

THE GREAT EXPOSITION-IETTER FROM UNITED STATES COMMISSIONER PROFESSOR R. H. THURSTON.

NTMBEE 6.

Vienna Welt-Ausstellung, July, 1873.
The work of the juries has, at last, been nearly completad, and the m -mbers of the inturnational jury are leaving Vienna for their wid+ly separated lomes.
In roup XIII, which tmbraces machinery and means of transport, the work is all done, even including the awards of the greas Eiren Dipiom, unless, as is almost invariably the case at such exhibitions, a few tardy or careless ex. hibitors have been overlooked.
The publication of the awards will not be officially made for some weeks; but it seems well understood that the dis tribution has been made with unusual discrimination; al though the usual error of too great liberality will, very protably, be noted here, and an occasional obvious mistake may subject the jury to severe criticism.
Of these awards, the United States section is generally supposed, and probably with good reason, to have received a liberal share, and to have taken a proportion of the med als for " Progress" entirely beyond comparison with that of any other nation. The richness of our own section in orig. inal and valuable mechanical devices is thus well illus trated.
Unsatisfactory and incomplete as our exhibit in the Ma chinery Hall appears to every American engineer, it seems, to the European, remarkably rich in valuable novelties.
It will probably be found that, should any of our people find themselves undeservedly overlooked, or their exhibits not as fully appreciated by the juries as they should te, their misfortunes will, in most cases, be a consequence of their own errors, either in neglectiog to secure good representatives here, or in the still less excusable, although ex tremely frequent, neglect to prepane for the jury exact and minute descriptions of their apparatus and of their clains. American exhibitors have been vastly more careless of thrir own interests, as a rule, tban have the exhibitors of any other nation. Should the result prove that we have been kindly dealt with, it must be attributed to the conscien
tiousness of the juries, and to the peculiar ingenuity and tiousness of the juries, and to the peculiar ingenuity and the exceptional merit displayed in our.machinery depart ment, rather than to the efforts of those most directly inter ested in securing careful examination and thorough discus sion of the merits of individual exhibits.
One of the most interesting records in our notebook is that of a day spent in looking over the

steam bingines,

of which a large number, of all sizes and varieties; are dis tributed throughout the exhibition. The larger example of stationary engines are, very generally, more or less exac copies of the Corliss. The Sulzer engine, which is one o the largest on exhibition aud which has attracted special attention, would le considered a modified Corliss engrine-a moditication also whichis, on the whole, in the wrong direc tion. It ap pears in my notebook under the d anomination of "the Sickels Curliss-Greene engine of the Swiss section." It has a "drod cut:off"-the invention of Sickels-and has the poppet valve which is usually found on Atuerican en gines of the Sickels type. Its governor determines the point of cat-off, and it is therefore, so far, a Corliss engine The peculiar motion adopted for engaging and dis + ngaging is something intermediate between that of Coriiss and one of the systems of Greene. The engine has a condenser, and is said to work with a creditable degree of economy.
Comparatively few of the Corliss engines seen here are precise copies of the original. Builders have usually en claim to be peculiar to themselves, and to be improvement upon the standard machines. They seldom or never succeed, however, in either avoiding its defects or in introdu cing improvements. The defects of the Corliss engine ar not nuwerous, and those which exist are inherent in that peculiarly typical and unique design which has grown into ts most parfect shape in the hands of its originator. T eradicate them necessitates a change in every detail and the
complete transformation of the whole design. To effect.improvement, the engineer who makes the attempt must ex cel all who have y+t made a similar effort.
Tne Corliss engine is a quarter of a century old, and is, to day, very nearly as it was then, one of the most complete illustrations of a yuechanical type that can be found. It af fords, to the student of mechanical "comparative anatomy,"
one of his most interesting studies. But the Cnrliss engine cannot be claimed to be a perfect machice. English builders, who usually exhibit quite a different style of engine, while forgetting that an effectiveexpansion (variable by the governor) can ouly be obtained, so far as eng:neers have yet learned, by the use of a detachable valve gear, unless at the learned, by the use of a detachable valve gear, unless at the
sacrifice of delicacy in regulation, have persistently adhered sacrifice of delicacy in regulation, have persistently adhered to the use of the steam
Corliss engine. The best

ENGLIBH EXHIBITORs

have usually presented a type of engine which is quite dif ferent from the Corliss. The bed is usually fat aad broad, and carries the cylinder, the guides, and the shaft pillow and carries the cylinder, the guides, and the shaft pillow-
blocks, as was formerly the universal practice with horizontal engines. The steam cylinder is jacketed, and the jacket is firted with independent pipes to supply it with steam and is fited with independent pipes to supply it with steam and
to drain off water of cond+nsation. The valve gear is that to drain off water of cond + nsation. The valve gear is that
of Meyer: two blocks united by a screw with right and left hand thread, riding on the back of the main valve. In a least one instance, the designer has shown his appreciation of the importance of allowing the least possible clearance by dividing the valve and making of it two, which cover ports at either end of the cylinder, instead of adopting the ordinary forn with its ntcessarily long steam passages. The governor moves a valve in the steam pipe and the degree of expansion is determined by the engineer, who, by use of the sciew, separates or draws together the cut-o blocks as occasion may seem to requice
One English firm exhibits an enginein which this is done by a link motion, the link being moved by a Porter govern or. The Porter governor, it may be remarked, is to be mt with in every part of the Machinery Hall and its annexes Even the rough and awkward looking engines which drive the machinery of the breweries and the sugar mills are fre quently supplied with this American regulator.
The crank is usually given up for engines of short strok nd a disk, carrying a counterbalance, takes its place. The workmanship of these stazdard British engines is usually excellent, and several firms present machines of the best of wor'smanship and having a most maguificent finish. Such a style of finish I have nuver been fortunate enough to see a ome, even on engines " gotten up for the occasion," as thes vidently are. One English engine, of cunsiderable size the a plain steam valve at each end of the cylinder, and, on
the an expansion valve, apparently of the "gridiron" sort, sliding transversely. The time of its movement, relatively to that of the main valve, is determined by an ingenious systern of pond九rous gearing, intermediate be ween the valve motion shaft and the main shaft, whose axes are varied in position by the action of a large fly bal governor. It may work well, as a number of certificates ex hibited by the builder claim that it does; but the first im pression of the stranger is that such a weight of gearin must add seriously to the cost of the engine, even if it doe ont impede the action of the governor, and add perceptibly to the resistance of the machine itself. It looks like a mons rosity of engireering
Two compound stationary engines are exhibited. One, in he British section, by Galloway, has cylinders of 14 und 2 nches diameter, respectively, and a stroke of 2λ fret. Its cranks are set opposite each other. Regulation is effected by peculiar governor, resembling Porter's in being weighted and running at high speed, which adjusts the link operating the main valve. The steam jacket is not used, this importan defect being supposed to be compensated by the resuiting simplicity of the cylinder castings, and by the convenience with which the intermediate valves may be reached. Thi engine is rated at 100 t.orse power, is well made, and moder ately well finished. The

FRENCH
exhibit no stationary engines worthy of special notice, ex cept, pe:haps, in one case, where an engine has been buil with crank shaft bearings spread far apart with no oth r ap parent object than that of placing the eccentrics insid The awkwardness of the arrangement is something remark able and not at all to the credit of the designer. The
swiss,
beside the Sulzer engine already noticed, exhibit two Corliss ngines; and a fourth engine which combines the Corliss an the well known device known amorg our en rineers as th "French cam." In this example, the condenser and ai pump are contained in the engine frame.
The other engine, which would generally be considered the best of all from the fact that ic least departs from the stan dard design, is well built and prettily finished. Its balance wheel isa mortise gear, and a very common feature of those orei

BELGIUM

is that of the great firm of Bede \& Co., which seems, in the pinion of engineers here, to divide the honors with that of the Gebrüder Sulzer.. It is a "mixed Sickels-Corliss," and is one of the least objectionable of the new departures from the familiar American design. The steam valves are moved by two separate heart-shaped cams. The trip and the regu ating apparatus are essentially the forms of Sickels and Corliss respectively.

GERMANY AND AUSTRIA

exhibit sereral Corliss engines, usually with useless changes, miscalled " improvements," and also a few engines of les creditable form.
The Dingler compound engine is one of the quietest engines in the Exposition, and attracts attention by its noise
with continuously revolving valves, and to possess many peculiarities whlich will require further investigation.
On the whole, it may be caid that the yow well established principles of steam $\cdot \mathrm{ng}$ ine economy: dry steam, high pressure, a maximum expansion, ligh piston speed, efficient steam jacketing, and perfect regulation: ara not fully $r \in \operatorname{cognized}$ in the design of any ono steam engine exhibited here, and that the best machines, of considerablesize, which are iound in the :xhibition, are more or less exact copies of a well known standard American engine. Of this, or of any other of the several leading forms of stram engine which are so familiar at home, no single example is to be seen in the

ONITED states section.

Of a smaller class, the two beautitul little vertical engines of the New York Safety Steam Power Company, which are in operation in the American dtpartment, are excellent examples. Their elegance of design, fine workmanship, and bigh finish attract attention and elicit many compliments from visitors. The neat horizontal engine of the Norwalk Iron Works represents also another of our best eflorts in small powers, and another small engine, furnished by Pickering \& Davis, is almays under inspection. This latter en gine has been designed especially for the use of the Underwood angular belting. Its fly wheel is in line with the piston rod and is driven by a pair of rods and cranks, one on either side. The narrowness of the face of the wheel which is allowed by the cord like belt permits this arrangement to be adopted without too great lengthening of the crosshead.
Juciging by what is to be seen here, it must be concluded that the building of stationary s.team engines for general purposes has made $v \in r y$ little progress during the intercal which has elapsed since he Paris Exposition, which last permitted a similar international competition, and indeed, it may perhaps be said, during the last score of years. Correc: principles are but little more completely, although much more gen rally, appli•d now than many years ago, notwithstandil g the fact that the great scientific principles which underlie all successful engineering practice have, dwring this same interval, received their most wonderful and essential development.
It is to be hoped that the same observations may not be called forth by the study of the American International Ex. hibition of 1876. Yet it rarely happens that marked changes in engineering practice take place in so short an interval of time as that which separates us from that event.
R. H. T.

\mathfrak{C} arrespondente.

Bolless and Boller Owners.

To the Editor of the Scientific American

Your article on "Boilers and Boiler Owners," on page 38 of your current volume, reminds me of a specimen I saw three or four weeks ago. While in an engine room near here, the engineer showed me a piece of the feed pipe and mud drum taken from under his boiler. Two wetks previous to the time of taking the mud drum out, the boiler had been tested to a pressure of 125 lbs . per square inch, the pump and boiler gage agreeing. By examining I found that a hammer could bis driven through the pipe and drum at any place, whilt. in some places, the klade of a pocket knife could be thrust through.
Query: Why is it that boilers and mud drums are enabled o sustaic so high a pressure, in such a condition as the above, nd the one ai Bay City, Mich., were in?
Austin, Texas.

Jumping from Rallway Trains.

To the Editor of the Scientific American
The query of J. B. T., on page 27 of your current volume: " Why is it that enginpers, etc, jumping from moving trains, invariably jump in the direction of the moving train?" in duces me to write a few words on the subject; a subject that every one who rides, whether by horse or steam power, ought to fully understand for all such are liable to be some time exposed to danger. They should know what is best to be done at the last moment of an emergency, never before; ior jumping is so dangerous that it is only when the case is desperate that it should be attempted. Thereason for jumping forward is that that cuurse is the safest; the experience of enginer rs confirms this, and it is easily demonstrated by theory. Your correspondent argues that it is the most dan gerous. If every one could, like him, jump with the velocit of 15 miles an hour, $=21$ feet per second, the difference migh not br so great, but I consider only the case of average hu manity. But in his case, if the velocity of the train is 30 miles an hour, and he jumps in the opposite direction 15 miles an hour, he will then move 15 miles an hour with the train, and strike the ground with a force that will almos certainly be fatal.
In the hope that some lives or limbs may be saved by a more general understanding of what should be done in such cases, permit me to explain this; I have not yet seen it in print.
The compr rative safety of jumping from a moving vehicle does not depend on the velocity of the jump, which should not exceed the velocity of the vehicle, if it can be helped but entirely and solely on the anatomical build, if I may us he term, of man. The jump should be made facing,' as nearly as possible, in the direction of the motion; relect if practicable the place; turf is best, sand is next. Never jump on a pile of stones; for a collision with stune is a dangerous as any possible casualty. One foot should be in advance, so that it will come iu contact with the ground first. Follow it instantly with the other foot, and each wil receive a part of the blow, and each will check the speed

