

THE GREAT EXPOSITION-IETTER FROM UNITED STATES COMMISSIONER PROFESSOR R. H. THURSTON.

NTMBEE 6.

Vienna Welt-Ausstellung, July, 1873.
The work of the juries has, at last, been nearly completed, and the m -mbers of the inturnational jury are leaving Vienna for their wid-ly separated homes.
In roup XIII, which embraces machinery and means of transport, the work is all done, even including the awards of the greas Eiren Dipiom, unless, as is almost invariably the case at such exhibitions, a few tardy or careless ex. hibitors have been overlooked.
The publication of the awards will not be officially made for some weeks; but it seems well understood that the dis tribution has been made with unusual discrimination; al though the usual error of too great liberality will, very
prohably, be noted here, and an occasional obvious mistake may subject the jury to severe criticism.
Of these awards, the United States section is generally supposed, and probably with good reason; to have received a liberal share, and to have taken a proportion of the med als for "Progress" entirely beyond comparison with that o any other nation. The richness of our own section in orig. inal and valuable mechanical devices is thus well illus trated.
Unsatisfactory and incomplete as our exhibit in the Ma chinery Hall appears to every American engineer, it seems to the European, remarkably rich in valuable novelties.
It will probably be found that, should any of our people find themselv s undeservedly overlooked, or their exhibits not as fully appreciated by the juries as they should te, their misfortunes will, in most cases, be a consequence of their own errors, either in neglectiog to secure good representatives here, or in the still less excusable, although ex tremely frequent, neglect to prepane for the jury exact and minute descriptions of their apparatus and of their clains. American exhibitors have been vastly more careless of thri own interests, as a rule, tban have the exhibitors of any other nation. Should the result prove that we have been kindly dealt with, it must be attributed to the conscien
tiousness of the juries, and to the peculiar ingenuity and tiousness of the juries, and to the peculiar ingenuity and the exceptional merit displayed in our.machinery depart ment, rather than to the efforts of those most directly inter ested in securing careful examination and thorough discus sion of the merits of individual exhibits.
One of the most interesting records in our notebook is that of a day spent in looking over the

steam bingines,

of which a large number, of all sizes and varieties; are dis tributed throughout the exlibition. The larger example of stationary engines are, very generally, more or less exact copies of the Corliss. The Sulzer engine, which is one o the largest on exhibition aud which has attracted special at tention, would le considered a modified Corliss engine-a moditication also whichis, on the whole, in the wrong direc tion. It appears in my notebook under the d nomination of "the Sickels Curliss-Greene engine of the Swiss section." It has a "drod cut:off"-the invention of Sickels-and has the poppet valve which is usually found on Atuerican en gines of the Sickels type. Its governor determines the point of cut-off, and it is therefore, so far, a Corliss engine The peculiar motion adopted for engaging and dis + ngaging is something intermediate between that of Coriiss and one of the systems of Greene. The engine has a condenser, and is said to work with a creditable degree of economy.
Comparatively few of the Corliss engines seen here are precise copies of the original. Builders have usually en deavored to produce some difference of detail, which they claim to be peculiar to themselves, and to be improvement upon the standard machines. They seldom or in suc ceed, however, in either avoiding its defects or in introdu cing improvements. The defects of the Corliss engine ar poculiarly typical and unique design which has grown into pecaliarly typical and unique design which has grown into
its most parfect shape in the hands of its originator. To eradicate them necessitates a change in every detail and the complete transformation of the whole design. To effect.im provement, the engineer who makes the attempt must ex cel all who have $y+t$ made a similar effort.
Tne Corliss engine is a quarter of a century old, and is to day, very nearly as it was then, one of the most complete illustrations of a viechanical type that can be found. It af fords, to the student of mechanical "comparative anatomy,"
one of his most interesting studies. But the Cnrliss engine cannot be claimed to be a perfect machice. English builders, who usually exhibit quite a different style of engine, while forgetting that an effectiveexpansion (variable by the governor) can ouly be obtained, so far as eng:neers have ytt learned, by the use of a detachable valve gear, unless at the learned, by the use of a detachable valve gear, untess at
sacrifice of delicacy in regulation, have persistently adhered sacrifice of delicacy in regulation, have persistently adhered to the use of the steam
Corliss engine. The best

ENGLIBH EXHIBITORs

have usually presented a type of engine which is quite dif ferent from the Corliss. The bed is usually fat aad broad, and carries the cylinder, the guides, and the shaft pillowand carries the cylinder, the guides, and the shaft pillowtal engines. The steam cylinder is jacketed, and the jacket is firted with independent pipes to supply it with steam and to drain off water of cond+nsation. The valve gear is that of Meyer: two blocks united by a screw with right and left hand thread, riding on the back of the main valve. In at least one instance, the designer has shown his appreciation of the importance of allowing the least possible clearance by dividing the valve and making of it two, which cover ports at either end of the cylinder, instead of adopting the ordinary forn with its ntcessarily long steam passages. The governor moves a valve in the steam pipe and the degree of expansion is determined by the engineer, who, by use of the sciew, separates or draws together the cut-of blocks as occasion may seem to requice
One English firm exhibits an enginein which this is done by a link motion, the link being moved by a Porter govern or. The Porter governor, it may be remarked, is to be mt with in every part of the Machinery Hall and its annexes Even the rough and awkward looking engines which drive the machinery of the breweries and the sugar mills are fre quently supplied with this American regulator.
The crank is usually given up for engines of short strok nd a disk, carrying a counterbalance, takes its place. The workmanship of these standard British engines is usually excellent, and several firms present machines of the best o wor'smanship and having a must maguificent finish. Such tyle of finish I have nower been fortunate enough to see a ome, even on engines " gotten up for the occasion," as thes vidently are. One English engine, of cunsiderable size has a plain steam valve at each end of the cylinder, and, on "gridiron" sort, sliding transversely. The time of its movement, relatively to that of the main valve, is determined by an ingenious systern of pond九rous gearing, intermediate be ween the valve motion shaft and the main shaft, whose axes are varied in position by the action of a large fly bal overnor. It may work well, as a number of certificates ex hibited by the builder claim that it does; but the first im pression of the stranger is that such a weight of gearin must add seriously to the cost of the engine, even if it doe ant impede the action of the governor, and add perceptibly to the resistance of the machine itself. It looks like a mons rosity of engireering
Two compound stationary engines are exhibited. One, in he British section, by Galloway, has cylinders of 14 und 2 nches diameter, respectively, and a stroke of $2 \lambda \mathrm{fret}$. Its cranks are set opposite each other. Regulation is effected by a peculiar governor, resembling Porter's in being weighted and running at high speed, which adjusts the link operating the main valve. The steam jacket is not used, this importan defect being supposed to be compensated by the resuiting simplicity of the cylinder castings, and by the convenience with which the intermediate valves may be reached. Thi engine is rated at 100 t.orse power, is well made, and moder ately well finished. The

FRENCH
exhibit no stationary engines worthy of special notice, ex cept, pe:haps, in one case, where an engine has been buil with crank shaft bearings spread far apart with no other ap parent object than that of placing the eccentrics insid The awkwardness of the arrangement is something remark able and not at all to the credit of the designer. The
swiss,
beside the Sulzer engine already noticed, exhibit two Corliss ngines; and a fourth engine which combines the Corliss an the well known device known amorg our en rineers as th "French cam." In this example, the condenser and ai pump are contained in the engine frame.
The other engine, which would generally be considered the hest of all. from the fact that it least departs from the stan dard design, is well built and prettily finished. Its balance wheel isa mortise gear, and a very common feature of those orei

BELGIUM

is that of the great firm of Bede \& Co., which seems, in the pinion of engineers here, to divide the honors with that of the Gebrüder Sulzer. It is a " mixed Sickels-Corliss," and i one of the least objectionable of the new departures from the familiar American design. The steam valves are moved by two separate heart-shaped cams. The trip and the regu Corliss respectively

GERMANY AND AUSTRIA

exhibit sereral Corliss engines, usually with useless changes miscalled " improvements," and also a few engines of les reditable form.
The Dingler compound engine is one of the quietest en ines in the Exposition, and attracts attention by its noise lessness and its repidity of rotation. It seems to be fitte
with continuously revolving valves, and to possess many peculiarities which will require further investigation.
On the whole, it may be said that the row well eatablished principles of steam $\cdot \mathrm{ng}$ ine economy: dry steam, high pressure, a maximum expansion, ligh piston speed, efficient steam jacketing, and perfect regulation: ara not fully $r \in \operatorname{cognized}$ in the design of any ono steam engine exhibited here, and that the best machines, of considerablesize, which are iound in the :xhibition, are more or less exact copies of a well known stmadard American engine. Of this, or of any other of the several leading forms of stram engine which are so familiar at home, no single example is to be seen in the

ONITED states section.

Of a smaller class, the two beautitul little vertical engines of the New York Safety Steam Power Company, which are in operation in the American department, are excellent examples. Their elegance of design, fine workmanship, and bigh finish attract attention and elicit many compliments from visitors. The neat horizontal engine of the Norwalk Iron Works represents also another of our best eflorts in small powers, and another small engine, furnished by Pick ering \& Davis, is always under inspection. This latter en gine has been designed especially for the use of the Underwood angular belting. Its fly wheel is in line with the piston rod and is driven by a pair of rods and cranks, one on either side. The narrowness of the face of the wheel which is allowed by the cord like belt permits this arrangement to be adopted without too great lengthening of the crosshead.
Judiging by what is to be seen here, it must be concluded that the building of stationary s.team engines for general purposes has made $v \in r y$ little progress during the intercal which has elapsed since he Paris Exposition, which last permitted a similar international competition, and indeed, it may perhaps be said, during the last score of years. Correc: principles are but little more completely, although much more gen rally, appli.d now than many years ago, notwith standil g the fact that the great scientific principles which underlie all successful engineering practice have, dwring this same interval, received their most wonderful and essential development.
It is to be hoped that the same observations may not be called forth by the study of the American International Ex. hibition of 1876. Yet it rarely happens that marked changes in engineering practice take place in so short an interval of time as that which separates us from that event.
R. H. T.

Carrespondente.

Bolless and Boller Owners.

To the Editor of the Scientific American

Your article on "Boilers and Boiler Owners," on page 38 of your current volume, reminds me of a specimen I saw three or four weeks ago. While in an engine room near here, the engineer showed me a piece of the feed pipe and mud drum taken from under his boiler. Two wetks previous to the time of taking the mud drum out, the boiler had been tested to a pressure of 125 lbs . per square inch, the pump and boiler gage agreeing. By examining I found that a hammer could bis driven through the pipe and drum at any place, while. in some places, the tlade of a pocket knife could be thrust through.
Query: Why is it that boilers and mud drums are enabled o sustaic so high a pressure, in such a condition as the above, nd the one ai Bay City, Mich., were in?
Austin, Texas.

Jumping from Rallway Trains.

To the Editor of the Scientific American
The query of J. B. T., on page 27 of your current volume: " Why is it that enginpers, etc, jumping from moving trains, invariably jump in the direction of the moving train?" in duces me to write a few words on the subject; a subject that every one who rides, whether by horse or steam power, ought to fully understand for all such are liable to be some time exposed to danger. They should know what is best to be done at the last moment of an emergency, never before; ior jumping is so dangerous that it is only when the case is desperate that it should be attempted. Thereason for jumping forward is that that cuurse is the safest; the experience of enginetrs confirms this, and it is easily demonstrated by theory. Your correspondent argues that it is the most dan gerous. If every one could, like him, jump with the velocit of 15 miles an hour, $=21$ feet per second, the difference migh not bs so great, but I consider only the case of average hu manity. But in his case, if the velocity of the train is 30 miles an hour, and he jumps in the opposite direction 15 miles an hour, he will then move 15 miles an hour with the train, and strike the ground with a force that will almos certainly be fatal.
In the hope that some lives or limbs may be saved by a more general understanding of what should be done in such cases, permit me to explain this; I have not yet seen it in print.
The compr rative safety of jumping from a moving vehicle does not depend on the velocity of the jump, which should not exceed the velocity of the vehicle, if it can be helped but entirely and solely on the anatomical build, if I may us the term, of man. The jump should be made facing,' as nearly as possible, in the direction of the motion; relect if practicable the place; turf is best, sand is next. Never jump on a pile of stones; for a collision with stune is a dangerous as any possible casualty. One foot should be i_{n} advance, so that it will come iu contact with the ground first. Follow it instantly with the other foot, and each wil receive a part of the blow, and each will check the speed
little. Then first one hand, then the other, will take a part of the force, ond serve to protect the head and trunk. If the patient is then alive, he may pick himself up, if he can, and count his broken limbs and contusions.

A diagram will, perhaps, best explain the succession of events that the jumper sbould endeavor to procure, for the greatest safety to his person. He should try to have his limbs act like the spokes of a wheel. One foot, a, in advance touches the ground, the other foot, b, will pass by and touch, then the hands, c and d, and the head will follow. The momentum may be enough to cause the feet to turn over the head in a somersault; but this is the best that can bedone, that is, to check the momentum a little at a time.
If a person takes the advice of J. B. T., and jumps in the contrary direction, what follows? If the vehicle is moving only 15 miles an hour, and he jumps with the force of 5 miles an hour, he is actually moving backwards with the vtlocity of 10 miles an hour; and as soon as his foot touches the ground, it stops, but his head and body describe a curve through the air with a force due to the speed, the back of his head and his back :trike the ground simultaneously. Resul ${ }^{+}$, a broken spine, a crached skull and a general de. struction of the acticn of the internal organs.
Not many years ago I was the involuntary witness of an experiment of this kind. A horse car was being driven pretty rapid'y by me, on the opposite side of the street. I noticed a passenger, with an apparently heavy bundle in his hand, preparing to get off ; the conductor was looking another way ; I saw the man's danger, but was too far off to interfire. He deliberately stepped off the car as if it were motionless, but the instant his foot touched the pavement, his body and head, retaining the speed of the car, were thrown down with great force on the stones; his hat and bundle flew in different directions, accompanied with the unmistakable sound of breaking of iron castings. The man, for a wonder, did not appear to be much injured, but picked himself and his property up, a much astonished and probably a wiser man.
Let every one remember that the only safety in leaving a moving vehicle is to face in the direction of the motion.
Boston, Mass.
Charles Stodder

Explosive Projectiles, the Scimntific American:
 To the Editor of the Scimntific American:

I have read in your volume XXVIII., page 394, a description of a compound explosive projectile, which is, in my judg. ment, similar to one I invented in the year 1868. I offered it to the British Government in that year for trial, but it was refused. On September 2, 1869, I sent one to the Emperor of Russia for his approval; it was received, but the answer is not yet returned. I offered it to the present British Government, accompanied liy a drawing, November 25, 1870. It was polit-ly refused, and the drawing kept.
My projectile contained three bullet chambers attached to the main cylinder, grooved from top to bottom in center of chambers to one half the thickness of metal in main cylinder, and also grooved all round the center of the main cylin. der. Each chamber contained 106 bullets, or 318 bullets in all. Outside size of projectile was eight inches; the cham. bers were tapped, screwed, and plugged air tight. It can be filled in chambers with small shells and liquid fire, bullets and powder, fulminate, or other materials, as wished. A brass time fuse was fitted inside the powder chambers, and screwed in.
My p.ojectile was considered by many to be the most destructive known. When proved with only a minimum charge of powder, 13 lbs . of the main cylinder could not be found. This distribution of bullets and fragments took place without either fuse or plugs being in the chambers. The d:fference between my projectile and F. A. Morley's, according to the account, is that he has a separate fuse for ep.ch chamker, and possibly more chambers.
On page 368, same volume, on "Electrical Fire Arms," by Professor S. Gardner, you wish him to drive the bullet by electricity. I presume that can easily be accomplished. There is yet one further stride: to kill by electricity itself, at any distance, paralyzing those who may not be killed out. right.
J. T. Fraser.

Liverpool, England.
To the Fblitor of the Scientific American:
F. H. R. (see page 100 of your current volume) does not show the fint lens in his section drawing, and the central lens may be made thinnest; but his views are eminently sound. As inventer of the composite object glass, I will call attention to its main defects.
First, the diffraction around the edges of the lenses will slightly injure the definition, as may be seen by placing a network over the glass of an ordinary telescope. Secondly, the segment lenses are harder to correct by hand than the zones of a single lens, and the local polisher machine will spoil their extreme edges, which must be cut off, reducing their size. The third difficulty is theadjustment of the parts. The iron frame must be protected from unequal expansion; and the lenses must not differ in focus the one hundredth part of an inch. The heliometer with its divided object glass, and the success of Mr. Sellack, at Cordoba, in mend ing a broken eleven inch photographic objective, show th m_{1} the plan is a feasible one
We have consulted oracles on the subject with the follow-
ing responses: Professor Winlock thinks that a solid object glass would be the best, if we could get one. Clark \& Son believe it possible to build an equatorial with solid object glass five feet six and a half inches clear aperture, less than seventy-five feet focus, with a useful power of 3,325 (50 for each inch of aperture) for the sum mentioned. They think it would be easiest to mount it between walls, allowying a movement of only two or three hours in right ascension. They recommend importing the glass makers, as they bad to wait three years and paid $\$ 12,000$ for' their pair of glass disks from Birmingham. Henry G. Fitz considers the adjustment of the composite lenses difficult, but that, if this were at tained with sufficient accuracy, the telescope might readily be corrected photographically by the addition of a third lens, and thinks this a better plan than using monochromatic ligh for the purpose.
S. H. M., Jr.

[For the Sel-ntific American.]

The Composition of the Talls of Comets. At the conclusion of my communication on the subject of the cause of the zodiacal light, I suggested the question whether the tails of comets might not be accounted for upon simılar principles. As I believe that the application of the optical principles concerned in this case (as wall as in the other), to account for the appearances observed, is new, I have since considered the subject more fully; and as a re sult, I submit these explanatory diagrams for the considera tion of those who may take an interest in the sabject:

the foregoing explanation; 1 . When the spectator, come and sun are in the same plane (which, in this case, we have supposed to be the ecliptic), the tail of the comet would be straight, and divided through its axis by the plane of the ecliptic. 2. If the comet's position were south of the eclip tic, the tail would incline towards the south, and would be curved convexly to the south, on account of the spherical shape of the atmosphere; and if the comet were north of the ecliptic, the inclination would be to the north, and the curve would be convex to the north. 3. The length and breadth of the tail would vary inversely as the angle between the comet, sun and spectator increased or diminished; that is, it would appear longer and broader as the comet approached the sun, and shorter and narrower as it receded. 4. In this position of the comet, there would appear to be a lune shaped, darker space between the brightest part of the tai and the nucleus of the comet; that is, the brightest part o the tail would appear to be attached to the nucleus only a the two horns of the crescent. This is caused by the inter ruption of the line, a, 1, (Fig. 1) by the interference of the dark portion of the surface between the points 1 and 2 (Figs. 1 and 2). (See explanation of Fig. 1.)
The reason why the planets haveno tails, when in the same relative position (with regard to the earth and sun) as the comet, is that they are, comparatively, so large that the rellection embraces nearly the whole of the atmosphere and therefore no part is brighter than another. Comets on the contrary are, comparatively, exceedingly small; the diameters of come of them do not appear to exceed thirty miles. This is why, in the di agram, the tail appears so dis preportionately broad.
If the principle of this theo ry be understood, it will be evident that the shape and di rection of the tail may be varied almost infinitely, as they depend upon the relative positions of the three bodies, the earth, the comet and the sun.
T. R. Lovettr.

Mount Airy, Philadelphia, Pa.
The proposition which I have here attempted to demonstrate is that the tail of a comet is an optical phenomenon, cansed by the reflection of the sun's rays from the surface of the comet to the earth's atmosphere and thence to the spectator.
Fig. 1 is a section, in the common plane (which, for convenience, we will call the ecliptic) of the earth, comet and sun (the sun being in the direction of the arrows); S is the spectator; D B is the portion of the illuminated surface of the comet which is visible to the spectator. All the space comprised between the points $\mathrm{E}, \mathrm{D}, \mathrm{B}, \mathrm{S}$, would be illumin ated by reflection from that portion of the surface of the comet between the points D B. But the atmosphere which renders the light visible only extends to a, 1,4 ; therefore the spectator woald only see that included between the points a, 1, 2, 8, 8 . The comet would therefore appear to him to be at $1,2,8$. The line $\varepsilon, 1,2,3$, would appear as the line E, D, B; and the line S, B, woald appear as the line S, B. It will be observed that the line a, 1 , does not touch the illuminated portion of the comet, but is interrapted by the interference of the dark portion of the surface between the points 1 and 2. That space, therefore, would appear darker than the rest of the illuminated space. This fact will be noticcdamong our conclnsiotis.

To the Editor of the Scientific American
An Irishman, on being told that an addition of quince improved an apple pie, remarked that an apple pie made entirely of quinces would be better still. I am not an Irish. man, but it strikes me that, if theattachment of a bisulphide of carbon engine to a steam engine is a great improvement, it might be better still to apply the heat directly to the bisulphide. The boiling point being lowerthan that of water, and the specificheat and latent heat of vaporization, perhaps, also less, it would require less fuel to produce a given quan. tity of vapor oí given tension; and, as the products of combustion could be allowed to pass off at a lower temperature the heat of the fuel would be more fully utilized. Also, it would seem that a second vapor engine might be driven by the waste heat from the fire flues of the first engine.
In your article on the loss of porver in steam engines, it seems to me that you have overlooked two important points, in fact the most important. In your calculations, you start with steam instead of water, neglecting entirely the enormous quantity of heat required to convert water into steam, which is only very imperfectly utilized in heating the feed water, one pound of steam sufficing to heat five pounds, nearly, of water to the boiling foint. That this "latent" heat cas be utilized to a very great extent by the use of an easily vaporized fluid seems to be proved by the bisulphide of carbon engine, which has al ready effected a saving far be yond your estimate of possibil ities.
The second point is the large buantity of heat which necess. arily (under present conditions) goes up the smoke stack. I have already suggested one remedy for this waste in the use of a second vaporengine. Another plan which may be worth considering would be to burn charcoal, petroleum, or anthra-

Fig. 2 is a section perpendicular to that of Fig. 1, on a line drawn from the point S (Fig. 1), through a, b, c, and thence to the center of the sun. S, A, (Fig. 2) represents that line the letters and figures indicating similar points, as in Fig. 1, and the sun being in the direction of the arrows. With regard to the spectator at S , all the space comprised between the points $a^{\prime}, d, B, e, a^{\prime \prime}$, would be illuminated by reflection from that portion of the surface of the comet between the points D, d, B, e; but for the reason assigned in desciribing Fig. 1, the spectator would only see that part included be. tween the points $a^{\prime}, d^{\prime}, e^{\prime}, a^{\prime \prime}$. The comet would appear to be at d^{\prime}, e^{\prime}; the line a^{\prime}, d^{\prime} would appear as the line $a^{\prime \prime}, d$; and the line $a^{\prime \prime} e^{\prime}$ would appear as the line $a^{\prime \prime}, e$. The appearunce therefore to the spectator would be that of a crescentshaped comet on the confines bf the atmoeplere, with a tail preading out from the nucleus, $e^{\prime}, 2, d^{\prime}, 8$, in a direction , pposite to the sun, having at its extremity a width equal to $\mathrm{a}^{\prime \prime}$ (Fig. 2) and a वeptrequil to S, a (Fig. 1).
The following conclusions may, I think, be drawn from
cite in an airtight chamber, surrounded by water, un der such pressure that the escaping products of combustion would have, when released, the same or ncarly the same temperature as the surrounding air, the question being whether the heat which passes up the chimney represents more power than would be consumed in forcing air into the furnace.
Another way to save a portion of this heat would be to apply it, as in Siemens regenerating furnace, to heat the air which supplies the fire, unless indeed it is all required to produce draft.
Of course all these things present certain difficulties, but, o quote my Hibernian friend again, "if there was no throuble, sure there'd be no work for us."
Benton, Cal.
C. H. Aaron.
R. A. M. states, from his personal experience, that an application of spirits of tur entine is a certain relief for the pain of a bee sting.

