THE NEWFOUNDLAND DEVIL FIBH.
Some weeks since we printed a letter from a correspondent in St. John's, Newioundland, which was accompanied with a photograph, giving a description of a huge octopus or devil fish, found by some fishermen, entangled in their nets. We present herewith an engraping prepared from a photograph of this monster, which shows the head and arms with the beak in the center. The eyes are further back and do not appear. The nucleus is supported on a stand, and the eight short arms hang down with the sackers standing out prominently from the surface, the small ends resting in a round bath in which it had to be carried. A number of suckers are wanting in one arm, having been torn off in capturing the fish; the rest are perfect. At each side of the shorter arms the two long tentacles, 24 feet each, rest on a pole over which they have been doubled several times, their terminations, covered with large and small suckers, hanging down at the extreme right and luft of the picture
It is said that even this enormous creature is small beside some which infest the northern coasts of this continent, and of which trustworthy accounts are in existence. The terrible fate of any victim which may come within its clutches can well be imagined. Each of the short arms carries one hundred suckers; and the moment one of them touches the prey, the fish feels the con tact and draws back a membranous piston. A vacuum is created and the edges of the disk are pressed against the surface of the victim with a force equal to the weight of the atmosphere added to that of the water above. The more the victim writhes, the more does it come in contact with ther disks, each of which adheres; other arm soon encircle it, bringing it within reach of the powerful beak. "Nofatecould bemore horrible," says a writer, in concluding a very graphic description of the monster, "than to be entwined in the embrace of those eight clammy, corpse-like arms, and to feel their folds creeping and gliding around you, and the eight hundred disks with their cold adhesive touch gluing themselves to you with a grasp which nothing could relax, and feel ing like so many mouths devouring you at the same time. Slowly the horrible arms, supple as leather, strong as steel, cold as death, draw the prey under the fearful beak and press it against the glutinous mass which forms the body, and then, as the victim is paralyzed with terror, the powerful mandibles rend and devour." We doubt f the most depraved opium eater, in those terrible stages of delirium which succeed the delightful dreams induced by the drug, could imagine anything much more dreadful than such a death.

BARNUM'S REMOVABLE HORSESHOE CALK.

 Mr. John D. Barnum, of Amenia Union, Duchess county N. Y., has invented a new removable calk for horseshoes which, judging from the reports of its actual use, would seem to be a valuable and useful article. Its object is, while affording a sure footing to the animal on icy pavements, to
economize in horseshoes and time; for instead of shifting shoes when the calks become worn out, it is only necessary to knock out the calks themselves, and very easily insert a new set. No especial shoe is needed, as all that is required to adapt the ordinary form to the device is the cutting of three grooves, one at either end and one near the toe, as shown in the annexed engraving. These groover are made slightly tapering, and receive the dovetail tenon on the calks as shown in the sections, A and B. The calk is attached by entering the small end of the tenon in the grooveand then drifing it tightly in. The projecting extremits of the tenon
of the shoe, forming a tight clinch.
When the calk has been worn and requires removal, it is ouly requisite to straighten out the clinched portion of the tenon and drive it out of the groove, when another calk may be inserted. Proposals regarding the investment of capital for manufacture, and inquiries for further information, should be addressed to the inventor as above.

Improvements in Concrete Construction.
A paper was recently read before the Institution of Civil

THE NEWFOUNDLAND DEVIL FISH

the Construction of Harborand Marine Works with Artificial Blocks of Large Size."
The author described a new method of submarine contruction, with blocks of masonry or concrete far exceeding n bulk anything hitherto attempted. The blocks were built in the open air on a quay or wharf ; and after from two to three months' consolidation, they were lifted by a power ful pair of shear legs, erected on an iron barge or pontoon. When afloat, the blocks were conveyed to their destination in the foundations of a quay wall, breakwater, or similar structure, where each block occupied several feet in length of the permanent work, and reached from the bottom to a little above low water level. The superstructure was afterwards built on the top of the blocks in the usual manner by tidal work. By this method the expenses of cofferdams, pnmping,staging,and similar temporaryworks were avoided, and economy and rapidity of execution were gained, as well as massiveness of construction, so essential for works exposed to the violence of the sea. Therewas now being built in this manner an extension, nearly 43 feet in hight, of the North Wall Quay in the port of Dublin. Each of the blocke which composed the lower part of the wall was 27 feet high 21 feet 4 inches wide at the base, 12 feet long in the direc tion of the wall, and weighed 350 tuns. The foundation for the blocks was excavated and leveled by means of a diving bell, the chamber of which was 20 feet square and $6 \frac{1}{2}$ feet high. When the men were at work, the bell rested on the bottom. A tube or funnel of plate iron, 8 feet in diameter rose from the center of the roof of the bell to several fee above high water level. An air lock in the top of this fun nel afforded a passage up or down, without the bell having to be lifted out of the water. The material excavated was cas into two large trays, suspended by chains from the roof of the bell; when these were filled, the bell was lifted a few feet off the bottom,and the bell barge was drawn a short dis tance away from the line of the wall, where the stuff wa discharged, by tilting the crays, and the bell returned to it work again. The hull of the floating shears was rectangula in cross section, 48 feet wide and 130 feet long. The aft end formed a tank, into which water was pumped to balance th weight of the block suspended from the shears at the bow of he vessel. The shear legs were rectangular tubular pillar of plate and angle iron, with a cross girder resting on the
top; above this girder there were two sets of pulleys, through top; above this girder there were two sets of pulleys, through and two flat links alternately. There were eight parts to each chain, or sixteen parts altogether, so that each part had o support, theoretically, one sirteenth of the suspended block. The inner ends of the chains passed down to the deck, where they were controlled by a.pair of powerful crab winches driven by a 14 horse power steam engine, which also worked a centrifugal pump for filling or emptying the ank. The slack of the chains, after pasaing through the crab winches, was led under the deck, and was coiled up in
the engine roem over fixed pulleys by two donkey engines. When paying out chain, the donkey engines were thrown out of gear, and the crab winches on deck hauled up the lack according as it was wanted. Two cast iron girder ere built into the bottom of each block, and at the end of each girder there was a rectangular hole. Four vertical ubes were built in the block over these holes in the girders and the suspending bars were lowered from above and turned at right angles, so that their ends, which were T shaped caught beneath the girders. The upper ends of the sus pender bars were also T shaped, and were attached in manner to the lower sets of pulleys, through whic the lifting chains were reeved. When a block wa set in place, the suspender bars were turned hack 90 and withdrawn for further use. Eacts block had ertical grooves left in the sides ; and when two block were in place, these grooves formed a tube 3 feet quare. A mass of concrete was subsequently thrown into the grooves, to act as a key or dowel between block and block; this completely plugged up the joints, which were only about $\frac{1}{2}$ inch open on the ace.
The paper also contained a description of an annu lar block of concrete 19 feet in diameter, weighing 80 uns, which the author constructed for the base of beacon tower, in the year 1863, and conveyed two miles down the Liffey, where it formed itsown coffer dam, in water $5 \frac{1}{2}$ feet deep at low spring tides. The water was pumped out by band pumps, and the roundinside excavated, concrete being placed on the top of the ring as it sank, like the brick wells in India or the shafts of the Thames Tunnel.
The method of making concrete and mortar, adop ted by the author, differed in some respects from tha in ordinary use. He preferred a rapid misture of the ballast or sand with cement, or lime to the slow tri turating procees of the mortar pan with edge runners The concrete mirer, devised by him, driven by a 3 horse power engine, would turn out from 10 to 12 cubic yards per hour. The mixer was a inxed horizontal or inclined trough, open on the top, with a longitudinal axis, having stout iron blades at shor intervals which, as they revolved simultaneously pugged the materials and screwed them forward The water was let on gradually through a rose, and the first few blades incorporated the materials in a dry state before they reached the water.
The author believed the application of the new system of gigantic blocks to the construction of break waters would, in many cases, be cheaper, more rapid and more permanent than the ordinary methods of construction.

Ollner's Horizontal Pendulum

M. F. Zollner communicates to the English Philosophicab aagazine a paper on the origin of the earth's magnetiom and the magnetic relations of the heavenly bodied, in whic he describes a method by which he coneiders we areenabled measure even those small forces which are, for instance, produced by the difference in distance between any point on the earth's surface from sun or moon and the distance of the earth's center of gravity, or by difference in the centrifuga force of two points at different distances from the earth' surface.
The apparatus is opresented in the accompanying engraving; $a a^{\prime}$ are thin watch springs held in continual ons by the mirror, C, in front. The stand is made firon, and the feet the tripod are as ong as posaible, in order to effect very mall chadges in position of the points of suspen. ion with to on wir rogard to the direction of low movement of he scrows. By means of the ecrew , situated in a vercal plane passing hrough the two points of suspenion, c and c^{\prime}, the
 nensitiveness of the governed, as by the relative position of the pointe, c and c^{\prime}, he time of vibration of the horizontal pendulum is determined. A timo of vibration of 30 seconds (ialf a period) is asily accomplished. B is a counterpoise of A. Before the ascillating mass, A, and the parts belonging to it were placed in the rings, which fit into small incisions cut into the cylndrical axis, it was set in vibration by the direct action of cravity round a knife edge occapying provisionally the place the turning point. The time of osillation amounted to searly 0.25 of a second. By means of a known relation, the the ratios of momente of direction are thus easily obtained, which are exerted by gravity on the नibratory masa in the

