important
problem of utilizing the immense quantities of coal problem of utilizing the immense quantities of coal
dust which now cumber the ground in the vicinity of our mines.
The first of the patents above referred to relates to the entire process of manipulating coal waste to convert it into a conveniont fuel form by first mixing it with clay, then mold. ing into blocks, drying, and finally applying a waterproof coating. Mixing and molding separately is the subject of a second pacent, which covers machinery used to combine the coal dust with clay and lime water in suitable proportions, inuroducing it into a pug mill in a plastic state, and then delivering it to compressing cylinders in a broad sheet. Within the cylinders, it is divided and pressed into blocks or lumps convenient for use anl passed to an apron to be dried and
further prepared for use. The mixing apparatus, consisting of a tub in which are a number of arms and shafts constituting a movable spider in combiration with a stationary one, is made the subject of a third patent. The various arms in this machine are s) arranged that they revolve without in. terforing with each other while every portion of the material is submitted to their action. The fourth patent refers to the drying oven in which are a number of belts arranged one above the other, and connected by a system of gearing to carry the material back and forth and finally deliver it near the bottom. The belts are strengthened by ropes which carry a series of me:al balls which engage in recesses in drums, serving as cogs to propel the belts.
The last patent covers the waterprooing device, by means of which the fuel is coated with a material which renders it impervious to moisture. The machine has an endless belt which dips in a tank, and is guided therein by balls entering suitably inclined grooves. The lumps delivered on the apron are carried througin the liquid and are thus covered with a
wa.erproof covering which dries upon exposure to the air. wa.erproof covering which dries upon exposure to the air.
Mr. Loiseau has also obtained foreign patents on his in. ventions, and parties interested in mines at home or abroad are invited by the inventor to examine into his system of utilizing what is now a waste substance.
The experimental trials, conducted some time ago to rest the heating powers of the product, indicated a very fair rate of power, and considerable cohesion. These qualities were fully tested at the exhibition of the American Institute, and with very favorable results. As to the important question of cost, the inventor states that the article can be manufac. tured for about one dollar per tun.

The Early Education of Chlldren.

In a lecture, Professor Walter H. Smith, of Boston, Mass., said that the want of accuracy in children should be no source of sorrow. He considered it more desirable that they should be dull and stupid at first, that their process of education might be more gradual and thorough. A rapid development should be checked rather than encouraged. One plan of instruction which was followed with success was a course of study of lines and frrms, requiring the pupils to draw from description and dictation. Simple forms and objects should be selected first; and when the pupils are suff. cientl) advanced, more difficult and complex forms could be substituted, each step being so gradual that no perceptible improvement is shown at the time, but which, wheo looked upon afterward, will denote rapid progress. This plan, he said, insured perfect attention on the part of ti: I upil, and developed an absorbing interest in the woris.

New Process for Iron Making.

F. W. Gerhard has completed a new process which is attracting considerable notice. The invention consists in the manufacture of puddled iron direct from the ore, the use of the blast furnace being dispensed with. Instead of usiug pig iron, Gerhard uses a compound which he calls "iron coke," and which consists of a mixture of ore (or any substance containing iron), the necessary fluxes, and the equiva-
lent of carbon. A lump of this compound is put lent of carbon. A lump of this compound is put into the furnace, and by the single process known to the puddler as
"balling," a "heat" may be obtained in considerably less "balling," a "heat" may be obtained in considerably less
time and with considerably less labor than under the old meihod; the process of " melting" and "boiling" being er. tirely dispensed with. The most important feature of the invention is the great saving which it effects in fuel. Bell estimates that $5 \frac{1}{2}$ tuns of coal are required to produce a single tun of bar iron, but Bennett Aitkins puts the amount at six tuns seven hundredweight. Taking the average at six tuns, it may be reckoned that two tuns are consumed in the blast furnace, and the remaining four tuns iu the finished iron works. The protoxide of iron containing 77.78 per cent requires 21.43 of carbon. The magnetic oxide containing 72.41 per cent requires 32.17 of carbon. Admitting that the three descriptions of iron ores were employed in the making of cast iion, by the new process, then 30 lbs. of carbon would suffice to produce 100 lbs . of cast iron; or a tun of ison,weighing $2, \dot{4} 00 \mathrm{lbs}$., would require 750 lbs , carbon, a
aaving of $3,760 \mathrm{lbs}$. carbon as compared with the ordinary method. It is obvious t'aat when heavy pieces of solid pis ron are placed in a puddling furnace to be melted, the greater portion of heat is wasted, and after it is liquefied a
much longer time is required to eliminate the carbon which it contains and other extraneous elements of which it is compused, with a continuation of an immense waste of fuel. On the contrary, when the "iron coke" is thrown into the heated furnace, the carbon which it contains immediately acts upon the oxygen contained in the ore. Even the Barrow hematite-one of the most refractory of ores-is ready for " balling" with a much less expenditure, of time, labor, and fuel, than by the old process. These statements have been abundantly verified by experiments made in the pres ence of practical ironmasters and ironworkers, who speal very highly of the merits and importance of the invention.

Launch of the Cable Ship Faraday.
The new cable steamship Faraday, which has been built by Messrs. C. Mitchell \& Co., Newcastle, England, forthe Messrs. Siemens Brothers, for the purpose of laying their Atlantic cable, was launched on the 17th of February last.
The vessel has been built to the order of Messrs. Siemeris Brothere, London, for the purpose of laying their Atlantic cables, and in every requisite the ship is certainly one of the most perfect of its kind. The steamer is 360 feet long, 52 feet beam and 36 feet deep. Her grcas register tunnage a a bout 5,000, and her dead carrying weight about 6,000 tuns The iron hull, built under the inspection of Lloyds' agents, will be accorded the higbest certificate of classification. From her psculiar structure, the vessel receives enoracous atrength,
in addition to the usual requirements of Lloyds' rules. Sup. in addition to the usual requirements of Lloyds' rules. Sup. porting thesides of the vessel are three enormous cable tanks, rches ' al fabric of the vessel by five icon decks. For the comfort and convenience of those on board, the upper and main decks re supplemented by the usual decks of wood. The Faraday is double bottomed, and in the space below the two bottoms is a net work of iron girders for carrying the cable tanks, and these give also a longitudinal strength to that portion of the hull. Water ballaat is also carried in this space, by which the ship may be trimmed as the paying out of the cable is carried on. This arrangement has likewise the advantage of
 the purpose of filling and emptying single compartments of the double bottom, or for flooding any one of the cable tanks, a complete and well devised system of valves, cocks, pipes, and auxiliary engine power has been introduced; and the systen, which is worked from the engine room, is under the control of the engineer. The bow and stern of the vessel are of the same form, and in this respect she is unlike other vessels in outward appearance. Rudders are provided at each end, and she can thus be navigated ahead or astern, as may be desired when paying out or picking up a cable
Each rudder, to provide against accident, is supplied with Each rudder, to provide against accident, is supplied wit manual power, and the steerin gis accomplished by means of a steam engine placed andidships. Harfield's steam windlass works the anchors and cable chains, and steam apparatus, placed in various positions along the deck, performs all the heavy labor about the vessel. The rigging is after the
most approved manner of ocean steamers, and accommoda most approved manner of ocean steamers, and accommoda
tion is pruvided of the most complete nature, for the large staff of oticers, electricians and crew, numbering about 150 persons In addition to the multifarious appliances of a cable ship, the vessel will be fitted up with all the cabins and appliances of a large passenger steamer, and will be propelled by machinery of the compound, surface-condeneing principle, which has been constructed by Messrs. T. Clark \& Co., of Newcastle. To obtain increased steering or manceuvring power-an important condition in cable laying-the steaner will be pro portant condition in cable laying-the steanner will be pro-
vided with two propellers, commonly termed "twin screws," vided with two propellers, commonly termed "twin screws,
which will be worked by two separate sets of engines, placed vertically over the shaft, each with two cylinders, one at high and the other at low pressure. By this means great regularity of motion will be obtained, and by a high degree of expansion, in working the system, fuel will be greatly economized, to an extent that would have been considered impracticable a few years ago. The deck machinery for the paying out of the cable is being manufactured by the Vulcan Foundery Company, who are experienced in this branch of work. It is needless to say that the Faraday has been called after the great English chemist and natural philosopher of that name.

English and amorican Rallways.
The London Railioay Newos has some interesting comparisons of English and American railway returns, and in the matter of rolling stock and train earnings is surprised to find the American roads more economically run than the English. Taking four roads in each country, aggregating about 4,000 miles, it is found that the American road bas only 0.33 of a locomotive and 6.72 freight cars per mile, while the English has 0.93 of a locomotive and 28.83 cars. The New York Central,'with a heavier traffic than the London end Northwestern, has half the locomotive per mile. The English refuse to believe that the superior size and strength of American locomotives account fully for this aifference. The earnings, for instance, of an American locomotive are 70 per cent more than
those of an English, and the entire rolling stock, which in those of an English, and the entire rolling stock, which in England barely pays for itself in a year, in this country pays for itself and 65 per cent more. The Nevos also discovers that, while passenger fares are 30 per cent lower than in England, the earnings per train here are 4 per cent more, and on gland the earnings per train here are 4 per cent more, and on
freighi trains 15 per cent more, than on the Engliah roads.

Plpe Way Transportation.
Pipe way transportation is coming into favor in theoil regions of Penneylvania, to carry petroleum from the wolls to sta ions on the railway. The longest pipe way is 15 miles, vercoming 400 feet of elevation by steam pressure at the ntrance to the tube. This system of transportation is so in dependent of weather and bad ronds, and so preventive of leakage, and gives such thorough satisfactiou without any rawbacks, that public attention is directed to many ol her prac ical applications of the same rystem.
Twenty-6ve years ago, on the national road between Cum berland and the bituminous coal field beyond, we saw a small rivulet turned to similar account in the cheap transportation of coal. A zigzag, $\frac{1}{3}$ inch board flume followed the tortuous course of the petty stream and carried 6 inches depth of water and 12 inches surface. A dam collected water enough to make wo runs of coal aday. Each run bore in its current 30 tuns of coal, fed from a chute with a rake. The distance is under 5 miles; the fall was at least 20 feet to the mile. The coal floated along with ease, carrying with it chunks of slate and conglomeraterock. There were chutes for its reception or the turnpike. These had screens, over which the coal passed, being perfectly cleansed and polished before entering. All day long wagons were seif-loading under these chutes. The cost of transportation over the water way was merely nom. inal. It was an easy step for invention to suggest pipe ways for similartıansportation of fuids, and for mails and packages, by pressure of condersed air, as now used in London. It is not generally known that, in France, the pipeway aystem has been used for ten years past in transporting bet juice from the field to the sugaries. The sugaries at Cambrin work up annually 246,000 tuns of beets; they are supplied with beet juice through 62 miles of pipe, now being extended to 100 miles, in many ramifications.
At points central to cultivation, works are erected for rapp ing beets and expressing juice. Milk of lime is immediate Iy added to prevent decomposition; and after inspection and measurement, the saccharine stream is turned into the pipe way and delivered at the terminal sugaries, the long contact with lime and the thorough agitation purifying the juice more perfectly than usual. It is estimated that, during 1874 here will be a total length of such pipe ways of 560 miles, doing service between thescattered beet fields and the conensed sugar works of France.
The pipes are placed two feet eightinches below the surface, and steam engines compress the air as desired. All degrees of elevation are thus surmounted. The juice has a gravity of one degree Baumé on entering, and the same when dis charged.
This pipe way system so economizes sugar making that it wonderfully multiplies the sugaries. No investment excels that concerned in this production. Farmers find it far bette than other crops. Pipe way stocks are in high favor, and su paries pay best of all.
If new industries are needful to the future progress of California, here is one that should be considered. It offers a wide field for expansion, without risk of oversupplies : and if the right soil be selected, the crop is sure, and the profits of su-gar-making
entific Press.

Norweglan Antiquities.

At a recent meeting of the California Academy of Sciences, R. E. C. Stearns read an interesting translation from the re ports of the Snciety for the Preservation of the Norwegian Antiquities. It described the excavation of an ancient vessel, of the Viking period, found in the parish of Tane, Norway. It was the custom of the Vikings to convert one of their vesselsintoa sarcophagus, on thedeath of a greai warrior The vessel was conveyed inland, the remains of the hero de-
posited in the hull, with his armor, weapons, the bones of his posited in the hull, with his armor, weapons, the bones of his
war chargers, and the whole covered with earth. These tuwar chargers, and the whole covered with earth. These tu Norway, and the peculiarities of ancient marine architecture exposed for inspection.

Good Work in Canada.

Mr. A. Davis, of Belleville station, on the Grand Trunk Railway of Canada, forwards us a list of twenty one subscribers, obtained amongthe 132 workmen under his charge. This is an excellent showing both for our correspondent and his men, as it indicates on his part a desire to benefit thase in his employ, by placing within their reach information of practical value in their callings. while the workmen themselves exhibit good sense and intelligence in availing themselves of the advantages offered.
Mr. Davis tells us that more names are yet to come, and adds: "I take much pains in having my men first class." We think,from the fact of his obtaining so many subscribers out of the comparatively small number of men uuder him. that Mr. Davis supports his claim for the good qualities of his men.
Prebervation of Wooden labelb.-The following method of preserving wooden labels that are to be used on trees or in exposed places is recommended: Thoronghly soak the pieces of wood in a strong solution of sulphate of
iron; then lay them, after they are dry, in lime water. This causes the formation of sulphate of lime, a very insoluble salt, in the wood. The rapid destruction of the labels by the weather is thus prevented. Bast, mate, twine, and other substances used in tying or covering up trees and plants when treated in the same manner, are similarly preserved. At a recent meeting of a horticultural eociety in Berlin wooden labels, thus treated, were shown, which had been con , stantly exposed to the weather during two years without
being affected thereby. being affected_thereby.

