THE NEWFOUNDLAND DEVIL FIBH.
Some weeks since we printed a letter from a correspondent in St. John's, Newioundland, which was accompanied with a photograph, giving a description of a huge octopus or devil fish, found by some fishermen, entangled in their nets. We present herewith an engraping prepared from a photograph of this monster, which shows the head and arms with the beak in the center. The eyes are further back and do not appear. The nucleus is supported on a stand, and the eight short arms hang down with the sackers standing out prominently from the surface, the small ends resting in a round bath in which it had to be carried. A number of suckers are wanting in one arm, having been torn off in capturing the fish; the rest are perfect. At each side of the shorter arms the two long tentacles, 24 feet each, rest on a pole over which they have been doubled several times, their terminations, covered with large and small suckers, hanging down at the extreme right and luft of the picture
It is said that even this enormous creature is small beside some which infest the northern coasts of this continent, and of which trustworthy accounts are in existence. The terrible fate of any victim which may come within its clutches can well be imagined. Each of the short arms carries one hundred suckers; and the moment one of them touches the prey, the fish feels the con tact and draws back a membranous piston. A vacuum is created and the edges of the disk are pressed against the surface of the victim with a force equal to the weight of the atmosphere added to that of the water above. The more the victim writhes, the more does it come in contact with ther disks, each of which adheres; other arm soon encircle it, bringing it within reach of the powerful beak. "Nofatecould bemore horrible," says a writer, in concluding a very graphic description of the monster, "than to be entwined in the embrace of those eight clammy, corpse-like arms, and to feel their folds creeping and gliding around you, and the eight hundred disks with their cold adhesive touch gluing themselves to you with a grasp which nothing could relax, and feel ing like so many mouths devouring you at the same time. Slowly the horrible arms, supple as leather, strong as steel, cold as death, draw the prey under the fearful beak and press it against the glutinous mass which forms the body, and then, as the victim is paralyzed with terror, the powerful mandibles rend and devour." We doubt f the most depraved opium eater, in those terrible stages of delirium which succeed the delightful dreams induced by the drug, could imagine anything much more dreadful than such a death.

BARNUM'S REMOVABLE HORSESHOE CALE.

 Mr. John D. Barnum, of Amenia Union, Duchess county, N. Y., has invented a new removable calk for horseshoes whicb, judging from the reports of its actual use, would seem to be a valuable and useful article. Its object is, while affording a sure footing to the animal on icy pavements, to
economize in horseshoes and time; for instead of shifting shoes when the calks become worn out, it is only necessary to knock out the calks themselves, and very easily insert a new set. No especial shoe is needed, as all that is required to adapt the ordinary form to the device is the cutting of three grooves, one at either end and one near the toe, as shown in the annexed engraving. These groover are made slightly tapering, and receive the dovetail tenon on the calks as shown in the sections, A and B. The calk is attached by entering the small end of the tenon in the grooveand then drifing it tightly in. The projecting extremits of the tenon
of the shoe, forming a tight clinch.
When the calk has been worn and requires removal, it is ouly requisite to straighten out the clinched portion of the tenon and drive it out of the groove, when another calk may be inserted. Proposals regarding the investment of capital or manufacture, and inquiries for further information, should be addressed to the inventor as above.

Improvements in Concrete Construction.
A paper was recently read before the Institution of Civil

THE NEWFOUNDLAND DEVIL FISH

the Construction of Harborand Marine Works with Artificial Blocks of Large Size."
The author described a new method of submarine contruction, with blocks of masonry or concrete far exceeding n bulk anything hitherto attempted. The blocks were built in the open air on a quay or wharf ; and after from two to three months' consolidation, they were lifted by a power ful pair of shear legs, erected on an iron barge or pontoon. When afloat, the blocks were conveyed to their destination in the foundations of a quay wall, breakwater, or similar structure, where each block occupied several feet in length of the permanent work, and reached from the bottom to a little above low water level. The superstructure was afterwards built on the top of the blocks in the usual manner by tidal work. By this method the expenses of cofferdams, pnmping,staging,and similar temporaryworks were avoided, and economy and rapidity of execution were gained, as well as massiveness of construction, so essential for works exposed to the violence of the sea. Therewas now being built in this manner an extension, nearly 43 feet in hight, of the North Wall Quay in the port of Dublin. Each of the blocke wnich composed the lower part of the wall was 27 feet high 21 feet 4 inches wide at the base, 12 feet long in the direc tion of the wall, and weighed 350 tuns. The foundation for the blocks was excavated and leveled by means of a diving bell, the chamber of which was 20 feet square and $6 \frac{1}{3}$ feet high. When the men wore at work, the bell rested on the botcom. A tube or funnel of plate iron, 8 feet in diamoter, rose from the center of the roof of the bell to several fee above high water level. An air lock in the top of this fan nol afforded a passage up or down, without the bell having to be lifted out of the water. The material excavated was cas into two large trays, suspended by chains from the roof of the bell; when these were filled, the bell was lifted a few feet off the bottom,and the bell barge was drawn a short dis tance away from the line of the wall, where the stuff was discharged, by tilting the crays, and the bell returned to it work again. The hull of the floating shears was rectangula in cross section, 48 feet wide and 130 feet long. The aft end formed a tank, into which water was pumped to balance th weight of the block suspended from the shears at the bow of he vessel. The shear legs were rectangular tubular pillar of plate and angle iron, with a cross girder resting on the
top; above this girder there were two sets of pulleys, through top; above this girder there were two sets of pulleys, through and two flat links alternately. There were eight parts to each chain, or sixteen parts altogether, so that each part had o support, theoretically, one sirteenth of the suspended block. The inner ends of the chains passed down to the deck, where they were controlled by a pair of powerful crab winches driven by a 14 horse power steam engine, which also worked a centrifugal pump for filling or emptying the ank. The slack of the chains, after pasaing through the crab winches, was led under the deck, and was coiled up in
the engine roem over fixed pulleys by two donkey engines. When paying out chain, the donkey engines were thrown out of gear, and the crab winches on deck hauled up the lack according as it was wanted. Two cast iron girder ere built into the bottom of each block, and at the end of each girder there was a rectangular hole. Four vertical ubes were built in the block over these holes in the girders and the suspending bars were lowered from above and turned at right angles, so that their ends, which were T shaped caught beneath the girders. The upper ends of the sus pender bars were also T shaped, and were attached in manner to the lower sets of pulleys, through whic the lifting chains were reeved. When a block was set in place, the suspender bars were turned hack 90° and withdrawn for further use. Each block had ertical grooves left in the sides ; and when two block were in place, these grooves formed a tube 3 fee quare. A mass of concrete was subsequently thrown nto the grooves, to act as a key or dowel between block and block; this completely plugged up the joints, which were only about $\frac{1}{2}$ inch open on the ace.
The paper also contained a description of an annu lar block of concrete 19 feet in diameter, weighing 80 uns, which the author constructed for the base of beacon tower, in the year 1863, and conveyed two miles down the Liffey, where it formed itsown coffer dam, in water $5 \frac{1}{2}$ feet deep at low spring tides. The water was pumped out by band pumps, and the roundinside excavated, concrete being placed on the top of the ring as it sank, like the brick wells in India or the shafts of the Thames Tunnel.
The method of making concrete and mortar, adop ted by the author, differed in some respects from tha in ordinary use. He preferred a rapid misture of the ballast or sand with cement, or lime to the slow tri turating procees of the mortar pan with edge runners The concrete mixer, devised by him, driven by a 3 horse power engine, would turn out from 10 to 12 cubic yards per hour. The mixer was a inxed horizontal or inclined trough, open on the top, with a longitudinal axis, having stout iron blades at shor intervals which, as they revolved simultaneously pugged the materials and screwed them forward The water was let on gradually through a rose, and the first few blades incorporated the materials in a dry state before they reached the water.
The author believed the application of the new system of gigantic blocks to the construction of break waters would, in many cases, be cheaper, more rapid and more permanent than the ordinary methods of construction.

ollner's Horizontal Penduium

M. F. Zöllner communicates to the English Philosophical agazine a paper on the origin of the earth's magnetism and the magnetic relations of the heavenly bodied, in whic he describes a method by which he considers we are enabled o measure even those small forces which are, for instance, produced by the difference in distance between any point on the earth's surface from sun or moon and the distance of the earth's center of gravity, or by difference in the centrifugal force of two points at different distances from the earth' surface.

The apparatus is opresented in the accompanying engraving; $a a^{\prime}$ are hin watch springs held in continual ond a by the mirror, C, in front. he stand is made firon, and the feet the tripod are as ong as posaible, in order to effect very mall chadges in position of the points of suspenion with regard to he direction of gravitations by the ow movement of he scrows. By means of the ecrew a, situated in a verical plane passing hrough the two points of suspenion, c and c^{\prime}, the nsitiveness of the
 strument may be he time of by mined. A timo of vibration of 30 seconds (nalf a period) is asily accomplished. B is a counterpoise of A. Before the ascillating mase, A, and the parts belonging to it were placed in the rings, which fit into small incisions cut into the cylindrical axis, it was set in vibration by the direct action of ravity round a knife edge occapying provisionally the place of the turning point. The time of oscillation amounted to searly 0.25 of a second. By means of a known relation, the the ratios of momente of direction are thus easily obtained, which are exerted by gravity on the नibratory masa in the
horizontal and vertical diroctions. The mirror attached to the end of the pendulum allows the reading off of the changes in the direction, according to the method of mirror read. ing, on a scale 10 feet $4 \frac{1}{2}$ inches distant from the mirror. ing, on a scale 10 feet 4 inches distant from the mirror. 0.25 second, it was calculated that a 0.2539 inch division on 0.25 second, it was calculated that a 0.2539 inch division on
the scale corresponds to a deviation of 00097063 second of an arc of an ordinary pendulum. The instrument is so extremely sensitive that deviations of only 0.001 second of an arc may be obtained even with a time of vibration of 1444 seconds. A railway train at a distance of a mile has been found to set the instrument in operation.
Observations are best made in deep and quiet mines, where the variations of temperature and shakings of the earth are absent, and all those influences can, therefore, be determined quantitatively which are caused either directly by volcanic movements of the ground, or indirectly by magnetic induction, through changes in the velocity of the streaming masses on the inner part of the earth. Besides the generation of an inner tidal and pressure wave, the sun and moon exert a direct influence on the positions of the instrument, bacause they attract, with different intensity, the center of gravity of the earth and the center of gravity of the pendulum. We may thus expect to determine the magnitude on which these influences depend, by a much extended and statistically headed series of observations, that is to say, the masses and distances of sun and moon in units of the mass and radius of the earth
Supposing the instrument set up in the meridian, the pendulum, if movingonlyunder the influence of the sun, would pass, in twenty four houre, four times through its position of equilibrium in the meridian-at sunrise, sunset, and at the upper and under passage of the sun through the meri dian. As the movement of the pendulum is not an effect of summature, as that of the sea in the tides, but is gererated directly by attractive action at a distance, it must take place simultaneously with the corresponding true position of the sun. But if gravity, as light, takes a time of about eight minutes in arriving from the sun to the earth, the above position of equilibrium would take place so much later. If, therefore, we only succeed in determining these positions to within one minute of accuracy, the question whether gravi ty needs time for its propagation could be decided even if this velocity were ten times that of light.
The discussion of observations made simultaneously in two vertical circles with the horizontal pendulum, and their comparison with the readings of magretic instruments, will supply valuable material, tending to eluc! late the causes of the close relation between the mechanical. electrical, and magnetic phenomena on our planet; the explanation of which will, perhaps, some day give us as cle ur a conception of the occurrences in the earth as the language of signs of the senses, chiefly by the help of light, has given us of th occurrences on its surface. -Science Record for 1873.

New Metallic Decorations.

At a recent meeting of the Ropal Institute of British Ar chitecte, Mr. C. H. Cooke introduced to the profession a new style of decoration, recently perfected in Paris, and applicable to iron, brass, and sinc, which is expressed simply and plainly as " cut work."
The cutting of these metals was effected by a steam saw, the hardness and make of the saw being in reality the secret of the whole work ; and this tool, as was shown by the various specimens which were exhibited, offered the greatest facilities for the conception and working out of the most intricate and delicate design obtained by any other means. The zinc work, it was believed, would stand in this country, as at Paris, the effect of the weatier, without painting.
This method of cutting through hard metals has been brought to great completeness, and by it could be cut brass and copper three inches thick and wrought iron one inch hick. The face of the work could be chased or engraved as desired; and after the pattern required had been cut by the saw, it could be heated, and the twist to the ende or points,so irequent in wrought work, could be given, and certain por tions of the ornamental work raised or depressed as desired and this forms a combination in metal working hitherto un known.
The cost was moderate, being more than a third less in cost than for the same kind of work in wrought iron as usu ally done. It was stated that this mode of working in metal offered a valuable opportunity for the operation of the archi tect. It would be idle to attempt to enumerate the various ways the work might be applied, for every architect and actual metal worker must be aware that it was almost un limited in its applications.

IN FOII, ORNAMENTATION.
Mr. Cooke also said that the printing on tinfoil, in imita ion of wood or marble, was applicable to wall decoration woodwork, and house furniture, and would be found on ex amination to possess many advantages. Some would, he knew, object to it as a sham, but they must have some sham; and for his part he looked upon this as very good, uceful sham, especially when they could put this work upon damp walle, and decorate the surface at the same time; besides which, it offered great facilities for decoration in places where it was dificult to obtain skilled labor, and the case and skill with which it could be used would be specially valauble either on now buildings or temporary erections, and be a great boon to our colonists. For halls and staircases, it cortainly would be muoh more offective and serviceable than paperhangivg as now used. From the extrome thinneas of the material, it was capable of enveloping the most delicat of moldings. and the surface being varnished, and then
placed in a hot chamber, and subjected to a heat of 120 Fah., it wae considered permanent and durable. This wor can be obtain
teen feet long.

The Mountains of the United States

The following is the hight of the principal mountains in oe United States, as compiled from Professor Hayden's Re ort, in the United States Register
rocky modntains, bierra nevada and cascade range
Mount St. Elias, Alaska, (Est.)
Mount Fairweather, Alasta, (Est.)
Mount Whitney, California
Mount Sbasta, California
Mount Rainer, Washington Territory
Mount Tyndall, California.
Mount Harvard, Colorado Territory
Pike's Peak, Colorado Territory
Irwin's Peak, Colorado Territory
Gray's Peak, Colorado Territory Mount Lincoln, Colorado Territory Mount Yale, Colorado Territory Long's Peak, Colorado Territory Mount Brewer, California
Mount Hayden. W yoming Territory. Horse Shoe Mountain, Colorado Territory Silver Heel's Mountain, Colorado Territory Fremont's Peak, Wyoming Territory. Mount of the Holy Cross, Colorado Territory Mount Hodges, Uintah Mountaing... Mount Tohkwano, Uintah Mountain Velie's Peak, Colorado Territory Mount Audubon, Colorado Territory Gilbert's Peak, Uintah Mountains. Mount Dana, California
Mount Lyell, California.
Mount Guyot, Colorado Territory.
Parry's Peak, Colorado Territory.
Three Teton's, Idaho Territory.
Bald Mountain, Idaho
Mount Flora, Colorado Territory
San Francisco Mountains, Arizona Territory
Wahsatch Mountains, Uta
Epanish Peaks, Colorado Territory
ount Englemann, Colorado Territory
Snow Line, 41° North Latitude.
Mount Wright, Colorado Territory
Mount Silliman, Califorma.
Mount San Bernardino, California.
Mount Hood, Oregon.
Mount Pitt, Oregon
Lone Peak, UTtah Territory
Black Hills, Wyoming Territory
Wind River Mountains, W yoming Torritory
Electric Peak, Yellowstone Park.
.Torritory Mount Bakez, Oregon
Mount Baker, Oregon..............
Emigrant Peak, Montana Territory
Lassen's Butte, California.
Mount Sheridan, Wyoming Territory
Mount Wasbburn, Yellowstone Park.
Ward's Peak, Montana Territory.
Mount Delano, Montana Territory
Mount Blackmore, Montana Territory.
Mnunt Doane, Yellowstone Park.
Mount San Antonio, California
Mount St. Helen's (Volcano), Washington Territory Old Baldy, Montana Territory.
Mount Garfield, Idaho Territory
Mount Adams, Waahington Territory
Bridger's Peak, Montana Territory. .
Crater Lake, Cascade Range, Oregon
Mt. Olympus (Coast Range), Washington Territory. Yellowstone Lake, Wyoming Territory. Mount Mitchell, Allegheny Mountains, N. Carolina. Mount Washington, White Mountains, N. Hampehir passes ofer the rocey mountanns.
32d Parallel, near El Paso.
5th Parallel, near Albuquerque..
38th Parallel, (Coochecopa Pass)..
1st Parallel, (Union Pacific Railroad)
42d Parallel, (South Pass)
47th and 48th Parallels, (Cadott's Pass)
47th and 48th Parallels, (Deer Lodge Pass)
47th and 48th Parallels, (Lewis \& Clark's)
Flathead Pass, (Northern Montana).
Kutanie Pass, (British America).
pabses over the bierra nevadab.
Tejon Pass, $34^{n} 45^{\prime}$ North Latitude.
Walker's Pass, $35^{\circ} 30^{\prime}$ North Latitude
New Pass, to Owen's River
Sono Pass, to Mono Lake................
Donner Pass, (Central Pacific Railroad)
Beckwith's Pass, to Pyramid Lako.
Truckee Pass.
Lassen's Pass, ($40^{\circ} 35^{\prime}$ North Latitude)
Madelin Pass.
P. suggests that a waterproof sizing or glazing be used n the manufacture of paper collars, 80 that th

Dyelng and Coloring Nacural Flowers

"Paintirg the lily" is generally considered about the acme of useless performances, but a correspondent of the Garden in the following lines tells us how to do it. The dea, of course, is not to improve on Nature'shandiwork, but imply to prepare the flowers so that they will keep foran indefinite length of time, and, when arranged in bouquets, form handsome ornaments. The process, it will be seen,may also be applied to grasses and mosses with very good effect. Dyeing is especially used for the red xerranthemum anMix ten pl., red asters, and all kinds of ornamental grases. acid, plunge the flowers in, shake off the liquid, and hang them up to dry. In this way xerranthemums, which ehould be cut when entirely open, will acquire a beautiful bright red tint; while grasses only become a little pale red on the red tint; while grasses only become a little pale red on the
tops, but will keep afterwards for many years, and may, if tops, but will keep afterwards for many years, and may, if
needed, be colored otherwise at any time. Asters generally, when treated in this way, are not so fine as if dried in sand, or smoked with brimstone. To color flowers and grasses blue, violet, red, scarlet, and orange, use the different kinds of aniline; for yellow use picric acid, and for bright scarlet use borax. The aniline dye should be dissolved in alcohol before it is fit for use, in which condition it should be kept owell closed bottles until it is required. It may also be purchased in a dissolved condition of any respectable chemist. To color by means of aniline, take a porcelain or any other well glazed vessel, pour in so:ns boiling water, and add as well glazed vessel, pour in so:ne boiling water, and add as much dissolved aniline as will nicely color the water. Ac-
cording to the quantity of aniline used, the color of the flowers will become more or less bright. After the wate has cooled a little, plunge in the flowers or grasses, and keep them in it till they are nicely colored; then rinse in cold water, shate off the liquid, and hang them up in the open air to dry. To obtain a fine blue, take aniline bleu de lian, boil the color with the water for five minutes, and then add a few drops of sulphuric acid before using. For violet, use one part aniline violet and one part of aniline bleu de lian; for red, aniline fuchsin; for scarlet, one part of aniline fuchsin and one of aniline violet; for orange, aniline d'orange; fuchsin and one of aniline violet; for orange,aniline d'orange;
for lemon color, picric acid, which should be dissolved in boiling water and then thinned with a little warm water Dip in the flowers, but do not drain off the liquid. Allkind of ornamental grasses can be thus colored, especially stipa pennata and ammoíium alatum, white xerranthemums, and most other everlasting flowers. Immortelles, however, a well as the other kinds of helichrysums, must be treated differently; their natural yellow color must first beextrac:ed by dipping them in boiling soap water, made with Italian soap, and afterwards dried in an airy, shady place. Th soap, and afterwards dried in an airy, shady place. The
flowers generally become closed when thus treated, and flowers generally become closed when thus treated, and
should be placed near an oven and subjected to the influence of a dry heat, when they will soon re open. This is very im portant if they are intended to be colored; if not, they wil remain fine pure white immortelles. Most immortelles, however, are colored bright scarlet by means of borax,which gives a beautiful color; but it does not keep well, and be comes gradually paler. For this purpose, dissolve as much borax in boiling water as will color it nicely; when cool, dip the flowers, but do not allow them them to remain in after they have taken the color; if kept in too long, they will not again open their flowers. The chief point in every will not again open their flowers. The chief point in every
mode of coloring immortelles is to place them first in a dry, warm atmosphere, wherethey will open their flowers weil and, after coloring, they should again be exposed to heat, by which means they will nearly always reopen them. Very nice looking immortelles arealso produced by coloring only the center of each flower scarlet, which is done very rapidly with borax, by means of a small pencil or a thin woode splinter, which is dipped into the color and afterwards ap plied to the center. This is generally done by little children in thoee establishments in Germany and France which sup ply the trade with everlasting flo wers. The following is a ply the trade with everlasting fo wers. The following is a
very cheap and very good recipe to color ornamental grass very cheap and very good recipe to color ornamental grass
and moss a beautiful green: If a dark green is required and moss a beautiful green: If a dark green is required, an ounce of dissolved indigo carmine; plunge the moss o grass into the mixture, shake off the liquid, and dry the grass or moss in an airy, shady place. In the winter, how ever, they should be dried by means of fire heat. If a light green is required, add to the above mixture more or les picric acid, according as a more or less light shade is re quired.

Copper Alloys and Ores.

Dr. Percy, in a recent iecture at the Royal School of Mines the above subject, said :
You must have observed the iron railings of London. Where the iron is in immediate contact with the lead at the bottom, there corrosion takes place to the greatest extent. When two metals are brought together-say, zinc and cop-per-they rust on exposure to air and moisture, but one of them serves to protect the other from rusting. To prevent the corrosion of the copfer on ship bottoms, Sir Humphrey Davy recommended that pieces of zinc should be placed in contact with the copper: by that means the corrosion of the copper was prevented, but the zinc corroded and wasted very rapidly. Since that time the Admiralty have had some more precise experimente made on this subject, and it has been found that, when in contact, lead promotes the corrosion of copper, and copper promotes the corrosion of iron.
What takes place when copper and lead are melted together (say) at temperature of melting point? Will they alloy-that is, remain permanently united when the metal of apalter and copper? Suppons I take a quantisy of copper
and melt it, and add thereto an equal weight of lead and mix the whole to and cool it rapidly, I get an ingot composed of copper and lead, almost wholly in mechanical mixture. Suppose, instead of cooling it rapidly I leave it to cool slowly; an almost complete separation of the two metals takes place; the lead, being the heaviest of the two, accumulates at the bottom of themold. The separation in this latter case is not perfect, for the copper will retain about 2 per cent of lead, and the lead also about that percentuge of copper. There is, therefore, no proper alloy of these metals in the strict sense of the term.

Next let us take copper and iron, and the iron we use wil be that which is most like pure iron-wrought iron. Suppose we expose the mixture of copper and iron to a very high temperature; we shall not get anything but a mechanical mixture; when the proportion of the iron increases beyond a certain degree, we can distinguish under the microscope small grains of that metal, diffused tbiough the mass. Iron is a white metal, and copper a red one. In every other case that I know, when two metals differing in color form a true alloy,'uhe product differs in color from either of the metale, but in the case of thje mixture of iron and copper, the product is a ruddy colored mixture like copper, the iron being diffused through it. That is to my minda satisfactory proof that it is a mechanical mixture, aud not a true alloy. To get this mixture in the best manner, take some oxide of ironand oxide of copper, as fine as possible, and mix them up intimately with some finely powdered charcoal, und then subject the mass to a high temperature; the charcoal, as we know, will then reduce both the oxides, and set free the metals in a condition most favorable for their combination.
Metallic copper or native copper is frequently found in connection with other copper ores; sometimes in vast masses, as near Lake Superior, where it was said there was one mass of copper in the metallicstate weighing not less than 500 tuns. In this condition it is, perhaps, one of the most expeasive ores of copper, for the metal is excessively tough, and cannot be blasted, but must be prepared for the market by being cut up with tools. The next ore is the oxide of copper; there are really two oxides of copper, the red and the black, and they are among the richest ores of copper. Then we have the blue and green carbonate; the latter is commonly called " malachite" and is frequently applied toornamental purpose. Theselatter oresare compoanded of oxide of copper, carbonic acid, and water ; and when heated up to a good red heat, they lose waterand carbonic acid,and thepresidue consists of oxide of copper. In treating an ore of this kind, then, we may con sider ourselves, therefore, as virtually treating an oxide of cop. per. There is another class of ores in which copper is combined with aulphur ; one exactly similar in all respects to that compound I have before described-the gray sulphide of cop per, an extremely valuable ore. Then there is another which iron occurs as a constituent-common yellow ore copfer pyrites; it consists of copper and iron, and sulphus. Sometimes copper pyrites is mistaken by inexperienced per sons for iron pyrites, a compound of iron and sulphur, which is far less valuable than the other, but here is a simple test by which you can infallibly distinguish between them. Apply the point of a penknife in the case of copper pyrites, you can scratch it easily; but in the case of iron pyrites, yon can make no mark upon it.

CHEMICAL NOTES.

Action of Heat on Gases and Vapor Condensed by Charcoal.
When wood charcoal, saturated with dry chlorine, is placed in the longer branch of Faraday's siphon ges-condensing tube, and the heat of boiling water is applied to it, the shorter branch being placed in a freezing mixture, a portion of the gas is volatilized. Pressure being thus developed, liquetied chlorine soon appears in the tube. The experiment is well adapted for a lecture demonstration. The author has liquefied in this manner ammonia, sulphur dioxide, hydrosulphuric acid, hydrobromic acid, ethyl chlocide and cyanogen.
Wood charcoal ratains so firmly the vapors of the volatile liquids, bromine, hydrocyanic acid, carbon sulphide, other and alcohol, that, upon repeating with
ust deecribed, no liquid is obtained
Pouillet observed a slight evolution of heat when water, oils, ethyl acetate, and alcohol were absorbed by mineral powdera, and still more marked effects with organic powders. The author finds that, with charcoal, still more heat than in the above case is giren out when it absorbs liquids upon which it has, apparently, no chemical actlon. Thus with 5 - 10 grains of charcoal, and $40-80$ grains of bromine, the temperature was raised $30^{\circ} \mathrm{C}$. If the charcoal had been previously heated to expel gas, and then cooled in vacuo, the absorption of bromine being also conducted in vacuo, no doubt the rise of temperature would have been still greater -Melsens. Comptes Rendus-Journal of the Chemical Society

Sugar from Caoutchouc.

Canutchouc from Madagascar yields a saccharine substance, which A. Girard has named "matezite," from the native word for caoutchouc. Matezite is white, very soluble in water, less soluble in alcohol, from which it crystallizes in tufts. It melts at 181° to a vitreous mass, which does cot
crystallize on cooling, and may be sublimed at $200^{\circ}-210^{\circ}$ crystallize on cooling, and may be sublimed at $200^{\circ}-210^{\circ}$
without decomposition. It deposits in drops. Its formula is $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{9}$: and on treatment with hydriodic acid, it undergoes a decomposition analogous to the others, forming sugar called by the author matezodambose.

Glycyrrhizin, or Liquorice Juice.

P. Griessmaper says: "It has been suspected that sugar,
of adulterating beer, and yet the opinion of chemists has been that such sugar is not fermentable. Glycyrrhizin is a glycoside, which, on boiling with acids, decomposes into glycyrretin and sugar. Even after boiling it with water, sugar may be detected by Fehling's test. The sugar obtained in this manner was treated with yeast, and after three day the fermentation was complete, and alcohol was found in large quantity by means of the well known reaction convert ing it into iodoform. During the latter stage of the ferment ation a peculiarly disagreeable putrid odor was perceived, and the substance emitting it passed over ints the distillate the disagreeable taste of some German beers is doubtless owing to this body.-Dingler's Polytechnisches Journal.

Amylammonium Chloride

Amylammonium chloride, introduced under the skin of the rabbit, guinea pig, and dog, causes, in small doses, a marked diminution of the pulse, and some fall in tempera. ture. In larger doses convulaions are produced, which end in death. With man a dose of from 8 to 16 grains lowers the pulse 10 to 20 beats per minute, and occasions a fall in temperature. Dr. Dujardin Beaumetz has administered this ealt with advantage in some cases of typhoid fever. Amylamine has not the sedative action on the nervous system which trimethylamine possesses, but surpasses it greatly in its effect on the pulee, and in its toxic action.

Experiments on the Preservation of Eges.
F. C. Calvert finds that egga, either entire or pierced a the ϵ nd by a fine needle, may be kept for three months without change in an atmosphere of nitrogen, hydrogen, or carbonic anhydride. In dry oxygen entire efge undergo no change, but if the gas ismoist the egg becomes covered with a white filamentous mold.
An egg pierced at the extremity soon becomes putrid either in dry or in moist oxygen, the amount of oxygen consumed, and of carbonic anhyiride and nitrogen evolved, being much greater in the latter case than in the former.

New laid egge immersed in weak chlorine water contained in a stoppered bottle underwent no change for nearly eight months, but on leaving the bottle open for a week, they becaune covered with penixillium glaucum.
Egga kept in a weak solution of chlorinated lime soon began to show aigns of change externally by the growth of penicillium. With lime water and with calciam sulphite, similar results were observed.

Eggs kept in solution of phenol exhibited no change for three months. They were then slightly coated with penicil lium, but their contents were perfectly sweet.

Camphor for Seeds.

According to A. Vogel, camphor is found to have a marked effect in stimulating the germination of seeds, both by shortening the period of germination and causing more seeds to sprout. Turpentine has a similar action, but seems to exert a hurtfulinfluence on the furthor developinent of the plant, which is not the case with camphor.

The Costly Mistakes of Civil Engineers.
President White, of Cornell University, makes the following strong assettion in a recent lecture:
" Another great department bearing on a multitude of industries, directly and indirectly, is civil englneering. Take one among the fields of its activity. We havein the United States about 70,000 miles of railway, and every jear thousands of miles are added. I do not at all exajgerate when I say that millions of dollars are lost every year, by the employment of half educated engineers. Proofs of this meet you on every side. Lines in wrong positions, bad grades, and curves, tunnels cut and bridges built which might be avoided. All of us know the story. But this is not all. Hardly a community which has not some story to tell of great losses entailed by bad engineering in other directions. Here it is the traffic of a great city street interrupted for a year because no engineering can be found able to make the caloulationg for a 'skew arch' bridge, a thing which eny
graduate of a mall equipped department of anginearing can graduate of a mell equipped department of encinearing can
do; there it is a city reofected to enormors loss by the fail. ure of ite wher supply eystom becanes the engineer employed made no calculation for the friction of water in the pipes; in another instance it is a whole district siokened by masma, becanse a half taught ongineer was entrusted with its drainage. We must prepare men for better work; and for every dollar thus laid out, we shall create or save thousands. Nay, we shall save lives as well as money. Mr.
Baldwiu Laiham, in his recent book on "Sanitary Engineer 1ng" and Dr. Beale, in his work on "Diseased Germs," show by statistics that a proper application of engineering to sewerage would eave one hundred thousand lires yearly in Gseat Britain alone, and the same truth holds in this country."
one Hundred and Twelve Milles an Hour on the Ice. The Poughkeepsie Eagle gives an interesting account of an example of such movement, which recently took place on he Hudson river at Poughkeepsie. "The wind biew very resh from the south, and the owner of the new ice boat Cyclone determined to take advantage of the favorable
opportunity for timing his yacht. The Hudson at this point is very wide, and at the course selected its breadth is one mile. Having made every preparation for the feat to be accomplished, the reef points were shaken out of the sails, and every stitch of canvas spread to the gale. With two
men on the windward runner to keep the boat down to the men on the windward runner to keep the boat down to the ice, the helm was turned, the sains filed, and in a moment,
with every inch of canvas drawing, she was under full headway. Like an arrow from a bow she darted away an the way. Like an arrow from a bow she darted away an the
course, cloude of pulverized ice following in the traok of
her runners as they hummed over the surface of the river, and in what seemed but an instant the river had been crossed and the mile accomplished in the almost incredible time of thirty one seconds, being at the rate of two miles in a min. ute andtwo seconds, or $112 \frac{1}{2}$ miles per hour. Persons on shore compared the speed of the flying racer to thatof a meteor flashing throughthesky, and watched her movements with eager interest. The owner afterward put the boat through some movements on the ice, and astonished the lookers-on by sailing all the way across the river on one runner, the force of the wind throwing her over on her beam ends and raising the windward runner from ten to twelve feet above the ice. Although but few were found willing to partake of the amusement, all seemed disposed to coincide in the opinion that ice jachting is the most exhilarating of sports, and the evolutions of which one of these yachts is
capable, the most graceful of anything they had ever witnessed."
We have in various articles in the back volumes of the Scientific american illustrated and deacribed the philosophy which governed the movement of ice boats, and have pointed out the reasons why they were frequently driven a consi derably higher velocity than the speed of the wind by which they were propelled. But we think the above atatement of velocity needs further verification
Allowing that the breeze which propelled the boat was a high wind, ite velocity could not have exceeded thirty-five miles per hour, while the boat moved at the rate of one hundred and twelve and a half miles per hour, which is faster than a tornado. The wind of the latter reaches a ve-
locity of one hundred miles an hour, pressing with a force of locity of one hundred miles an hour, pressing with a force of fifty pounds to the square foot upon whatever object it rapid progrese.

Correspoudeuce.

Harmentc Law of the Planetary Distances.

To t. ${ }^{2} \in$ Edditor of the Scientific American:
Permit me, through your valueble paper, to publish to the world a new harmonic law existing between planetary diswhics and motions. It is superior to Kepler's third law, all the , although only an approximation, has been the bais fit vears. The following will be found mathematically exact : The square root of the quotient arising from dividing the distance of any exterior planet by the distance of any interio planet, multiplied by the velocity of the exterior planet, shall equal the velocity of the interior planet. I give the las corrected figures of planetary distances and motion, so that any one, acquainted with the first rules of arithmatic, can work the problem, proving the existence of this leaatiful and exact law, another signature of the Omniscient Almighty:

Mean distances in milles.		Mean motion per hour.			
Mercury	35392638	105	(thousand +		iles.
Venus.	66191478	77	"	050	
Earth	91430220	65	"	533	"
Mara	139312226	53	"	090	"
Jupiter.	495693149	27	"	744	"
Saturn.	872134583	21	"	221	"
Uranus ..	. 1753851052	14	*	963	"
Neptune	. 2746271232	11	"	958	\cdots
Kingat			ALFRED	Loth	

Remarks by the Editor.-Our correspondent should communicate his results to Professor Daniel Kirkwood, of Bloomington, Ind., who is called by Mr. Proctor the "KepBloomington, Ind., who is called by Mr. Proctor the "Kep-
ler of Modern Astronomy." Kepler's laws are as follows: er of Modern Astronomy." Kepler's laws are as follows:

1. Each planet describes round the sun an orbit of elliptic form, and the canter of the sun always occupies one of the foci. 2. The areas described by the radius vector of a planet, round the solar focus, are proportionate to the time taken In describing them. 3. The squares of the times of revolution of the planets round the sun are proportional to the cubes of their major axes. The search for this lest law (which applies to the satellites also) cost Kepler 17 yeara' calculation. Harmonic relation appears throughout the universe. Ovettones in mueic, the formation of crystale, phyllo taris or thearrangement of leaves around the stem, all abow most curious numerical relations. The lines of fluted spee-
tra of the first order are supposed to be successive harmenics tra of the first order are supposed to be successive harmonics
of a single motion in the molecules of luminous gas. Perof a single motion in the molecules of luminous gas. Per-
haps these harmonic laws may yet teach us, beside the distances of planeta, the distance of atoms and the size of the molecule.

Charcoal for Wounds, etc
 To the Editor of the Scientific American:

The best simple remedy I have found for surface wounds, such as cute, abrasions of the skin, etc., is charcoal. Take a live coal from the stove, pulverize it, apply it to the wound and cover the whole with a rag. The charcoal absorbs the fluids secreted by the wound, and lays the foundation of the scab; it also pievente the rag from irritating the flesh, and it is antiseptic.
If, however, you prefer a white scab to a black one, use quinine instead. This possesses all the virtues of the charcoal, and is, besides, astringent and tonic.
Hachisch.-M. Naquet hes lately been studying the physiological action of bachisch. The extract of hemp seed (cannabis indica) administered to various persons produces a great exuberance of ideation; it is not new ideas, but the exaggeration, amplification, and combination of ideas which pre-existed in the person's mind. Hachisch produces one curious effect(which is also observed in acute mania); this is curious effect (which is also observed in acute mania); this is
a singular inclination to make puns amd plays upon words.

