Burntifu Immirat.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEELLY AT ND. B7 PARK ROW, NEW YORK
U. D. MUNN.
A. E. BEACH.

TRIMTS.
One copy, one year...
One copy, six months
Club rates $\left\{\begin{array}{l}\text { Ten copies, one year, each } \$ 250 \text {. } \\ \text { Over ten copies, same rate, each. }\end{array}\right.$
vol. XXIX., No. 8 . . [New Series.] Tioentyeighth Year.
NEW YORE, SATURDAY, AUGUST 23, 1373.

Contents :	
(Illustrated articles are marked with an asterisk.)	
Accident, shocking............... 115 Now books and publications...... 121	
Business and personal.......a... ${ }^{12}$	
Comets, the composition of the tails of	
Compasses, location of standard. $118{ }^{1} \mathrm{P}$	
Cot, perambulatiog**........ici. 118 Projectiles, explosive.............. 117	
Emux of steam................. 118 Sash cord fasteneri*.................. 115	
Light, the physiologicai action of 120 waste paper, uses of............... 120	

THAT "DASTARDLY OUTRAGE" AGAIN.

We have been recently favored with a lengthy epistle from Mr. John Fehrenbatch, the author of a letter lately commented upon by us, relating to alleged grievances of workmen in the works of Messrs. Stearns, Hill, and Co., of Erie, Pa . The present document is little more than a repetition of the personal difficulties between the above named employers and their men, which, as we before remarked, is a subject interesting solely to the parties in the controversy and in no wise to the public. The circumstances have little or no bearing on the main question of the right of employers to hire or exclude exactly such persons as they please without resorting to outside dictation or advice.
Our correspondent mistakes the position we assume in regard to troubles of this nature, and evidently infers that we desire to champion the side of the employers as against the men in all cases and even in purely personal misunderstandings. We deal with these questions with reference to their effect upon one or the other of the great classes, employers or employed, impartially, and not with regard to any particular set of m̂en or any especial establishment. If a concern treats its workmen in a manner calcnlated to give a basis for the gererally unfounded assertions of trades' union demagogues, we endeavor by well meant advice to point out the fallacy and inexpediency of such a course; and similarly, on the other hand, we do mot hesitate to condemn any body of workmen who, by attemptsat intimidation or dictation, cause employers generally to adopt stringent measures calculated to restrict their privileges or injure their interests.
The lotter before us includes an extract from a speech of the President of the International Union, in which the employers in question are stigmatized as "pirates and robbers of the rights of labor." This is not the way to bring about the amicable adjustment of any trouble. In our opinion, a wiser course would be to counsel moderation and proper respect for the rights of others.

SPONTANEOUS GENERATION.

All experiments thus far made with infusions of different substan $3 e_{8}$ for the purpose of producing infusorial animalculæ, apłeared to prove that the access of air was necessary
for their formation. Pasteur, who has extensively occupied himself with these investigations, found at last that the germs of these animalculæ could, under certain circumstances, resist a trmperature of 212° Fahr., as he obtained bacieria from solutions which had been previously boiled and afterward came only in contact with air which had been dried and purified by passing it through red hot pumice stone.
However, in 1869, Dr. H. Charlton Bastian took the matter up, and commenced trying if he could not produce animal life in a vacuum. He experimented with various fluids, especially infusions of hay and turnips; he placed them in one ounce flasks, having narrow drawn out necks, and heat ed the solutions in them rapidly till they commenced to boil over, so as to be sure that all air was expelled; then he kept them boiling for from a quarter to half an hour, while thesteam was escaping with some force; then the neck was sealed up by meltirg the glass with a blowpipe flame, while at the same time the heat was withdrawn. In this way he produced after some practic \ni a perfect vacuum, that is to say, one where air was excluded, and only watery vapor present. quite obvious; this means that the water could be made to fall with a shock from one end of the tube to the other, with. out passing an atmospheric bubble, as is the case when air is present. When the little flasks were thus prepared, they showed the development of bacteria and other minute
moving organisms just as well as if they had not been zubmoving organisms just as well as if they had not been zub-
mitted to great heat, and air had access. The time required
for this phenomenon varied from a few hours to several days. Even when the flasks, after being closed, were submitted for several hours to boiling water, the organisms appeared; and Dr. Bastian went even so far as to submit them for four hours to a temperature of 300°, and about 6^{\prime} in excess, without preventing the subsequent development of the animalculæ. He reasoned then as follows: As the germs cannot come from the air and pass through the glass, only one of two conclusions is admissible. 1. That the invisible germs of the animalculæ are able to stand a heat of 306° without being killed; or (2) that living things can be evolved from nonliving matter.
The first conclusion is that of Pasteur, and is based on the assumption of the old maxim omne vivum ex ovo (all life comes from an egg), deduced from the fact that it is known to be true for all the higher animals and plants, and that its extension to the lower forms of life, which are intermediate between animal and vegetable, is snpposed to be a legitimate deduction on the ground of natural law.
The second conclusion is that defended by Dr. Bastian; he maintains that the doctrine of evolution, now established by an overwhelming weight of evidence, absolutely requires that living matter must at some time have arisen from that which was not living, and that, in absence of any reason to the contrary, the uniformity of natural law should lead us to believe that the process continues to take place. He says that all analogy is against the possibility of the assumed that all analogy is against the possibility of the assumed over 300°. No liviog being that we know of can endure over 300°. No living being that we know of can endure
the heat of boiling water, 212°, except a few seeds of the higher plants, which are protected by a very hard and nonconducting coat. Most animals and plants, indeed, perish at a much lower temperature. With regard to the bacteria themselves, they are mere specks of naked protoplasm; they are utterly destroyed at 140°, as sufficiently proved by the numerous experiments made by Pasteur, Bastian, and others. It is unlikely, therefore, that they should have germs capable of enduring 306°.
Experiments were also made by Dr. Bastian with fluids capable, after being boiled, of nourishing bacteria when any wére put into them, and of supporting their copious reproduction, though not evolving them anew when enclosed in hermetically sealed vessels. The uniform result was that 140° not only kills all living bacteria, but also prevents the further development or reproduction of any germ which might be supposed to exist. The natural conclusion is that
they do not exist, and therefore these experiments exploded they do not exist,
the germ theory.
We hope that these inves'igations will continue so as to obtain uniform results; as only then can a full discussion of the possible explanations ensue. In the meant:me, Dr. Bastian's experiments are drawing the attention of the most eminent philosophical naturalists. For instance, Alfred R. Wallace ranks Bastian's book as equal in value to Darwin's "Origin of Species," or Spencer's "Principles of Biology," especially in regard to "curious and novel facts," "new and astounding views of the origin of life," "excellent reason. astounding views of the or'
ing," and "acute criticisms.
There is, however, one point to which we wish to draw attention; it is the assumption that these living organisms attention; it is the assumption that these living organisms
are evolved entirely from inorganic matter. This, we believe, is not strictly correct; the infusions all have olganic origin; they are organic compounds, and it is well known that the organic compounds are not decomposed into their inorganic elements, except by actual combustion. Starch, sugar, gelatin, etc., are not destroyed, as such, by a temperature of 300°, therefore, if we attempt to generate living organisms from inorganic matter, we must not commence by using organic subetances, but must confine ourselves to ele ments, or their simple inorganic chemical combinations.

RECENT GEOLOGICAL INVESTIGATIONS.

 M. Jules Marcou communicates some interesting geolog ical notes to the French Geographical Society, gathered from various eminent sources, while preparing a new gevlogicalmap of the globe, recently forwarded to the Vienna Exposimap of the globe, recently forwarded to the Vienna Exposient of the crystaline rocks) palæozoic, carboniferous, triassic and tertiary formations. An important fact, from its bearing on the history of the earth, is the discovery of terrestrial flora dating from the tertiary miocene epoch, which show that the entire arctic polar region must have been covered with vast forests similar to those which now exist in the northern hemisphere as far north as the borders of the tropic of Cancer. In Norway, peat deposits have been found in Andae Island, one of the Loffoden group, which, like similar beds in Yorkshire, England, are of the jurassic epoch. The existence, in Russia, of an enormous triassic formation has been determined; this had, heretofore, by Sir
Roderick Murchison and others, been attributed to the Permian system. In Syria and Egypt, continuous and extensive deposits of red sandstoneindicate the homogeneous nature of the rocks of Asia and Africa. On the other hand, the most recent geological studies, made in New Zealand, Australia, and some of the Pacific islands, prove that Madagascar, in
spite of its proximity to the African continent, appears to spite of its proximity to the African continent, appears to that of New Zealand and Western Australia. In South America, MM. Musters and Pourtalés have found a group of extinct volcanoes between the Gallegos river, Cape Virgin and the eastern entrance of the Straits of Magellan.
M. Marcou considers the classification of stratified rocks, as generally laid down in modern geological treatises, as very ern temporate zone. In the West Indies and California, and on ern tempsrate zone. In the West Indies and California, and on
the Missouri river, he states that the difficulties of classifica-
tion augment in proportion as new discoveries are made. In the first mentioned part of the globe, for example, Dr. Waa. gen has found, in beds of limestone a foot and a half thick forms of fossils which are generally distributed in very dif ferent deposits, and which are supposed to belong to carboniferous, triassic and jurassic rocks. These evidences are not accidental, but are multiplied in Nebraska, Illinois, California, Australia, and even in New Zealand

THE BASE LINE OF ASTRONOMY.

When a land surveyor wishes to fird the distance between two points, separated by an obstacle to direct measurement, two points, separated by an obstacle to direct measurement
say an impassable swamp or a sheet of water, he resorts to triangulation. To the right or left of the line to be detertriangulation. To the right or left of the line to be deter-
mined, he lays off another line, from the extremities of which mined, he lays off another line, from the extremities of which
he takes the compass bearings of the points whose distunce he takes the compass bearings of the points whose distance
from each other he wants tn learn. The angles thus found, from each other he waints tn learn. The angles thus found,
together with the length of the measured line, are all the data needed for calculating the length of the required line. In extensive surveys, this principle of triangulation is used almost exclusively. A single base line is measured with great accuracy, and all the other distances in the survey are calculated by means of a series of triangles erected ou it. The correctness of the entire work deperds, consequently, on the exact determination of the length of the pimary line. If there be an error in this, the utmost care in all subsequent observations and calculations cannot prevent the survey from going wrong. Hence the minute precautions always taken in choosing the site and determining the exact position of the base line, in reducing it to a perfect level and in finding its length to the minutest fraction, precautions in volving the utmost niceness of instrumental construction, the utmost care and patience in observation and calculation, and repeated measurement, occupying months of time.
If the exact survey of a State or a strip of coast line is worthy of so much preiminary care and cost, how much more so is the survey of the universe! In surveying the earth, it is possible at any time to test the correctness of the work by measuring a new line and comparing its length thus found with the length obtained by calculation. In the survey of our Atlantic coast, for example, such a test line was vey of our atlantic coast, for example, such a test line was
measured on an island in Chesapeake Bay, the original base measured on an island in Chesapeake Bay, the original base
line lying on Mount Desert Island off the coast of Maine ; the line lying on Mount Desert Island off the coast of Maine; the
result proved the substantial accuracy of the entire work of result proved the substantial accuracy of the entire work of
triangulation covering the larger part of seven or eight States. In astronomy, there is no such ever present means of testing respits and ensuring ccrrectness. Everything hinges on the determination of the primary base line, so that any error in it inevitably vitiates the estimate made of every other astro nomical distance. And still more, the dimensions and weights of all the heaverly bodies beyond the moon, not less than their distances from the earth and from each other, are determined by calculations which involve the astronomical base line as a known element. It is the foundation, in fact, of all mathematical astronomy. Hence the importance of its determination with the utmost possible accuracy.
The base line in question is the sun's distance from the earth. The measurement of this distance with all attainable exactness, and the determination of the maximum limit of unavoidable error, constitute the most important problem now engaging the attention of the astronomical world. The rare opportunity which will be afforded by the approaching transits of Venus for attacking this fundamental problem, under the most favorable conditions and with all the improvements in means and methods attained by modern science and mechunical skill, very naturally raises those fhenomena to the highest rank among the astronumical nccurrences of the century. They cannot pass without furvishing data for greatly reducing the known inaccuracy of the current estimate of the sun's distance, and consequently for a more correct determination of all other astronomical magnitudes. "Known inaccuracy!" some may exclaim, especially those whose ideas of heavenly bodies and spaces have been gained from ordinary text books, with their positive statements and professed precisicn. "Is not astronomy an exact science? And are not the magnitudes it deals with known with math ematical exactness?" If they were, the coming transits of Venus, instead of being scientifically the most momentous events of the age. would be matters of comparatively small account. A few astronomers might make a note of them, but they would hardly engage the attention of all the governments of the civilized world, or give occasion for costly expeditions to the remotest parts of the globe. The figures of astronomy are, and must ever be, approximations to the trath. The question is how small can the margin of error be made.
At present the limits of error, in the measurement of the line on which all other astronomical measures depend, are so far apart that sixty worlds like ours, standing side by side, would not be sufficient to fill the gap. As a consequence there is an uncertainty of at least four thousand miles in the exactest estimate of the sun's diameter, or some hundreds of exactest estimate of the sun's dameter, or some hundreds of
millions of cubic miles in his calculated volume; and every other magnitude beyond the moon is proportionately inde terminate.

Ten years ago the accepted figures were very much farther from the truth. For forty years, Encke's estimate of the sun's mern distance, deduced from the observations of the transit of Venus in 1761 and 1779, that is, in round numbers $95,000,000$ miles, had held its ground ; but so many lines of evidence converged to prove those figures too great that astronomers could not refrain from making the enormous reduction which took the general public so much by surprise about a decade ago. Noticing this astronomical change of base, Sir John Herschel wrote: "The superficial reader
creditable to science to have erred by nearly four millions of miles id estimating the sun's distance. But such may be reminded that the error of $0 \cdot 33^{\prime \prime}$ (thirty-two hundredths of a second) in the sun's parallax, on which the correction turns, corresponds to the apparent breadth of a human hair at 125 feet, or of a sovereign at 8 miles off."
It is on such minute measurements that the approximate exactuess of astronomy depends. The limit of probable error in the latest and most satisfactory determination of the sun's distance is somewhere about half a million miles, say one eighth part of the last correction. We may leave it to the reader to calculate how extremely d licate the observations of the coming transits must be to effect any consid• erible reduction in this apparently great but relatively minute inexactness.

EFFLOX OF STEAM.

If a fluid issues thr' ugh all opening, without friction, the velocity of its flow will be the same as it would acquire in falling through a hight due to its pressure. For instance, suppose that steam at atm'spheric prtssure flows in to a vacuum. Steam at atmospberic pressure, or 14.7 pounds per square inch, will have a pressure of $14.7 \times 144=21168$
pounds on the square foot. A cubic foot of steam, at this pressure, weighs about 0.0364 pounds, so that the hight of a column of steam, necessary to produce this pressure per square foot, would be $2116.3 \div 0.0364=58153$ feet. The ve locity acquired by a body in falling throngh this space is found by extracting the square root of $64^{\prime 3} 32 \times 58153$. Tbis found by extracting the square root of 1934 as the velocity in feet per second with which gives 1934 as the velocity in feet per second
steam at atmospheric pressure will flow into a vacuum, if there be no frictional resistance. In practice, it is found that when a fluid is discharged through an orifice or tube, the actual velocity is less than the theoretical, so that a co-fficient of correstion is ne eescary in using the theoretical formula. Numerous experiments have been made upon the velocity of discharge of water, air and steam, those upon water being the most extended and reliable. It is difficult, when experi. menting with steam, to maintain a constant pressure, and the velocity is so great that it is not easy to makH an exact m 1 -asurement. For these reasons, the results of different ex. perimenters vary greatly. In this article, we shall endeavor to give the most accurate results that have been obtained.
There is one case, in the flow of water, in which the actual velocity of discharge varies but little from the theoretical. We refer to that in which the water flows through a mouth piece shaped to the form of the contracted vein. This mouthpiece has a length about equal to the diameter, and is constructed with a bell shaped mouth, its diameter being de creased at the middle of its length to atoout eight tenths of its original size. Experiments with this kind of mouth piece in the case of steam, however, show varying corfficients of velocity for discharges under different pressures. The table given below will illustrate this.
table of coefficients of the velocity of dibcharge of STEAM into the atmosphiere, throdgh a mouthpiece having the form of the contracted vein.

HAVING THF FORM OF THE CONTRACTED VEIN. Pressure in pounds per square Inch above atmosphere.	Weight per cabic foot.	Coefficient.
1	00396	0.93
5	0.0510	085
10	0.0598	0.78
20	0.815	071
30	0.1025	0.69
40	0.1232	0.68
50	0.1436	0.67
60	01636	0.66
70	0.1833	0.65
80	0.2030	0.64
90	0.2224	0.63
100	0.2410	0.62

These coefficients have been determined experimentally for orifices varying from four tenths of an inch in diameter up to one and a balf inches. We will now explain how to use them, illustrating by an example.
The expression for the theoretical velocity is $v=\sqrt{2 g h}$, or the velocity of discharge in feet per secoud is equal to the square root of twice the acceleration due to gravity multi plied by the hight due to the effective pressure. The actual veiocity is equal to the theoretical velocity multiplied by the proper coefficient
Example: With what velocity will steam at a pressure of 50 pounds by steam gage issue into the atmosphere through a mouthpiece having the form of the contractrd vein? Answer: $50 \times 144=7200$ pounds pressure per square foot. 7200 $\div 0.1436=50139$ feet $=$ hight du to pressure. $\sqrt{ } / 6432 \times 50139$ $\times 0.67 \times 1203=$ velocity of efflux in feet per second. Cor rections can be applied to the coefficients given in the preceding taill r, to adapt them to other cases thau that in which the stram issues through a mouthpiece baving the form of the contracted vein.
For a tube haviug rounded edges, and a length equal to once and a half the diameter, ded uct 0.03 from the coefficient for any given pressure. For a tube with equare edges, and a length from once and a quarter to twice and a half
the diameter, deduct $0 \cdot 13$ from the cuefficient. For a plain the diameter, deduct $0 \cdot 13$ from the coefficient. For a plain
tube whose length is 12 times the diameter, deduct 0.24 from tube whose length is 12 times the diameter, deduct 0.24 from
the coefficient. When the length of the tube is 24 times the diameter, d duct 0.28 from the coetficient.
To find the velocity of efflux through an orifice in a thin plata, the thickness of the plate being not more than one tenth the diameter of the orifice,correct the coefficients given in the table as follows: Deduct 036 , when the pressure does not exceed half a pound per square inch. Deduct 0.21 when the pressure is equal to one atmosphere

We will give an example in one of these cases, as it will illustrate the method of proseeding for all: Suppose steam of 40 pounds pressure per gage issues through a pipe one
inch in diamet:r and twenty-four inches long, what is its velocity? Answer: $40 \times 144=5760$ pounds pressure per qquare foot, and $5760 \div 0 \cdot 1232=46753$ feet, hight due to $\sqrt{6232 \times}$
eet per $\times 46753 \times(0.68-0.28)=694$, velocity of efflux in feet per second. The preceding constants were determined be observed that they apply to orifices from four tenths an inch to ose and a half inches in diameter, and having lengths from oue ten: h to twenty-four times the diameter, the experiments having been made on the efflux of steam through orifices varying within these limits. Approximate formulas. for general use, have been established by the late Professor Rankine, and we will give these, illustrating them by examples.
Case 1: When the pressure of the medium into which the steam flows is less than three fifiths of the pressure in the reservoir, the number of pounds of steam discharged through a pipe or orifice is found by multiplying the area of the pipe (in square inches) by the pressure of steams in the res ervoir, and dividing the product by 70. Example: Ho much steam will be discharged from a boiler into the atmos pounds? Answer: Here the absolute pressure in the boile is $15+14 \cdot 7=29 \cdot 7$ prunds per square inch, and the area of the pipe is 707 equare inches. Hence the quantity of steam discharged per second will be $(297 \times 707) \div 70=2 \cdot 99$ prunds The volume of this steam will be $2 \cdot 99 \div 0 \quad 0707=42 \cdot 4$ cubic feet, and the velocity of discharge in feet per second will b found by dividing the volume by the area of the pipe in square feet. This g : ves the velocity : $42 \cdot 4 \div 0 \cdot 0492=864$ fee per second.
Case 2. When the pressure of the medium into which the team is discharged is more than three fifths of the pressure in the reservoir, the number of pounds of steam discharged per second is found as follows: Multiply the area of the pipe (in square inches) by the product of the external pressure divided by 42 and the square root of the difference of the internal and external pressures divid $\cdot \mathrm{d}$ by two thirds of the external pressure. Example: Steam of 5 pounds press ure. per gage, is discharged through a 2 inch pipe into the atmosphere. 'Absolute pressure of steam in boiler $=5+147$ $=19.7$ pounds (absolute external pressure $=14 \cdot 7$ pounds). Area of pipe $=3 \cdot 1416$ square inches. ' Applying the rule, w find the quantity of steam discharged per second $=3.1416 \times$ $(14.7 \div 42) \times \sqrt{(19.7-14.7} \div\left(\frac{2}{8} \times 14.7\right)=0.785$ pounds. The
velume of this steam is $0.78 .5 \div 0.048^{\prime}=16.1$ cubic feet, and volume of this steam is $0.785 \div 0.048 i=16.1$ gubic feet, and the velocity of discharge is $16 \cdot 1 \div 30218=739$ feet per W, 0218 being the area of the pipe in square feet
With the formulas given 2 .bove, our readers will be able的位e nearly any question that may arise regarding the rffux of

EZEKIEL PAGE

We regret to hear of the demise of Ezrkiel Page, formerly of Boston, Mass., inventor of the machine for turning oars. Mr. Page's name has been associated with this particular branch of industry for more than a generation; and at one time he possessed the only factory in the world wherein oar were made by machinery. Indeed at the present day the chief business connected with the oar trade in this country remains in the hands of the Page family. The manufacture
has been so perfected that little chance remains for improve ment. It is difficult to obtain a poor article from any con cern where the Page machinery is used, because the mechanism never slights its work, but imparts true and exact pro portions to every pier e of lumber. Clumsy ill-shaped oars must be lonked for in shous where the labor is done by hand.
Ezekiel Page's first improvement in this line was patented in 1842, for a new method of sawing out the oar lumber. The old method was to saw the logs into square sticks equal in size to the width of the oar blade, one oar being cut from one stick. By giving a peculiar movement to the carriage of the same block. He produced two blades where only one before was made. This gave him the oar monopoly and
bent entitled him to rank as a benefactor of the race. His name will be for ever boncred by every loyal boatman
Page's next improvement, patented in 1845, was a mech. rism for producing the swell on the oar handle. This he accomplished by means of a contrivance for moving the slide rest of the lathe, in such a manner as to compel the cutters to shape the wood to the exact form required.
Ezekiel Page, at the age of 62 years, rests from his labors. He never made much noise in the world, ald yet he contributed, for the use of his felow men, a discovery of immense economical importance. Think of the milliuns ef oars now used in all parts of the world, and then remember that he ought us
There is one other legacy thathe has left us, more precious ven than his useful inventions. It is the record of a generous, upright, amiable and well-spent life. Ezekiel Page was an honest man

Friction of Water in Pipes..

In our article on this subject, on page 48 of the current 1. Prony's formula:
$\mathrm{h}=0.00040085 \times(\mathrm{L} \div \mathrm{d}) \times\left[(\mathrm{v}+0.15412)^{2}-0.02375\right]$.
2. Brooklyn Water Comm'ssioners' formula:
$\mathrm{h}=0.00046749 \times(\mathrm{L} \div \mathrm{d}) \times\left(\mathrm{v}+0.39{ }^{7}\right)^{2}$
8. Lane's formula:
$h=0.000625 \times(L \div d) \times \nabla^{2}$,
We republish them, as, separated from the verbal oxpla

sCIENTIFIC AND PRACTICAL INFORMATION

black varnibi for zinc
Professor Böttger prepares a black coating for zinc by dis solving 2 parts nitrate of copper and 3 parts crystallized chloride of copper in 64 parts of water, and adding 8 parts of nitric acid of specific gravity. This, however, is quite xpensive; and in some places, the copper salts are difficult to obtain. On this account Puscher prepares black pai, t or varnish with the following simple ingredients: Equal parts of chlorate of potash and blue vitriol are dissolved in 36 times as much warm water, and the solution lefic to cool. If the sulpbate of copper used contains iron, it is precipitated as a hydrated oxide and can be removed by decantation o filtration. The zinc castings are then immersed for a few seconds in the solution untilquite black, rinsed off with wa ter, and dried. Even before it is dry, the black coiting ad heres to the object so that it may bis wiped d $d^{\prime} y$ with a cloth A more economical method, since a much smaller quantity of the salt solution is required, is to apply it repeatediy with sponge. If copper colored spots appear during the opera ion, the solution is applied to them a second time, and after while they turn black. As soon as the object become equally black a 1 over, it is washed with water and dried. Ou rubbing, the coating acquires a glittering appearance like indigo, which disappears on applying a $f \in w$ drops of linseed oil varnish or "wax milk," and the zinc then lias a deep black color and gloss. The wax milk just mentioned is prepared by boiling 1 part of yellow soap and 3 parts Japanese wax in 21 parts of water, until the coall dissolves. Wken cold, it has the consistency of salve, and will kiep in closed ressels as long as desired. It can be used for polinhing carved wood work and for waxing ballroom Hoors, as it is cheaper than the solution of wax in turpentine, and does not stick or smell so disagiteable as the latter. A permanent black ink for zinc labels is prepared by dissolving equal parts of chlorate of potash and sulphate of cupper in 18 part of water, and adding some gum arabic solution. The black polish above described is rrcommended as permanent and capable of resisting quite a high temperature.
mandfacture of chlorate of potabh
To manufacture chlorate of potash on a large scale, it bas been recommended by W. Hunt to adopt the following method: Milk of lime is made to trickle down over bricks placed in a tower where it comes in contact with a continuou current of chlorine gas. Culorate of lime is the chief product, and, by treating this with chloride of potarsium, ch'o rate of potash is formed, way ich can be purified by crystalli zation.

YELLOW GLABB FOR PHO'TOGRAPHIC PURPOBES
The following simple method of testing the actinic profer ties of yellow glass for dark rooms is by Le Nove Foster and the only apparatus required is a cheap glass prism. When a strip of white paper is [laced on a dull black sur face and looked at, through the prism, by daylight. it has the appearance of the rainbow, showing a crimplete spec trum. On bringing the yellow glass in question betwe n the prism and the strip of white paper, those colors which are absorbed by the colored glass disappear. If on look. ing through the prism any blue or violet rays are seen, it is certain that the glass transmits the chrmical rays and hence is unit for photographer's use. If only red and yellow bo seen, it is non actinic.
testing bolphate of aldmina.
Sulphats of alumina frequently contains an excess of acid which injures it for use in dyeing. Whether the sulphuric acid bc present in excess is easily ascertained liy stirring the pulverized salt into alcohol, which dissolves the free acid but not the salt. It is then only necessary to filter the solu tion and test for acid with litmus. The amount of sulphuric acid can a`so be obtained volumetrically. Pure sulphate of alumina produces with a decoction of camprachy wood a dark violet or purple color. If free acid be present, the color is browner

Progress of the Hoobac Tunnel during the Month of July, 1873.—East end section: Heading completed Decpmber 12, 1872. Central section: Heading advanced westward 151 feet. West end rection: Heading ad vanced eastward 137 feet. Total adrauce of headings during month, 288 feet. Length opened from east end westward, 14,285 feet length opened from west end eastward, 9,677 fret. 'Total 'engths opened to August $1,18{ }^{7} 9,23,912$ feet. Lengih re maining to be opened Augnst $1,1,119$ feet.

Albumen Extracted from Milk -Schwalbe has found that if oil of mustard be added to cow's milk in the proportion of one drop to $1 \cdot 1$ drams, the milk does not coagulate even after being kept for a considerable period: but that the caseine is transformed into albumen. If this discovery says Les Mondes, is confirmed, it will be of considerable im portance in the printed fabric industry

Squeaking Bootr and Shoes.-To prevent the soles of or shoes from squeaking, says the Shoe and Leathe Onronicle, rasp, with a coarse rasp, the outsole and insole, friction by the action of the foot. Then apply freely good wheat or rye puste. If this is well attended to from heel to toe, the boot or shoe will not squeak.

Colt's Friearms Colfpany has just received an order fo 30,000 pistols. Smith \& Wesson have commenced work upon 20,000 Russian pistols, and will make about 150 daily.

