creditable to science to have erred by nearly four millions of miles id estimating the sun's distance. But such may be reminded that the error of $0.33^{\prime \prime}$ (thirty-two hundredths of a second) in the sun's parallax, on which the correction turns, corresponds to the apparent breadth of a human hair at 125 feet, or of a sovereign at 8 miles off."
It is on such minute measurements that the approximate exactness of astronomy depends. The limit of probable error in the latest and most satisfactory determination of the sun's distance is somewhere about half a million miles, say one eighth part of the last correction. We may leave it to the reader to calculate how extremely d licate the observations of the coming transits must be to effect any consid• erible reduction in this apparently great but relatively minute inexactness.

EFFLUX OF STEAM.

If a fluid issues thr' ugh all opening, without friction, the velocity of its flow will be the same as it would acquire in falling through a hight due to its pressure. For instance, suppose that steam at atm'spheric prtssure flows in to a vacuum. Steam at atmospberic pressure, or 14.7 pounds per square inch, will have a pressure of $14.7 \times 144=21168$
pounds on the square foot. A cubic foot of steam, at this pressure, weighs about 0.0364 pounds, so that the hight of a column of steam, necessary to produce this pressure per square foot, would be $2116.3 \div 0.0364=58153$ feet. The ve locity acquired ly a body in falling throngh this space is found by extracting the square root of $64^{\prime 3} 32 \times 58153$. Tbis found by extracting the square root of 1934 as the velocity in feet per second with which gives 1934 as the velocity in feet per second
steam at atmospheric pressure will flow into a vacuum, if there be no frictional resistance. In practice, it is found that when a fluid is discharged through an orifice or tube, the actual velocity is less than the theoretical, so that a co-fficient of correstion is ne eescary in using the theoretical formula. Numerous experiments have been made upon the velocity of discharge of water, air and steam, those upon water being the most extended and reliable. It is difficult, when experimenting with steam, to maintain a constant pressure, and the velocity is so great that it is not easy to makH an exact m 1 -asurement. For these reasons, the results of different ex. perimenters vary greatly. In this article, we shall endeavor to give the most accurate results that have been obtained.
There is one case, in the flow of water, in which the actual velocity of discharge varies but little from the theoretical. We refer to that in which the water flows through a mouth piece shaped to the form of the contracted vein. This mouthpiece has a length about equal to the diameter, and is constructed with a bell shaped mouth, its diameter being de creased at the middle of its length to atoout eight tenths of its original size. Experiments with this kind of mouth piece in the case of steam, however, show varying co-fficients of velocity for discharges under different pressures. The table given below will illustrate this.
table of coefficients of the velocity of dibcharge of STEAM into the atmosphiere, throdgh a mouthpiece having the form of the contracted vein.

HAVING THF FORM OF THE CONTRACTED VEIN. Pressure in pounds per square Inch above atmosphere.	Weight per cabic foot.	Coefficient.
1	00396	0.93
5	0.0510	085
10	0.0598	0.78
20	0.815	071
30	0.1025	0.69
40	0.1232	0.68
50	0.1436	0.67
60	01636	0.66
70	0.1833	0.65
80	0.2030	0.64
90	0.2224	0.63
100	0.2410	0.62

These coefficients have been determined experimentally for orifices varying from four tenths of an inch in diameter up to one and a balf inches. We will now explain how to use them, illustrating by an example.
The expression for the theoretical velocity is $v=\sqrt{2 g h}$, or the velocity of discharge in feet per secoud is equal to the square root of twice the acceleration due to gravity multi plied by the hight due to the effective pressure. The actual veiocity is equal to the theoretical velocity multiplied by the proper coefficient
Example: With what velocity will steam at a pressure of 50 pounds by steam gage issue into the atmosphere through a mouthpiece having the form of the contractrd vein? Answer: $50 \times 144=7200$ pounds pressure per square foot. 7200 $\div 0.1436=50139$ feet $=$ hight du to pressure. $\sqrt{ } / 6432 \times 50139$ $\times 0.67 \times 1203=$ velocity of efflux in feet per second. Cor rections can be applied to the coefficients given in the preceding taill r, to adapt them to other cases thau that in which the stram issues through a mouthpiece baving the form of the contracted vein.
For a tube haviug rounded edges, and a length equal to once and a half the diameter, ded uct 0.03 from the coefficient for any given pressure. For a tube with equare edges, and a length from once and a quarter to twice and a half
the diameter, deduct $0 \cdot 13$ from the cuefficient. For a plain the diameter, deduct $0 \cdot 13$ from the coefficient. For a plain
tube whose length is 12 times the diameter, deduct 0.24 from tube whose length is 12 times the diameter, deduct 0.24 from
the coefficient. When the length of the tube is 24 times the diameter, d duct 0.28 from the coefficient.
To find the velocity of efflux through an orifice in a thin plata, the thickness of the plate being not more than one tenth the diameter of the orifice,correct the coefficients given in the table as follows: Deduct 036 , when the pressure does not exceed half a pound per square inch. Deduct 0.21 when the pressure is equal to one atmosphere.

We will give an example in one of these cases, as it will illustrate the method of proseeding for all: Suppose steam of 40 pounds pressure per gage issues through a pipe one
inch in diamet:r and twenty-four inches long, what is its velocity? Answer: $40 \times 144=5760$ pounds pressure per quare foot, and $5760 \div 0 \cdot 1232=46753$ feet, hight due to $\sqrt{6232 \times}$
eet per feet per second. The preceding constants were determined be observed that they apply to orifices from four tenths an inch to ose and a half inches in diameter, and having lengths from oue ten: h to twenty-four times the diameter, the experiments having been made on the efflux of steam through orifices varying within these limits. Approximate formulas. for general use, have been established by the late Professor Rankine, and we will give these, illustrating them by examples.
Case 1: When the pressure of the medium into which the steam flows is less than three fifiths of the pressure in the reservoir, the number of pounds of steam discharged through a pipe or orifice is found by multiplying the area of the pipe (in square inches) by the pressure of steam in the res ervoir, and dividing the product by 70. Example: Ho much steam will be discharged from a boiler into the atmos pounds? Answer: Here the absolute pressure in the boil is $15+14 \cdot 7=29 \cdot 7$ prunds per square inch, and the area of the pipe is 707 square inches. Hence the quantity of steam discharged per second will be $(297 \times 707) \div 70=2 \cdot 99$ prunds The volume of this steam will be $2 \cdot 99 \div 0 \quad 0707=42.4$ cubic feet, and the velocity of discharge in feet per second will be found by dividing the volume by the area of the pipe in square feet. This g : ves the velocity : $42 \cdot 4 \div 0 \cdot 0492=864$ fee per second.
Case 2. When the pressure of the medium into which the team is discharged is more than three fifths of the pressure in the reservoir, the number of pounds of steam discharged per second is found as follows: Multiply the area of the pipe (in square inches) by the product of the external pressure divided by 42 and the square root of the difference of the internal and external pressures divid $\cdot \mathrm{d}$ by two thirds of the external pressure. Example: Steam of 5 pounds press ure. per gage, is discharged through a 2 inch pipe into the atmosphere. 'Absolute pressure of steam in boiler $=5+147$ $=19.7$ pounds (absolute external pressure $=14 \cdot 7$ pounds). Area of pipe $=3 \cdot 1416$ square inches. ' Applying the rule, w find the quantity of steam discharged per second $=3.1416 \times$ $(14.7 \div 42) \times \sqrt{(19.7-14.7} \div\left(\frac{2}{8} \times 14.7\right)=0.785$ pounds. The
velume of this steam is $0.78 .5 \div 0.048^{\prime}=16.1$ cubic feet, and volume of this steam is $0.785 \div 0.048 i=16.1$ gubic feet, and the velocity of discharge is $16 \cdot 1 \div 30218=739$ feet per W, 0218 being the area of the pipe in square feet
With the formulas given ebove, our readers will be abl的位e nearly any question that may arise regarding the purposes.

ezekiel page

We regret to hear of the demise of Ezukiel Page, formerly of Boston, Mass., inventor of the machine for turning oars. Mr. Page's name has been associated with this particular branch of industry for more than a generation; and at one time he possessed the only factory in the world wherein oar were made by machinery. Indeed at the present day the chief business connected with the oar trade in this country remains in the hands of the Page family. The manufacture
has been so perfected that little chance remains for improve ment. It is difficult to obtain a poor article from any con cern where the Page machinery is used, because the mechanism never slights its work, but imparts true and exact pro portions to every pier e of lumber. Clumsy ill-shaped oars must be lonked for in shous where the labor is done by hand.
Ezekiel Page's first improvement in this line was patented in 1842, for a new method of sawing out the oar lumber. The old method was to saw the logs into square sticks equal in size to the width of the oar blade, one oar being cut from one stick. By giving a peculiar movement to the carriage of the same block. He produced two blades where only one before was made. This gave him the oar monopoly and entitled him to rank as a benefactor of the race. His name will be for ever boncred by every loyal boatman
Page's next improvement, patented in 1845, was a mech. nism for producing the swell on the oar handle. This he accomplished by means of a contrivance for moving the slide rest of the lathe, in such a manner as to compel the cutters to shape the wood to the exact form required.
Ezekiel Page, at the age of 62 years, rests from his labors. He never made much noise in the world, ald yet he contributed, for the use of his felow men, a discovery of immense economical importance. Think of the milliuns ef oars now used in all parts of the world, and then remember that he taught us
of wond.
There is one other legacy thathe has left us, more precious ven than his useful inventions. It is the record of a gen. erous, upright, amiable and well-spent life. Ezekiel Page was an honest man

Friction of Water in Pipes..

In our article on this subject, on page 48 of the current 1. Prony's formula:
$\mathrm{h}=0.00040085 \times(\mathrm{L} \div \mathrm{d}) \times\left[(\mathrm{v}+0.15412)^{2}-0.02375\right]$.
2. Brooklyn Water Comm'ssioners' formula:
$\mathrm{h}=0.00046749 \times(\mathrm{L} \div \mathrm{d}) \times\left(\mathrm{v}+0.39{ }^{7}\right)^{2}$
8. Lane's formula:
$h=0.000625 \times(L \div d) \times \nabla^{2}$,
We republish them, as, separated from the verbal oxpla

sCIENTIFIC AND PRACTICAL INFORMATION

black varnibi for zinc.
Professor Böttger pr-pares a black coating for zinc by dis solving 2 parts nitrate of copper and 3 parts crystallized chloride of copper in 64 parts of water, and adding 8 parts of nitric acid of specific gravity. This, however, is quite xpensive; and in some places, the copper salts are difficult to obtain. On this account Puscher prepares black pai, t or varnish with the following simple ingredients: Equal parts of chlorate of potash and blue vitriol are dissolved in 36 times as much warm water, and the solution lefic to cool. If the sulpbate of copper used contains iron, it is precipitated as a hydrated oxide and can be removed by decantation o filtration. The zinc castings are then immersed for a few seconds in the solution untilquite black, rinsed off with wa ter, and dried. Even before it is dry, the black coiting ad heres to the object so that it may bis wiped d $d^{\prime} y$ with a cloth A more economical method, since a much smaller quantity of the salt solution is required, is to apply it repeatediy with sponge. If copper colored spots appear during the opera ion, the solution is applied to them a second time, and after a while they turn black. As soon as the object become equally black a 1 over, it is washed with water and dried. Ou rubbing, the coating acquires a glittering appearance like indigo, which disappears on applying a $f \in w$ drops of linseed oil varnish or "wax milk," and the zinc then lias a deep black color and gloss. The wax milk just mentioned is prepared by boiling 1 part of yellow soap and 3 parts Japanese wax in 21 parts of water, until the coal, dissolves. Wken cold, it has the consistency of salve, and will kiep in closed ressels as long as desired. It can be used for polinhing carved wood work and for waxing ballroom Hoors, as it is cheaper than the solution of wax in turpentine, and does not stick or smell so disagiteable as the latter. A permanent black ink for zinc labels is prepared by dissolving equal parts of chlorate of potash and sulphate of copper in 18 parts of water, and adding some gum arabic solution. The black polish above described is rrcommended as permanent and capable of resisting quite a high temperature.
mandfacture of chlorate of potabh
To manufacture chlorate of potash on a large scale, it bas been recommended by W. Hunt to adopt the following method: Milk of lime is made to trickle down over bricks placed in a tower where it comes in contact with a continuou current of chlorine gas. Culorate of lime is the chief product, and, by treating this with chloride of potarsium, ch'o rate of potash is formed, way ich can be purified by crystalli zation.

YELLOW GLABS FOR PHO'TOGRAPHIC PURPOBES
The following simple method of testing the actinic profer ties of yellow glass for dark rooms is by Le Nove Foster and the only apparatus required is a cheap glass prism. When a strip of white paper is [laced on a dull black sur face and looked at, through the prism, by daylight. it has the appearance of the rainbow, showing a crimplete spec trum. On bringing the yellow glass in question betwe n the prism and the strip of white paper, those colors which are absorbed by the colored glass disappear. If on look. ing through the prism any blue or violet rays are seen, it is certain that the glass transmits the chrmical rays and hence is unit for photographer's use. If only red and yellow bo seen, it is non actinic.
testing bolphate of aldmina.
Sulphats of alumina frequently contains an excess of acid which injures it for use in dyeing. Whether the sulphuric acid bc present in excess is easily ascertained by etirring the pulverized salt into alcohol, which dissolves the free acid but not the salt. It is then only necessary to filter the solu tion and test for acid with litmus. The amount of sulphuric acid can a`so be obtained volumetrically. Pure sulphate of alumina produces with a decoction of camprachy wood a dark violet or purple color. If free acid be present, the color is browner

Progress of the Hoosac Tunnel during the Month of July, 1873.—East end section: Heading completed Decpmber 12, 1872. Central section: Heading advanced westward 151 feet. West end rection: Heading ad vanced eastward 137 feet. Total adrauce of headings during month, 288 feet. Length opened from east end westward, 14,285 feet length opened from west end eastward, 9,677 fret. Total 'engths opened to August $1,18{ }^{7} 9,23,912$ feet. Lengih re maining to be opened Augnst $1,1,119$ feet.

Albumen Extracted from Milk -Schwalbe has found that if oil of mustard be added to cow's milk in the proportion of one drop to $1 \cdot 1$ drams, the milk does not coagulate even after being kept for a considerable period: but that the caseine is transformed into albumen. If this discovery says Les Mondes, is confirmed, it will be of considerable im portance in the printed fabric industry

Squeaking Bootr and Shoes.-To prevent the soles of oots or shoes from squeaking, says the Shoe and Leathe Onronicle, rasp, with a coarse rasp, the outsole and insole, friction by the action of the foot. Then apply freely good wheat or rye puste. If this is well attended to from heel to toe, the boot or shoe will not squeak.

Colt's Friearms Colfpany has just received an order fo 30,000 pistols. Smith \& Wesson have commenced work upon 20,000 Russian pistols, and will make about 150 daily.

