a WeEkLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS. CHEMISTRY, AND MANUFACTURES.

NEW YORK, AUGUST 16, 1873.
$\int_{\text {\$3 }}^{\text {per Annom }} \underset{\text { in advance }}{\text { pen }}$

a Large steam crane.

Messrs. Appleby Brothers, of London, England, have sent to Vienna three steam cranes, for three, five, and seven tuns respectively, of the same general design, the difference being only in proportion. We illustrate the largest of these cranes, in which, as in the others, the carriage is cast in one piece, the horns being provided with bearings for the traveling wheels. The central post is of wrought iron, and the top of the carriage is recessed for a spur wheel fitting on the column, and made fast or loose with it, and there is a raised roller path truly turned on the outer edge of the recess. A base plate, fitted with three friction rollers, revolves on the central column, two of the rollers being placed directly be low the jib, and one at the back to take the weight of the boiler and tank. The engines are carried on this base plate in a pair of A frames, the feed water tank and the boiler being placed some distance from the center of the crane post, and forming a counterbalance to the weight to be lifted. The boiler is vertical, and is fitted with two cross water tubes, which system, although not so economical as the multitubular as regards fuel, works out better in practice, as cranes are so often fed with the worst kind of water. The work is done with a pair of direct-acting steam cylinders placed slightly on the incline, one outside each side frame, the crank pins being fitted into a pair of balanced disk plates. In addition to the usual lifting and turning motions, each crane has a neat arrangement for traveling by steam and for altering the radius of jib by the same agency. The ongine shaft between the side frames carries a bevel wheel made fast or loose on the shaft by means of a toothed clutch, for driving an oblique worm shaft gearing into a tangent wheel on the derrick chain barrel for raising or lowering the jib, the worm
wheel securely locking the jib in any position. A broad spur wheel is geared on the crank shaft, and works a narrow wheel below it on a weigh shaft, which has a small crank pin at each end equal to the stroke of the slide valves. The narrow wheel can be moved by a hand lever laterally about four inches on a spiral feather, thus reversing the valves for run uing the engines in either direction. This arrangement an swers well, and is found to be more durable than a link motion. A pair of spur wheels are placed on the left side o the crank shaft, and which gear into wheels on the counter shaft below. One pair of these wheels are of equal, and the other of unequal, diameters, and either pair can be made drivers by means of a double to thed clutch. Provision is made for working the cıane by hand if necessary through this shaft, which also carries a set of bevel wheels and double friction cones for driving the slewing and traveling motions As this shaft has two speeds communicater to it from the engine shaft, it will impart two speeds to the slewing and raveling motions. The metion from this set of wheels is ransmitted through a train of wheels to the spur wheel on the column, and witich is twice the depth of the pinion gearing into it. The pinions are placed at different hights, o that the slewing pinion clears the pinion driving the tra veling gear, and which is fixed. To travel the crane the body s fixed to the carriage, and the wheel, revolving on the crane post, drives the traveling motion. The friction cones are operated by an eccentric lever, and can be thrown in contact while the engine is running, the jib being put in motion gradually. without slack. On the cones being reversed, they act as a brake, and arrest the motion of the jib.: A pinion sliding on a feather in and out of gear, with a spur wheel on

Trshaft. This pinion is withdrawn for lowering, and the descent of the load is controlled by a strap brake worked from a foot lever, which is fitted with a pawl and ratchet, so that the load can be left suspended at any point of its de cent.
As the slewing motion can be put into action through the cones while a load is being raised or lowered, a consid rable saving of time is effected. It will be seen that the speeds o. working are in direct relation to the loads; as many as 60 or 70 loads may be lifted and turned round in an hour with the quick speed, while heavier loads, which neces sarily require more time to manipulate, are dealt with at a orrespondingly lower speed.
The details of construction, says Engineering, to which journal we are indebted for the illustration, are well carried ut in these cranes, which are well got up, without the su perfluous finish too often given to machinery for exhibition One of these machines did good service in unloading and ransporting the heavy machinery sont to Vienna from En gland.

Clarifying Beer.

Of the thousand and one methods proposed for this pur pose, one of the latest is that of Mr. Garton, and consists in he use of phosphate of lime. The process is as follows: A very concentrated solution of phosphate of soda is first put into the wort, and then gypsum or chloride of calcium and laked lime are added. Instead of the soda salt, phosphori acid or some soluble phosphate of lime may be employed This clarifier can be used at any stage of the process, eithe before or after fermentation. The same process is also re commended for other fermented liquors.

Srimtifir Ammicam.

MUNN \& CO., Editors and Proprietors. PUblished weekly at
NO, 3 'Y PARK ROW, NEW YORK.
O. D. MUNA. A. E. BEACH.

Abstract

One copy, one year... one copy, six months $\$ 300$ 150 25 2500 20 50

VOL. XXIX., No. 7 . . [New Series.] Twoenty-eighth Year
NEW YORK, SATURDAY, AUGUST 16, 1873.
Contents.

TRIUMPR OF AMERICAN HARVESTERS IN AUSTRIA-THE ENGLISH EXHIBITORS BACK OUT OF THE

The result of the trials of the mowing and reaping ma chines, recently held at the Vienna Exposition, is a substan tial and unequivocal triumph for the American inventions. We print elsewhere a full account of the experiments, ex tracted from the page of our English contemporary Engi neering, a report which we have purposely selected in pre ference to many at hand from American correspondents, in order that our readers may have before them the acknowl edgement of the victory as dictated by the most adversely prejudiced of all observers.

It will be noted that the tests were confined to American machines in a large majority-in fact, we might add, exclusively, for the German devices entered were merely German imitations of English copies of American originals. The British manufacturers were conspicuous by their absence,
declining to compete for no reason that we are able to disdeclining to compete for no reason that we are able to dis-
cover, other than that, after comparing their machines with cover, other than that, after comparing their machines with
those from this country, they considered their defeat a fore gone conclusion. Their machines, presumably of the best types made, were entered for competition; and according to their own showing, the circumstances of the trials were particularly favorable for them. But in spite of all their facilities for improved construction, in spite of their much vaunted progress in agricultural machinery, and in spite of medals and honors innumerable, won in domestic expositions, the English makers have fairly and squarely backed do
this on a simple inspection of the American exhibit.
Engineering makes an ineffectual attempt to gloss over the fact by disparaging the nature of the trial and conse quently the ability of our machines to perform difficult work; but conveniently forgets that the same conditions were free to the devices of its own conntry. It seems to us that it would have been much more just and fair for the English exhibitors to have taken part in the ordeal, and sustained, if need be, an honorable defeat,rather than to permit the inferi ority of their products to stand publicly confessed by a de part tate and cowardly withdrawn from success is neither generous nor graceful, nor is the clumsy subterfuge of ignorance, manifestly advanced in order to avoid a candid admission of superior merit, one worthy of a journal supposed to be upright and unprejudiced in its opinions and dealings.

towing sailing vessels.

Suppose a tug tows a sailing vessel at the rate of three knots an hour: would the vessel be propelled at the same speed, if the engines and propeller of the tug were placed in her?" This is a question recently asked by one of our cor lespondents; and we propose to give the aumns devoted to " Answers to Correspondents."
When a vessel moves through the water, it encounters resistance: 1st. The resistance of the midship section, which is induenced by the form of the bow lines, it being a well known fact that a wedge-shaped body is more easily forced through the water than a blunt ended one with the same immersed cross section. 2nd. The skin resistance, which depends upon the amount of immersed surface of the vessel. Both forms of resistance are also dependent upon the speed
of the vessel, the resistance offered by the water to the ves of the vessel, the resistance offered by the water to the ves-
sel's passage varying about as the square of the velocity. It sel's passage varying abjut as the square of the velocity. It
will be seen, toen, that however the vessel is forced through the water, whether by power applied at the bow, such as the action of a tow rope, or by the motions of a wheel con nected with itself, there is a definite amount of resistance to be overcome, to produce any given speed. If the vessel is
being towed by a tug, the motive power must overcome the resistance of the tug, in addition to that of the vessel; so that, if the engine and propeller were removed from the tug to the vessel, the resistance to be overcome would be lessene by the amount offered by the tug. It does not follow, how ver, that the vessel would go faster than before, oreven a ast, under these new conditions. The propeller works in yelding medium, and does not utilize all the power imparted to it by the engines. Part of the power goes to propel th
vessel, and part is expended on slip, which produces no use vessel, and part is expended on slip, which produces no use
ful effect. It is well known that the propeller must be adapted to a vessel; and it might happen that, in changing the machinery from the tug to the saling vessel, we should give the latter a propeller that was not suitable; so that the slip of the wheel would be increased, and she would not go as fast as before, with the same expenditure of power. In general, the propeller would not be adapted to its new po of steamers and sailing vessels. Tug boats, as usually con structed, have another advantage over sailing vessels, in their capacity for utilizing the power imparted to their wheels. Our readers have doubtless noticed that the sfern of a tug is constructed to overhang the immersed hull. The effect of this projection is to partially confine the wate thrown up by the propeller in its revolution, thus creating more solid medium for the action of the screw. The under part of the overhanging portion is also made in the form of an inclined plane, and the effect of the concussion of the water thrown up is to force the tug ahead. If the propelle were transferred to the sailing vessel, and given the same mmersion as before, the lass of this overhanging portion would be perceived at once by the increased slip. We con clude, then, that, under the ordinary circumstances which occur in practice, the effect of changing the motive powe and propeller to the sailing vessel would be to decrease the speed. It may be interesting to consider whether there are any conditions under which this transfer could be made to dvantage.
Suppose the tug were secured behind the sailing vessel so as to form virtually an addition to the length of the latter it is evident that it would propel the vessel quite as well as if it were in advance, and employed a tow rope. Now conceive the stem of the vessel to be cut down, so as to be ex actly similar to the stem of the tug, and a transfer of ma chinery to be made. Then it is reasonable to assume that the propeller would be as effective as before, and that the essel would now go somewhat faster, since the resistance to the motion of the tug would no longer be encountered. We do not thiuk that this matter has ever been investiga ted by actual experiment. We have endeavored to lay down clearly the principles governing the case so as to point to easonable conclusions. As our readers know, however tubborn facts have often overturned many finely construct d theories, which were defective on account of not noting all the data; and we do not claim to give an infallible opinion. The question under discussion has been often pro pounded, eliciting a variety of answers; and we have though it well to treat the matter somewhat at length on account of the many interesting points involved in its consideration.

LIGHTNING RODS.

Perhaps one of the most fruitful sources of mischief i found in the practical application of imperfectly understood r incorrectly interpreted scientific theories. Inventors are not unfrequently misled by what they take to be scientific ruths, because their understanding of them squares with some favorite idea. Take an illustration. Notwithstanding he reiterated statement, in the Scientific American and ther exponents of practical science, that it is impossible to utilize water as a fuel, because it takes as much heat to de compose it into oxygen and hydrogen as one can get from he recombustion of these gases, men continue to waste heir time in inventing apparatus to accomplish it. In othe cases again, a misunderstanding of the principles involved may cause not only the waste of time and energy, but the destruction of life and property. The construction of light ing rods is a case in point. If the reader of the literature n the subject happens to find the experiments of Professo Henry and others, he will note their conclusion that electric ty of high tension passes along the surface of bodies and not through their substance, and this will suggest to him to increase the surface of $\mathrm{h} \cdot \mathrm{s}$ lightning rods at the expense of
their solidity, by making them hollow tubes of greater diam their solidity, by making them hollow tubes of greater diam-
eter. Or, perhaps, he will recollect that in all electrical measurements of conductivity, as for example in testing ubmarine cables or telegraph wires, the conducting powe is in proportion to the thickness of the wire, and he will find it difficult to reconcile the two principles. The differ ence in the nature of the two kinds of electricity, however will easily explain it. By means of an electrical machine we obtain a very small quantity of electricity at a time, but is under great pressure; the moment it is delivered there ore, its self repellent nature causes it to fly off towards th urface of any conductor. This was the kind of electricit xperimented upon by Professor Henry. On the other hand we have means for developing large quantities of electricity having very little tension or pressure, which will conse
quently flow quietly through a wire in a mass zufficiently great to permeate its whole substance. Professor Morto very aptly compares the former kind to the water in a hy raulic press; it is under enormous pressure, but extremely ittle is delivered at every stroke of the pump. The latte kind, on the other hand, would resemble a large mass of little "head" as to be incapable of flowing along with slightest obstacle or projection of its banks. Now of which
kind is the electricity of a thunder cloud? Manifestly of both; it is there under high pressure, and at the same time a cloud, say a square mile in area, would contain a vas quantity. It follows from this that, although considerable urface is an ad vantage, it should not be obtained by a sac rifice of solidity
In 1823, Gay Lussac presented a report to the Frenc Academy of Sciences, in which the most advantageous man her of constructing lightning rods is described in detail. It is from this source, and from a subsequent report by Pouil et in 1854, that the text books on the subject have chiefly drawn their information. The following are the principa points of interest there stated and subsequently developed y experience:
The object being to make so good a passage for the light ning to the ground as to remove all danger of its leaping to some conductor in the house, the end of the rod should be sunk deep enough to reach moist soil. The greatest care must be taken not to have any break in the conductivity As it is inconvenient to manufacture or transport the rod in one piece, the different parts must be in intimate connec ion when they are put up; it is best to have them soldered and the joints protected from the air and moisture.
If moist soil cannot be struck, the end of the rod should ranch out in various directions to insure a speedy dissemi nation of the electricity in the ground. The material mos gencrally used in constructing the rods is iron, but th point is best made of copper. Platina was at first recom mended, because it is unaltered by the action of the atmos phere; but copper is so much better a conductor of electric ty that it is now preferred. Whenever a thunderbol truck a platina joint, it almost invariably melted it, while copper would mostly conduct the electricity so fast as to prevent melting. Its greater cheapness is, of course, anothe and not inconsiderable advantage. Sir W. Snow Harris, F R. S., states that a copper rod of one inch in diameter, o n equal quantity of copper under any other form, will re sist the effect of any discharge of lightning hitherto experi anced. The reason for terminating lightning rods in a poin is as follows: When a thuuder cloud highly charged with positive electricity comes up, it repels the positive elt ctricity of all bodies on the surface of the earth coming within it influence, and causes negative electricity to accumulate in them. This is called induction, and it always takes place before a discharge. Now, it has been discovered that, when electricity is accumulated in a body in this manner, it can most readily escape by sharp points because in them it meets with the least resistance. A lighted candle held near the prime conductor of an electrical machine furnished with a point will be nearly blown out by the current of air pro duced by the escape of the electricity. Lightning rods are herefore provided with sharp points to allow the accumu lated negative fluid to pass off readily into the ai: and neuralize the positive fluid of the thunder cloud
It was supposed by Charles and Gay Lussac that a light ing rod protected an area whose radius was double the hight of the rod extending above the building, but this rule is no longer reliable by reason of the extensive use of metal in the shape of pipes, etc., in the construction of the build ings of our day. When electricity finds aeveral paths to the ground, it will prefer the best, it is true; but some por tion will also pass along the poorer conductors. If, there ore, any metallic substances lie within the area supposed o be protected, they are in danger of being struck. This is especially true where the lightning has a chance to jump to the gas and water pipes of a building. It is a good plan to onnect these pipes with the lightning rod; if the rod i truck, the electricity will then have an excellent path int he ground and will be rapidly diffused over the vast under ground network of pipes. The danger to the inmates of the ouse of being struck from these pipes is less than that of receiving a shock from the powerful induced currents, liable to be d
storm.

Houses constructed entirely of iron manifestly stand in no eed of lightning rods at all, because the electric fluid, on triking so good a conductor, would rapidly diffuse itself in all directions and flow into the ground, provided, of course that the construction of the building is such as to allow it ree escape. If on the contrary any obstacles oppose th ree passage of the electricity into the ground, such build ings become highly dangerous and utterly unsafe, for the torage of inflammable material, from the tendency of th lightning to leap across the interior of the rooms. When ver, therefore, the iron portion of the building does not ex tend clear down into the ground, prudence would command the establishment of a sufficient ground connection on every ide by means of metallic rods.
People are apt to be indifferent whether their houses and stores are provided with lightning rods or not, and are always ready to give an example where some building so provided was struck in spite of its protection. Such case have uncoubtedly occurred, and they are often quoted by the old fashioned "practical men" with much satisfaction, be cause they hail in them what they are pleased to call th ictory of their sound common sense and the discomfiture of he scientific man. This class is, however, rapidly diminish ng in numbers under the influence of the extensive diffu sion of scientific education among the people by popular lec tures and by the press. It may be well to assure unbeliever that the efficacy of the lightning rod is no longer an ope question, and that any failures are attributable to bungling or ignorant construction. It would be an easy matter to multiply statistics in proof of the assertion; but none woul tained from the records of the British navy:

Formerly the annual damage to ships by lightning invol ved an expense of $\$ 30,000$ to $\$ 50,000$. Between 1810 and 1825, no less than thirty-five sail of the line and thirty-five frigates and smaller vessels were completely disabled; and in 200 cases recorded, 300 seamen were either killed or injured. When the lighining rod was introduced, every mast was furnisied with a capacious conductor permanently fixed and connected with bands of copper passing through the sides of the ship under the deck beams, and with large bolts leading through the keel and keelson, aind including, by other connections, all the principal metallic masses employed in the construction of the hull (Harris). Since the adoption of this arrangement, "it appears that damage by lightning has positively vanished from the records of the navy." In one case, while the small frigate Conway was under refit in the harbor of Port Louis, the topgallant masts were down on the deck, and a small spar, not having a conductor, was substituted for the time to support the pennant. A thunderstorm came up and the spar was shivered to atoms. No further damage was done, however; for the conductor on the topm sst below the spar immediately carried off the ter rific flash. No further examples are needed to prove that lightning rod, constructed according to the principles set forth, is a protector to life and property.

recent meteoric investigations.

On the tenth of the present month, the earth passed through the first of the two great rivers of meteors which intersect its orbit; and on November 13 or 14 it will encounter another shower of shooting stars, of equal magnitude. The band recently traversed, known in ancient times as the Tears of St. Lawrence, is about $10,948,000,000$ miles in its greatest diameter, and $4,043,350$ miles wide at the point of the earth's crossing.
Probably the most recent investigations into the nature of the erratic masses which constitute these vast belts are those made by Father Ferrari and others in the fall of last year, recent'y published in Les Mondes. They are based principally upon the observation of a remarkably brilliant aerolite, which fell near Orvinio, in Italy, during the latter part of August, 1872. The course of the body was from the southward and eastward, it appearing at first quite small and emitting a reddish light which gradually increased in brilliancy, leaving behind a misty train. Sudlenly the bolide flamed up apparently as large as the moon, and then instant ly disappeared, a long cloud, of serpentine form, remaining in its place. About three minutes after, a violent explosion was heard, followed by two others of less intensity. From the point of first observation to that of its disappearance,
the meteor traveled over a trajectory of 62 miles, and its althe meteor traveled over a trajectory of 62 miles, and its al-
titu ?e at the beginning was measured at 30°, corresponding to an elevation of about 114 miles. The first detonation $t: o \mathrm{k}$ place at a hight of $10: 2$ miles, and the final bursting into small fragments at a few hundred feet above the earth. The velocity of the mass was calculated at 32.2 miles per second.
In order to determine the amount of heat developed by the aerolite after entering our atmosphere, Schiapparelli's investigations were employed. That astronomer has demon strated that, if a meteor enters the limits of the earth's atmosphere at a minimum velocity of $9 \cdot 6$ miles per second, when it has arrived at a point where the atmospheric pressure is at 36 inch , it will have already lost $\frac{1}{10}$ of its velocity, and $\frac{130}{13 \frac{1}{2} \text { of its vis viva. It is evident, therefore, that so }}$ great a proportion of lost motion must be converted into
enormous heat. Applying suitable formulæ to the case in point and assuming the specific heat of the body to be 22 of 1° centigrade, which is not far from the truth, it has been found that the augmentation of temperature, after plunging into the earth's atmosphere, would be $3,468,107 \cdot 8^{\circ}$ Fahrenheit, a degree far more than sufficient to explain the phenomena of light and heat, as well as of the explosion or total dispersion of immense masses.
A number of fragments of the meteorite above referred to, quite small in every instance, were picked up and subjected to careful examination. The mass was crystalline, and formed of various substances. An angle was polished with difficulty, owing to the extreme hardness. An abund
ance of malleable granules of nickeliferous iron were ance of malleable granules of nickeliferous iron were recog.
nized. The interior of the fragments appeared porous, but outside they were covered with a pellicle of vitrified matter. Beyond the inon above n.entioned, the greater part of the mass contained soluble silicates, principally those of magnesium and of iron. From the fact that it has been noted that the meteors of the August and November showers, traveling at the rate of from 36 to 40 miles per second, find an insurmountable obstacle in the atmosphere, Schiapparelli has pointed out that only bodies of an enormous magnitude would be able to penetrate it and reach the surface of the earth in a fragmentary condition. Ferrari observes that, from ing a velocity considered that the meteor he describes, having a velocity nearly equal to the above, must have been of tremendous size, and he notes, as a remarkable fact, that an
unusual number of these bodies, ten in all, fell in Europe be. unusual number of these bodies, ten in all
tween July and September of last year.
The author states the result of his observations to accord with the following conclusions previously enunciated by Schiapperelli : 1. The intimate correlation between the comets, shooting stars, and meteorites is now placed beyond
doubt, and the immense ve'ocity observed in doubt, and the immense ve'ocity observed in some meteorites renders it impossible to ascribe to them a planetary origin; consequently the hypothesis of stellar origin is the most probable. 2. From this supposition, the masses come from no single body, since divers cases demonstrate the fact that they arrive from totally different regions in stellar
pace. 3. The hypothesis admitted, it must follow that the chemical and molecular structure of the bodies of thes uni verse, situated in different positions, must be of similar naure to that of the meteorites themselves.
The below given views regarding the mineralogical struc ture and composition of aerolites are ascribed to Danbré and are the results of examination both by spectral and chemical analysis: 1. Hundreds of analyses by the most eminent chemists prove that meteorites contain no simple body unknown to our globe. 2. There have been recog. nized with certainty twenty two elements, given below in the descending order of their importance: Iron, magnesium, silicon, oxygen, nickel, cobalt, chromium, manganese tito ium, tin, copper, aluminum, potassium, sodium, calcium, arsenic, phosphorus, nitrogen, sulphur, chlorine, carbon, and hydrogen. It is a very curious fact that the three bodies which predominate in neariy every meteorite, iron, silicon, and oxygen, are also those which predominate in the earth. 3. Meteorites have also many peculiar mineral compounds, principally native nickeliferousirnn, sulphide of iron and of nickel (schriebersite) and sulphide of iron (troilite). There are also common to the meteorites of the earth a great num ber of combinations, similar not only in chemical composition but even in crystalline form. 4. Meteorites indicate in a measure the temperature at their formation, and that by which they are caused to disaggregate. 5. Lastly, these bodies demonstrate the existence of innumerable masses disseminated through the remotest regions of space, which and splendid apparitions
lead poisoning and its treatment
Cases of lead poisoning are becoming more frequent now than formerly because there are more persons engaged in manufacturing this metal, who are, more or less.surrounded and enveloped by a lead-poisoned atmospinere. In a metallic state lead enters into alloys; its salts are used in paints and dyes; it is a constituent of enzmels and cements. Lead pipes conduct our drinking water; and the purer the water that flows through it, the more danger there is; while, if the water contain certain salts, they are deposited on the sides of the pipe and protect the water from the metal. Zinc ves sels contain lead, and while in some countries the law limits the quantity of lead to ten per cent, even sis per cent is the quantity of lead to ten per cent, even sis per cent is
fraught with danger to health. Horse hair and silk are fraught with danger to health. Horse hair and silk are
dyed black with lead; the laces worn by ladies, as well as dyed black with lead; the laces worn by ladies, as well as
their cosmetics and hair dyes, contain lead. No doubt many ceses of colic, whose origin seems shrouded in mystery, were caused by lead in the solder of metallic vessels or the glazing of stone ones. The foil used in wrapping tea and tobacco causes lead poisoning, and so do the granules of lead that are sometimes left in tin cans and jars. An old soldier has been known to suffer severely from using leaden shot; and the workmen in glass houses where lead salts are used are similarly troubled. Even type setters are occasionally pois oned by handling type made of an alloy of lead. Many other ways may be mentioned in which lead is introduced into t ent.
Whatever may be the cause of lead poisoning, it is certain that it is generally observed in summer when the heat favors the colic. Lead may be taken up by the digestive and the respiratory organs and through the skin, principally by the former, even in the case of insoluble salts, which probably dissolve in the gastric juices. Indeed some writers claim that cases produced by lung absorption are caused by salts deposited in the pharynx. The most striking symptom of lead poisoning is the peculiar color of the gums, and this is not due, as has been supposed, to the deposit of little particles of lead which are then acted upon by sulphureted hydrogen. It is rather one symptom of the general phe nomenon, for it appears whether lead is taken
lead wal colic is wally pipded of the body.
Lead colic is usually preceded ky indigestion. The size of the liver diminishes; and after the use of powerful ca-
hartics, it becomes normal, and then contracts a arain. thartics, it becomes normal, and then contracts again. The
nervous symptoms caused by lead poisoning are of several kinds, such as paralysis of the muscles, sleepiness, convulsions, blindness, and pain in the back bone; while on the other hand, insensibility and deafness may result. The skin on the back of the hands swells up as in gout. Albumen in urine is a most common occurrence, but the most striking symptom is ancmia, or lack of blood. Distention of the veins is frequently observed, and ulceration of the bones is not an infrequent consequence of lead poisoning.
While lead has so many ways of entering the system, there are very few ways for it to pass off. Little or no lead is secreted in the urine, except when it contains albumen, and there is very little lead in the perspiration. It seems that the metal is deposited where it is absorbed. When soluble lead salts are taken, an albuminate of the metal is formed;
while insoluble salts, as before stated, settle upon the walls of the organs and are protected from absorption into the system. This explains the fact that lead workmen are sometimes attacked with colic long after they have abandoned their dangerous calling, the accumulated lead being very gradually dissolved and absorbed.
When lead produces indigestion, it is due to the lead's stopping the acion of the digestive fluid. When digestion ceases, colic begins, which is the result of the local action of the lead upon the intestines, for it does not occur when absorption takes place in another way. The change of size tem. Just as far as this whole system comes under the inluence of the poison, ancemia takes place, with chills, loss of elasticity in the arteries, and diminished capillary circu-
lation. Pallor of the skin, contraction of the liver, and diminished quantity of urine are all referable to these causes. The asthma with lead poisoning is characterized by pain in the breast bone and difficulty of breathing, which, however, is not because the entrance of the air is obstructed, but because the blood does not come in contact with the air. Par alysis is one of the effects of a disturbance in the blood vessels.
In the treatment of lead patients, the pain must be relieved s the use of chloroform or chloral ; opiates are to be avoided pelled from the digestive canal, and the constipation re lieved; bnth these are best accomplished by drastic purga. tives. The incrusted particles of lead, which remain attached to the walls of the intestines, must also be removed; and for this purpose, the use of sulphur is recommended, after purging, so as to convert the lead into the insoluble sulphide of lead, which can then be removed by cathartics. Insoluble lead salts, which still remain in the system, are best removed by administering iodide of potassium, which carries off the lead through the urine. Lead workers whuse skin absorbs the poison should protect themselves by the use of salt baths. In France, Labarraque's solution (hypochlorite of potash) is used for this purpose; and to this should be added an excess of carbonate of soda. These baths are more useful than mere soap baths; and the bather, while in the water, must rub himself thoroughly. Instead of Labarraque's solution the following may be employed: 15 ounces chloride of lime, and 30 ounces crystallized carbonate of soda, dissolved in $10 \frac{1}{2}$ quarts of water.

The Permeability of Cast and Rolled Iron to Gases. Both these kinds of iron are permeable to hydrogen and carbonic oxide gases. This is an important scientific fact, and the mode of penetration is a beautiful example of what the late Professor Graham named "occlusion," the mass ab sorbing the gas at one surface, transmitting it to the particles of the interior, and finally allowing it to escape inte an other gas, in contact with the otber surface. This action differs from that of filtration essentially, and it takes place at a very high temperature only, when wrought iron is soft ened, cast iron changed in crystaline structure, and meteorolites are heated nearly to tise point of fusion.
In all these cases, the iron mass retains several times its volume of hydrogen, carburetted hydrogen or carbonic oxide.
While, on one hand, this action corresponds to that where lister steel is formed, on the oti 1_{1} r it closely resembles the so-called alloying of palladium with hydrogen, the gas as suming a new physical condition.
The writer has learned that this interesting fact has been misunderstood so far as to lead to the belief that cast iron is porous when heated, and allows these gases to pass through castings; and in case of furnaces in use for heating dwellings, the hydrogen compounds and carbonic oxide, produced in imperfect combustion, pass through the iron and enter the air chamber, flowing with the heated air into apartments. Such conclusions are wholly destitute of proof, as this action takes place, in carefully conducted experiments, only at very high temperatures, and involves molecular changes in the iron. It would now be novel and disheartening to learn that cast iron gas retorts, heated red hot for months and constantly containing c rrbonic oxide and hydrogen compounds, allowed the gas to pass through the metal even under pressure. Those who have had chemical experience with cast iron vessels bighly heated, holding these gases, will not believe that iron has of late gained new properties Those who use cast iron furnaces for warming may sleep quietly, if they are assured that all joints are tight.
A. A. H.

Electro-Deposition of Aluminum.-John A. Jeançon, Newport, Kentucky, is the author of the following process Dissolve the desired salt of aluminum or a double salt of aluminum and potassium, sodium, etc., in distilled water, and concentrate to 20° Baume, (at 50° Fahrenheit.) The battery used is either four pairs of Smee's zinco-platinum or three Bunsen's zinco-carbon, the elements connected for intensity. The solution is heated to 140° Fabrenheit, slightly acidulated, and a plate of aluminum is attached to the neg ative wire in working.

At Mont Clair, N. J., recently, the rods on a dwelling house were struck by lightning and the fluid passed off into the ground, thence upon a gas pipe near the terminal of the rod, to an air.gas carbonizer, located a short distance from the house. The gas apparatus was blown up, but no other damage was done.

Operations of the Canadian Patent Office --From the 12 th of February to the 8 th of April, 1873, almost two months, one hundred and sixty-four patents were grarted in Canada, of which eighty-five were issued to citizens of the United States.

Dr. Tobias' Venetian Horse Liniment.-According to the analysis of Schaedler, published in the Berlin Industrie Blätter, a botcle of this celebrated liniment contains 1 ounce ammonia, half an ounce camphor, 1 ounce tincture of Spanish pepper, 7 ounces alcohol, 2 ounces water.

At the close of 1872, there were in operation in the United States 67,104 miles of railroads, operated by 436 different companies. Average cost per mile, $\$ 55,116$. Average divi pends, 3.91 per cent.

paper feeding machine.

Our engraving illustrates the essential features of a novel mode of feeding paper to printing presses, recently patented by Messrs. C. E. Baker and S. Schofield. The form of machine depicted is of course not intended to represent the completed device, but simply to show sufficient mechanism to elucidate the novelty and value of the idea. The latter can best be understood by first referring to the small figures, 2, 3, and 4. In Fig. 2, A is a pressing pin or point made blunt at its forward extremity and flat beneath. This, by suitable mechanism, is brought down upon the top sheet of a pile of paper. If now this upper leaf be drawn along from right to left, it is evident that the blunt point of the pin will catch in the paper, as in Fig. 3, and that its motion, continuing the latter, will travel up the pin into the position Fig. 4. Furthermore, only a single sheet will be thus caught for as the pin penetrates the first leaf, it forces out.a smal chip, which remains under the flat part of the instrument effectually preventing it from entering the paper below. Th pin then rests with its full holding power on the second sheet; and as the first sheet is drawn along as above de scribed, the friction between the two is insufficient to move the former from under the point. The reader can practical ly demonstrate this for himself by pressing the flat side of bevel-pointed piece of wire down upon a few sheets of paper, and then drawing the upper sheet back against the poin by the friction of his finger or a piece of india rubber.
From Fig. 1 will be understood a combination of device for operating the inclined pin and friction pad with each oth er, so as to raise the sheet from the pile in order to properly present it to the carrying grippers of the press. Motion imparted to the elbow rod, B, which is carried to the left. The effect of this is first through the upright, C, right angled arm and connecting bar, shown to push down the frame, D and consequently to press the point at E firmly upon the paper; then, when near the end of its motion, by means of the slotted arm acting on the crank, to rotate the rubber cov ered roller, F. The revolution of the latter for a very shor distance draws, by friction, the upper sheet from right to left, causing it to catch upon the pin in the manner above decribed The rod, B, then moves to the right and through she upright, C, raises the entire frame, roller, and all, clear tof the paper, so that the relative position of the parts i indicated by the dotted outlines. The pin, it will be noticed

carries the top sheet up with it. At this juncture the grippers come up, seize the projecting edge of the paper, and drawing the sheet from the pin, carry it down the incline to the press.

There is other mechanism for keeping the pile of paper at a uniform hight, as it is depleted, and also a new method for insuring accurate register, claimed to be perfect, which need not be entered into here. The principal feature is the holding by the pin, which makes a tear in the sheet no greater than that now caused by pointing, which it of course avoids. The puncture can be readily arranged to come in the fold of the sheet or near the edge to be trimmed off in the binding. The device is automatic in its action, and can be so fitted to a press as to require no attention, stopping of its own accord in case of accident or in event of the supply of paper becoming exhausted. The simplicity of the mechan ism and its ready adaptability to all requirements enable the machine to be offered at a very moderate price
Mr. Charles E. Baker, office of the Independent newspaper, New York city, will be happy to exhibit his apparatus to publishers interested in paper-feeding machinery

PROGRESS OF STEAM CULTIVATION.

Mr. Max Eyth, of Messrs. Fowler \& Co., of Leeds, England, in a paper recently read before the Council of the Society of Austrian Engineers and Architects, made the follow interesting remarks regarding steam cultivation:
The great difficulty in steam plowing is the moving about of engines under all circumstances and conditions. Some twenty years ago, the idea of emrloying the portable engine, in connection with what is known as the roundabout tackle, was suggested; but although to a degree successful,
the plan proved to be, practically, a mistake. It hes latel found some encouragement by the introduction of self-mov ing anchors, but it is not able to compete with the now more perfect, though at first sight more expensive, systems. The introduction of Fowler's double English tackle, the first of which was constructed in 1863, made steam plowing that which it is today. The advantages of the system are sim plicity of plan of working, minimum of hands employed direct pull of the rope, shortest possible length of the lat ter, facility of shifting, etc. Steam plowing should not be measured by its cost but by its results, as deep cultivation by steam has a beneficial influence on crops by draining the soil n wet, and by keeping it moist in dry seasons, by avoidin he footsteps of animals in fields, and by doing the work the footster In hot countris it is une, ars West Indies and Erypt, and also in South America and the West Indies and Eyypt, and also in South America and the
far East, where steam cultivation is being introduced on a far East, where steam cultivation is being introduced on a
constantly increasing scale, while Germany and Austria constantly increasing scale, while Germany and Austria
have, in the course of the last three years, started in the have, in the course of the last three years, started in the
same direction. Not less than 56 double engine tackles are at present at work in the two latter countries, and the re sults are so strikingly favorable that the new idea appears o be now firmly established, especially in the beet growing districts of Central Europe.

IMPROVED FISHING ROD.
A common defect in fishing rods is the liabili y of the connecting portions to become worn by use, so as to be insecure ifficulty it is aimed to vercome in the invention epresented in our illus ration through the ium of the me alli alne cylnder, A, forme pon the smaller ferrule , which, when the rod jointed together, as show in Fig. 3, fits into th ferrule, C. Around th exterior circumference o the latter is a collet, D Fig. 4, through which pass three set screws as shown, which, when turned inwards, lock int the grooves of the notched cylinder. By this means, it is claimed, the mean tion of the parts of the on of the parts of the od and the annoyance re sulting therefrom, whil following the sport, are effectively prevented. In stead of the cylindrica grooved extension, a plain conical piece, E, Fig. 2 may be used, which serve the same purpose, and may be made of the same size at all the ferrules of the rod.
The locking screw head may be formed of any or namental pattern. A guid ring is attached to the collet, to serve for pass ing the line to the reel Fig. 1 represents the rod put together, showing that these improvements occu py but little space, while rather adding to its neat and attractive appear ance.
The device has the me rit of simplicity, and it may be arranged in con nection with any ordina ry fishing rod, and may also be applied to jointed poles for all purposes fo which such articles are equired.
Patented through the Scientific American Paten Agency, July 8, 1873, by William M. Smith. Fo further particulars ad dress Messrs. Smith \& Er Reading, Pa.

Cubstr

In London, as in Paris, the telegraphic executive mak use, to a large extent, of pneumatic tubes for the transmission of messages, which, packed in suitable cases, are driven through the tubes under pressure; and it not unfrequently happens that one of these cases becomes arrested "in its coursa, causing an obstruction, the locality of which itis very difficult to ascertain
M. Bontemps, director of pneumatic telegraphs in Paris has, says Engineering, recently devised the following ingeni
ous method of ascertaining with considerable precision the locality of the block
At the free extremity of the tube an elastic membrane is placed, and its alternate distensions are registered on a revolving cylinder by means of electricity. A wave is produced in the tube by detonation of a pistol placed near the membrane. This wave travels through the tube at a speed of 333 meters (1,000 feet) per second, and strikes against the obstacle; there it is reflected back, passes through the tube in a contrary direction, and inflates the membrane; this places the firs mark on the revolving cylinder. The sound wave sent back by the membrane against the obstacle is reflected a second time, and a second mark is obtained on the cylinder. To determine the distance between the membrane and the ob stacle, it will only be necessary to know theinterval of time that has elapsed between registering the two marks on th cylinder. The half of this interval (reckoned in seconds) multiplied by 333 , gives the distance required. The time is calculated by an ordinary chronograph, with three tracing points worked by a magnetic needle.
The first is placed in the circuit, which is closed by the alternate distensions of the membrane.
The second answers to an electric governor, and marks the econds on the cylinder.
The third divides the second into periods of equal duration to the second, by means of the pulsation of an electric needle.
These vibrations are not absolutely isochronous, but are suffic'ently so for the object in question; or if it were thought necessary to have the isochronism perfect, the vibration of a diapason could be used. The following example illustrate the operation of the instrument: An obstacle is placed in a line a known distance, say, of 186 feet. The needle oscillate 33 times per second, the interval included between the tw marks determined by the pistol shot corresponds to 120 oscil lations, and the distance of the obstacle will be
$\mathrm{D}=\frac{1}{2} \times 330 \times \frac{12}{33}=60$ meters (180 feet).
The approximation obtained is thus 6 feet. But in prac tice this method gives approximation of 9 feet, and conse quently only one opening in the pipe is required.

THE PEOPLE'S" STEAM WASHER

The principal advantage of the invention herewith illus. trated consists in its ready adaptability to any ordinary cook ing stove wash boiler, without regard to size or shape, so that the owner of one of the latter vessels need only procure an attachment thereto instead of incurring the expense of an entirely new apparatus.
The device consists in an inner receplacle, A, which fit tightly at its upper edge, and is thus sustained within the usual form of wash boiler represented. Its sides incline in wards toward the bottom, leaving an intermediate chamber between the two vessels, and are perforated with a number of holes. At the bottom is an aperture covered with a shield B, to prevent its becoming clogged by the clothes; beneath

is a ball held in wires or similar contrivances by which its movement is limited. It will be noticed that the inner ves sel, A, fits into the boiler steam tight, and that it may b readily lifted in or out, for cleansing or other purposes, by the handles, one of which is shown at C.
In operation, the clothes are folded and packed into the inner receptacle, which is then lifted by its handles into the boiler, a sufficient quantity of soap and water being previously placed in the bottom of the latter. On being se upon the range, the steam fills the intermediate chamber being unable to escape through the orifice at the bottom and so enter the vessel, A, from the ball rising and closing the opening. The steam is therefore compelled to pass through the holes in the sides of the last mentioned receptacle, and thus reach and force its way through the clothes. When condensed, it passes down through the hole in the bottom of the washer, into the outer boiler, thus causing a constant cir culation of steam and heated water, which, it is stated, speed ily effects the cleansing of the garments.
Although this invention is based on the same principle as many that have heretofore been illustrated in our columns it differs in construction from previous devices in the de tachability of the inner washer, which can thus be purchased separately. The apparatus is therefore cheaper at the outset, and, besides, presents facilities for cieaning and repair which similar appliances made in parts inseparably connect ed necessarily do not possess.
Patented in Canada, May 5, 1873. Application pending in the United States. For further particulars address J. R
Davidson \& Co. Halifax, Nova Scotia. the United States. For further part
Davidson \& Co. Halifax, Nova Scotia.

AIR PUMP FOR RAISING SEWAGE.

Mr. Ernst Hahn, engineer, of Stuttgart, exhibits at Vien na, says Engineering, a transportable air pump for the emptying of the open cesspools which are still in use in many of the continental towns. This sewage pump, of which we give illustrations herewith, is one of those adopted by the authorities of the city of Stuttgart; the modus operandi con sists in pumping, by means of this machine, the air out of the wooden tubs or vessels in which the sewage has to be removed from the different houses; and, the tubs being broughtinto connection with the open cesspool by a flexible pipe provided with a screw valve, the sewage is forced into the tubs. The machine, as will be seen from the illustrations, is mounted on a wooden platform carried on two pairs of wheels and mounted on pairs of wheels and mounted on
springs, and is arranged for being springs, and is arranged for being
worked by manual power. In our worked by manual power. In our engravings, E is the air pump, A is the safety vessel for preventing any liquid from ontering the air pump, and B is a small furnace through which the air and gases, exhausted by the air pump, are passed before escaping into the atmosphere. The air pump, E, which works without dead space, is connected with the safety vessel, A, by means of the pipe, C, while the vessel, A, which, as we said, prevents the fluid sewage from passing from the tubs into the air pump, is from the abs in provided at the top with a flange
to which is fastened the suction to which is fastened the suction pipe for the tubs. The air-dis-
charging pipe, D, is connected to charging pipe, D , is con
the furnace, B , as shown.
the furnace, B, as shown.
With the apparatus we have described, a vessel of 432 gallons ce.n be filled, as stated by the manufacturer, within five minutes by two men. The machine, with carriage complete, weighs about 12 cwl .

Photography at Vienna.

 A correspondent of the British Journal of Photography awards to Kurtz of New York the merit of Kurtz of New York the merit ofpresenting the best specimens of presenting the best specimens of portraiture that are to be found in
the exhibition. He, however, finds the exhibition. He, however, finds
fault with the practice of retouching fault with the practice of retouching
the negatives, which he thinks is the negatives, which he thinks is
badly done by the Americans, and is badly done by the Americans, and is
seen in nearly all of their exhibited pictures. The prints of the magnificent series of the Yel lowstone region and California are in some cases marred by the stopping out of the sky in the negative; in other examples, an imitation of cloud effects in the sky by painting on the negative has been attempted, with poor success.
On the whole, thinks this critic, the American exhibits, both in portraiture and landscape, evince a lack of fine artistic feeling.

(From Engineering.) Reaping Trials at Vienna

The great expectations originally created by the liberal programme, prepared by the Committee of the Agricultural Department at thé Vienna Exhibition, have been doomed to disappointment. The determination at which the English makers had arrived, to decline entering into competition, entirely ended all chances of any valuable trials, and the only part of the programme which has been even partially carried out are the reaping and mowing trials at Siebenbrunn, which took plase on Wednesday, the 9th of July. Of course, English implements were entirely absent; and with the exception of a few German "improved" copies, the reapers and mowers on the ground were American. Altogether there were eighteen reapers ready for competition, single and combined, and sixteen mowing machines, including nine of the combined implements, were tried. The site selected was upon the estate of a local proprietor, Heir Schwartz, at Siebenbrunn, about 20 miles from Vienna; and the ground, which was good and almost level throughout, improved from the stations occupied by No. 1 machine to the lots numbered 15 to 18, that lay on the opposite side of a small stream which divided the ground. Everything was so consistently favorable that the operations scarcely constituted a trial at all; the weather was dry and hot, the crop of which the reapers was a thin growth, while the mowers operated upon a mixture of peas, grass, green oats, etc., which might have sprung from an autumn sweeping of a which might have sprung from an autumn sweeping of a
barn floor, and, though close lying, was soft and moist in the barn floor, and, though close lying, was soft and moist in the
stalk. An acre and four tenths of each crop was allotte 1 to stalk. An acre and four tenths of each crop was allottel to
the reapers and mowers, the lots being of course divided by the reapers and mowers, the lots being of course divided
clearings made for the implements to take their first cut.

As we have said, eighteen reapers were entered for the trial, but only seventeen competed, the missing one being the chain rake reaper, manufactured by Walter A. Wood, of Hoosick Falls, New York. Of the German implements, one was an " improved" Samuelson, by Messrs. Hopherr \& Co., of Vienna, and two by Messrs. Siedersleben \& Co., of Bern berg, Anhalt; one of these machines was also an improved
Samuelson, and the other, in which were combined selec

AIR PUMP FOR RAISING SEWAGE

closely, and so clear off the grain continuously, or to throw one or more rakes up after they have passed the cutters, and then allow the grain to accumulate upon the platform till a sheaf of the desired size is obtained.
In most of the competing implements, the same genera features present themselves, namely, the revolving rakes, or rake and reel, and the side delivery, leaving a clear track for the horses.
An ingenious arrangement of throwing off was exhibited by Messrs. Aultman, Millar \& Co., of Akron, Ohio. This is a Buckeye implement, with a circular throwing-off table, mounted upon the platform, and carrying a short vertical rake; the table receives a slow rotary motion, and the grain, whlch is received upon the front of the platform, is swept round by the rake and table,' and delivered at the side. The performance of this implement at the trial was fair, and the sheaves were deposited sometimes exceedingly well, at othersin a very straggling style, so that, even with such a light standing crop, the action was uncertain, and would probably be entirely unreliable under unfavorable circumstances. The last of the exceptional deliveries to be named is the chain rake implement of Messrs. W. A. Wood, of Hoosick Falls, N. Y. In this implement one short rake is employed, which is attached at one end to a chain running entirely round the platform, and hinged at the other end to the frame of the implement, there being an intermediate hinged joint in the arm of the rake to give it the necessary motion, by which it is swept over the table constantly and slowly, but at a uniform rate, so that the sheaves delivered are of uni form size.
The Johnston Harvester Company, of Brockport, New York, who are doing a very large business in Russia, were represented by two implements, a reaper and a combined machine. This is, to our mind, the most useful implement that competed, although, where the shades of difference are so fine, it is difficult to draw a clear distinction, especially after so poor a trial. This Johnston implement, however, has horizontal gearing throughout, and is actuated with a bevel pinion from the highest point of the bevelled driving wheel; by this arrangement the gearing is far less liable to become clogged; a vertical instead of a horizontal crank is
used for driving the cutter bar, and an under as well as an upper bearing is given it, so that considerable steadiness is ecured. The arrangement for throwing up the rakes is also extremely ingenious and practical. The Buckeye combined implement of Adriance, Platt \& Co., New York, is an
excellent one, and shows good work, with high ingenuity in excellent one, and shows good work, with high ingenuity in
design. The Champion, of Warder, Mitchell \& Co., of Springfield, Ohio, also fitted with the Johnston rake, is full of good detail and excellent workmanship; this implement
sold on the ground to Prince Schwartzenburg. Wood' New Champion, from the makers of the chain rake, also did good work. It is a well designed, well made implement with four rakes coupled together in pairs, and which can be arranged at will to be thrown out of gearin pairs. The rakes are mounted on a revolving bonnet, which is driven by gear ing, and beneath which is a fixed cam, against which th ing, and beneath which is a fixed cam, against which the end rollers of the rakes take their bearing and direction.
The McCormick implement was on the field, and worked The McCormick implement was on the field, and worked
well, but the pattern, so long and so deservedly celebrated, well, but the pattern, so long and so deservedly celebrated,
now looks very antique when compared with many of the later patterns.
Of the German competitors but little is to be said. Hopherr's copy of Samuelson's reaper made fair time on the ground, but it was very heavy, and open to the objection, common to the type of implement, that there is no seat for the driver, who must there fore walk-a very wearying ope ration. Neither do the Siedersle ben implements call for any special remark.
The chief points upon which the jury were to decide concern ing the merits of the implements were: The time occupied, the length of stubble, and the throw ing off of the sheaves. As we have already said, the conditions under which the reapers, and equally the mowers, were tried were such as to make a prope comparison of merit quite impos sible, but it was evident, with the exception of the German Samu elson, which being a copy could scarcely be considered in the de cision, that the trial, such as it was, was purely American. Of these implements we should judging from the performance, place that of the Johnston Har vester Company first, the Wood New Champion second, and the Warder, Mitchell, and Company's Champion, and theBuckeye (Adri ance, Platt, and Con:pany), third and fourth.
The mowing trial may be dis missed in a few ?words. There were altogether sixteen compe titors, of which seven were sim ple mowers, and nine combined machines. Of the whole number there appeared little doubt that Wood's so called combined, but really single, mower did the best work. * * * * Returning for a moment to the trials of Siebenbrunn, we learn from them, incomplete and imperfect as they are, that German manufacturers will have to make great changes before they can compete with the American trade. How far this can compare with English productions, the absence of the latter from the trial prevents us from forming any con clusion.

New Experiments with the Electric Current.
MM. P. and A. Thénard communicate to Les Mondes the following conclusions derived from recent electrical researches:

1. The
2. The vapor of water does not hinder the production of the current, which decomposes it into its constituent gases. 2. The current, while determining the combination of nitrogen and hydrogen, decomposes equally ammoniacal gas; but, in both cases and without absorbent bodies, there is found in the gaseous mixtures a quantity of ammonia quite feeble but sensibly equal. 3. Nitrogen, under the influence of the sparts and the vapor of water,disappears to produce an unde termined body which is believed to be nitrite of ammonia 4. Gaseons phosphoret of hydrogen is similarly incompletely decomposed by the current, and this decomposition is ac companied with phenomena which prove first the formation of liquid phosphorus, then solid phosphorus, and lastly a body supposed to be the same substance in its amorphous state. 5. The current acting on a mixture of gaseous phos phoret of hydrogen and bicarburet of hydrogen reproduces one at least of the phosphoric alkalies. 6. Under its influ ence, the bicarburet of hydrogen alone condenses ravidly into an odorous liquid, soluble in ether but insoluble in water. 7. On the other hand, the monohydrate of methy lene is transformed in presence of water into marsh gas, into pure hydrogen, into a powerful acid soluble in water and into a resinous body differing from the viscous sub stance furnished by the bicarburet.
W. S. M. says: "I notice that some of your correspond ents mention trouble with pumps which they require to draw water almost farther than is possible. I have suc ceeded in such cases by letting a very small portion of air in at the bottom of the pipe, which, passing up in bubbles in the water, lessens the gravity of the column of water so that the pump can raise it."
C. H. S. says: "My two line advertisement in the 'Busı letters.'

THE GREAT EXPOSITION-LETTER FROM UNITED STATE COMMISSIONER PROFESSOR R. H. THURSTON.

number 5.

Vienna Welt-Ausstellung, June, 1873.
Probably every engineer who has come to visit the WeltAusstellung is greatly disappointed in his search for noveltie in mechanism, or for evidencs of important improvements in methods and processes of production. There seems al most nothing to be found, throughout this vast collection, which can be considered both new and important. What there is of machinery that is newest and most interesting is said, by the majority, if not all, of thcse who refer to the subject, to be in the United States section, where also may be found, frequently, the criginals from which exhibits in other sections have evidently been copied. Not a day passes without some new example of imitation of American de signs, and. often of precise fac similes of our standard machines, presenting it:elf. Our own exhibit, with which we have been so greatly dissatisfied on the score of its small ex tent and its incompleteness, appears decidedly creditable in its marked characteristics of excellence and originality when compared with those of other nations. It is far in advance of them all.
great britain
covers a larger area, in consequence of her requirements of space for textile machinory, but the number of her exhibits is less than those from the United States. Great Britain gives evidence, always observable in her departments at these exhibitions, that her mechanics are workmen of the very highest class, and that British machinery is as notable for its solidity, strength, and durability, and for excellence of workman hip, as is that from our own country for it originality and its ingenuity.

FRANCE

displays a considerable amount of machinery which, lacking preëminence in those qualities which distinguish the two great English speaking nations, is still excellent and highly creditable. In scientific apparatus, and machinery which must be classed by itself as intermediate in character be tween the industrial and the purely scientific, the French excel.

Other nations present exhibits which contain some exceed ingly creditable examples of good design and workmanship and which, particularly those of

GERMANY AND AUSTRIA,
are of great extent. They are almost invariably, however very barren of really original designs, and, judging from thi display, the observer is very much inclined to conclude that the talent for invention which is the leading characteristic of our mechanics is a very rare attribute among these people. italy
has made a magnificent display in the Industrial Palace, and in the Fine Art gallery, where elegart textile fabrics, beauti ful bijouterie, splendid paintings, and life like statuary prove that she is still foremost in all that most delights the artist ic mind; but in the Machinery Hall she presents no single strikingly meritorious production, and the impression made upon the engineer who looks through the collection is that he is inspecting a museum of antiquities rather than of the SWITZERLAND AND BELGIUM
exhibit some excellent examples of standard machines, neat in design, well built and well finished.
The most beautifully finished work in the who'e exposition is probably that sent by the Creusot works, in the south of France. A small compound marines steam engine, of the Napier type, and a locomotive for heavy work, have been constructed of the best of materials, and have been given finish which is simply magnificent.
Metal products, iron ores, and iron and steel particularly are exhibited by all those nations which produce for the world-with the exception of the United States-in large quantity and of splendid quality. The steel is usually the product of

THE BESSEMER PROCESS

and the facility with which every grade can be obtained is here illustrated, not only by beautiful specimens of every degree of carbonization, but by a wonderful variety of man ufactured articles, in which every quality finds its most appropriate application. The fact that we are rapidly passing
convincingly exhibited. In truth, it would seem as though the transition had actually taken place.
The low grades of Bessemer metal, containing in the neighborhood of one half per centum of carbon, are vastly stronger than iron; and this strength, together with its duc tility, malieability, and homogeneity, makes it vastly pre tility, malieability, and homogeneity, makes it vastly pre
ferable, for almost every use, to any iron. Bessemer meta ferable, for almost every use, to any iron. Bessemer metal
is already becoming nearly as inexpensive as the better is already becoming nearly as inexpensive as the better
grades of iron, and it cannot be long before the rapid extension of Bessemer manufactures, and the still rapid sucees sion of improvements in the details of the method and o the apparatus, shall so far reduce its cost as to perrait its sub stitution for iron for nearly all uses.
Here, it may be said in parenthesis, may be found one of the most promising signs of the times for the prosperity of our own country. Really good Bessemer metal can only be made from superior qualities of ores, and nowhere in the world can tiese good ores be found in such quantities, so widely distributed or so accessible, as in the United States. There seems no reason why, in a very few years, these great advantages, together with our wealth in good fuels, should not place us in a position to supply not only our own great and rapidly growing market, but even-improbable as the idea may appear-to export largely to countries which have but limited mineral resources, or which, like Great Britain, are yearly finding both the natural and the politico-industria obstacles to further progress becoming more and more se rious.
The noble exhibits made in this department by well known English, French, Belgian, and German firms are precisely what the well informed might have anticipated; but proba bly few visitors were aware, until the evidence was present ed here, of the vast mineral wealth, and of the degree of development of the resources of the Austrian empire. The

staats eisenbahn

exhibit occupies a building by itself, and affords a most in teresting illustration. Several hundred miles southeast of Vienna, among the Carpathian mountains, is the Hungarian wn of Resieza, where the manufacturing establishment of this railroad are situated. There have been brought from thence and placed on exhibition some of the finest of iron ores, which are to be found there in great variety. A very excellent coal is obtained from a vein of which a large sec tion is exbibited. The principal vein is said to be $29 \frac{1}{2}$ feet in thickness. Several immense ingots of Bessemer metal, made with this fuel from these ores, are exhibited, and also large number of samples of every grade, broken to show he character of the material by the appearance of the frac ture, or bent or tied into knots to exhibit its immense toughness and ductility. Parts of machines, as shafts and rods difficult shapes, plates of various thickness; tools and man ufactured articles of hundreds of different sorts,-all made of teel, illustrate at once its wonderful power of adaptation to all purposes, and exhibit the extent to which the "Staats Eisenbahn Gesellschaft" have developed their Hungarian
possessions.
Prince Schwarzenburg, who invited us to visit his: mense estate at

wittingau

few days ago, and who there exhibited to our astonished republicans an illustration of the old feudal system in it most unobjectionable form, has also a pavillon of his own which is equally interesting. The most careless observe cannot fail to find the most interesting evidences on all side of the magnificent, but as yet imperfectly developed, natu ral resources of this great Austro-Hungarian Empire. When the proprietors of this fertile soil shall have imbibed some thing of the energy and the enterprise of our venerable hos of Horskysfeld, and shall have profited well by the oppor unity which is now offered them of introducing the agri cultural machinery which our inventors have brought to ach perfection, and when these valuable mines shall hav established here, the world is likely to see a national devel pment which has been, as yet; quite unanticipated by for igners generally
There are still other illustrations to be observed here of he splendid future which may be secured to the country hould a wise policy, liberalizing its government, wake up and educate its people and develope its natural advantages The good work seems begun; and, if the management of af airs is allowed to remain in as good hands as those which have conducted the great enterprise which has now attracted epresentatives of all nations to Vienna, it may be confident ly hoped that it will be uninterrupted.

germany

is best represented by the contributions of Fred. Krupp, rom his immense establishment at Essen. A block of cru cible steel, weighing a hundred thousand pounds, illustrate een wor mer, which is one of the wonders of Essen. A steel cranked axle for a locomotive is a splendid piece of work, and smaller straioht axles, intended for cars and for tenders, are very fin examples of hammer finish; and a considerable number of pecimens of locomotive work are of the same admirable quality. Some of these are of Bessemer metal. Krupp evidently takes much pride in his artillery manufacture and if his exhibits here are average specimens of his work, he has most excellent reason for it. A considerable number
of guns for both land and sea are exhibited. On one of the largest he has adopted the "Ericsson compressor," which i one of the most beautiful and effective contrivances of its inventor. The guns are generally breech loading, are rifled
with a large number of narrow grooves, and are mounted on iron carriages. The largest gun has a caliber of 305 mil imeters-twelve inches-and weighs 36,600 kilogrammes, 80,000 pounds. It has a magnificent finish, and is made of beautifully homogeneous metal. These are built guns, or, as the maker describes them, are constructed upon the "ring system " of Armstrong. In most cases, the recoil of the gun is taken up by a very neat form of "hydraulic" gear, which we should expect to work well, and which experiment is laimed to have proved satisfactory
Among British exhibitors, Cammell \& Co., John Brown \& Co., Vavasseur, and Armstrong \& Co. compete to some ex tent with Krupp. The two first named present fine exam ples of heavy work, and their

armor plates

attract much attention. Several are shown which heavy shot have been driven against, making deep indentation which are bordered, in some instances, by a sharp fin, forming a kind of collar and showing well the fine quality of the metal. The other firms exhibit heavy and well built guns. Several torpedoes are exhibited, which are principally no iceable as reminders of the revolution which seems impend ing in the methods of naval warfare-a revolution which was inaugurated as long ago, at least, as the time of our revolutionary war, and which has exhibited its greates progress in the United States, where Bushnell, Robert Ful ton, John P. Taylor, and other inventors of an earlie period, and Ericsson, Lay, and others of our contemporar engineers, have proved that it promises to change complete ly the tactics and the materiel of navies at a very early date. There are many special exhibits which are nearly as interesting as any already referred to, and we may be able to find time for their examination at some future period.
R. H. T.

Cutrespandemte.

Testing Steam Boilers.

To the Editor of the Scieritific American:
In a late issue of your paper, you mention the need of an iron clad man to take charge of old worn out steam boilers. No doubt it would be a money-making invention; but as the deriand would be greater than the supply, we should be no better off than we are now. But why do we not have th same system of boiler inspection and testing, and the exami nation of engineers, on land as we have on the sea? In thi pluce, there are four saw mills; in two of them there are 130 men at work; and the engineers in both of these mills are men who know nothing about their business, except how to stop and start their engines. One of the boilers is worn out but what remedy is there? None. On the other hand, there are four tug boats in this harbor (two of them are only allowed to run inside the harbor); and on these, each engi neer has to have a license, for which he pays $\$ 10$. The boilers have to be tested once a year, and the engineers' cer tificates renewed. Now, have the engineers on those tug (each carrying three persons) any more responsibility than hose in the mills mentioned? What we want are a strict law in regard to testing boilers and a strict inspection of engi neers, as we have on board boats. Let insurance companies refuse to take risks on buildings using steam power unless the owners have an inspector's certificate. Let a law be passed, compelling all men using steam power to employ no ngineprs but such as have passed the required examination. Who will set the ball rolling? We look to you to start it ad to all sensible men to keep it in motion.
Frarkfort, Mich.
Engineer.

The Million Dollar Telescope.

To the Editor of the Scientific American:
The plan, shown in Figs. 1 and 2, of constructing a large object glass, with polygonal lenses having the same fccus and arranged in a metallic frame, has been suggested as the
 to call further attention to this plan, and request those who With means now kind can be constructed with a diameter of five feet, and very possibly six feet. If a 25 inch glass can be furnished for $\$ 50,000$, one of 60 inches should not exceed $\$ 600,000$. Of the proposed million dollars, this would leave $\$ 400,000$ for machinery, mounting, etc., which would probably be sufficient, although it is no small task to build a tube 75 or 100 feet long; and mount it in the air so that it shall have sufficient stability and yet be easily managed. Of course the field would be divided by dark bands into polygonal sections similar to the object glass; but would this be a serious ob
jection? I think not.
F. H. R. New Britain, Conn.

The Lay Torpedo

To the Editor of the Scientific American:

Your issue of July 19 has an article entitled " Recent Improvements in Torpedo Warfare," in which you give a de scription of the Lay torpedo. You also state that "experiments made at Newport some time since proved quite successful; but of late, we note that, from various causes, such promising results have not been attained." As this statement is made in your leading article, it has undoubted ly led the many readers of your valuable journal into an error as well as committed a great injustice to Mr. Lay.
During the winter last past, there were two experimenta trials which were unsuccessful, not on account of any faul in the principle of the boat. At one time, the rudder broke; at the other, the cable was defective. These defects were easily remedied; and on May 29, the final test of running one mile and returning was made, entirely to the satisfaction of the commission of naval officers appointed to witness it The writer was present and knows that the whole run was a perfect success, and that the Lay torpedo boat has proved quite as successful as her inventor had ever promised When I add that our government immediately accepted the boat, and has already paid Mr. Lay therefor, there can be very little question as to its success. I also have in my pos session a letter from Captain Matthews, Chief of the Torped Corps, United States Navy, stating that, since such accept ance, he had made even a more sticcessful run with the boat than that of May 29, and expressing himself highly gratified with the performance.
Please give this explanation a place in your paper, as trust you are ever ready to make amends for any error, how ever slight, in your columns, especially when it takes from worthy inventor the tribute of success.
W. W. Rowley,

Buffalo, N. Y.
Attorney for John L. Lay.

The Causes of Boiler Explosions.

To the Eaitor of the Scientific American

Having read of the appointment of a commission to inves tigate the causes of boiler explosions, I think it proper to assert boldly that no boiler has ever been exploded from gas es generated from steam or water. A want of capacity o carelessness of the engineer, a defect of construction or general weakness of boiler, but mainly want of water is th cause of explosions. When any part of a boiler, from warit of water, becomesheated, and water is let on to it, the water striking that part, will assume a globular form; and th globules, in cooling the surface, suddenly become steam and ay a consequence the boiler explodes. Who has no seen globules form on stoves, red hot plates, etc., and suddenly expand? I have experienced this fact in boilers, upon two different occasions (accidentally); and to prove my asser tions, I propose, to any party. willing to bear expense of th ruination of the boiler, to fill said boiler with water to the usual hight (which is at best arbitrary); then build my fire raise the steam to 70 pounds pressure, allowing it to escape and then reducing water, pressure and fire, till the gage shows less than 5 pounds, with but a few gallons of wate in the boiler; I will then introduce into the boiler from one to three gallons of water and raise the pressure to 70 pound again in less time than I can write it, say from one to three seconds. I will be present at the boiler during the trial The boiler is to be of the tubular or locomotive kind, to hav a very large safety valve, and to be previously submitted to my thorough inspection.

Geo. h. Lenher.
Elizabeth, N. J

The Zodiacal Light

To the Editor of the Scientific American:
T. R. L., in his explanation of the cause of the zodiacal light, on page 51 of your current volume, made, I think the following mistakes :

1. There is no reason why the lune 1 I 2 G only, and not every part of the surface of the earth that is illuminated by the sun (the entire lower half), should reflect solar rays in th indicated manner. Why should the phenomenon, explained in the diagram, be seen only east and west and not north and south, and in every direction, the sun being in a vertica line below the observer?
2. A second reflection of the rays on the outline of the atmosphere can hardly take place, because the density of the gaseous envelope of our earth diminishes gradually, and hence does not exhibit a reflecting face. The air, however does absorb and disperse some of the light which passes through it; and, therefore, " dis
3. In the diagram, the atmosphere is supposed to be high er than the radius of the earth. Had T. R. L. made the diagram with better proportions, sketching the hight of the atmosphere as about 1 of the radius of the earth, he would at once have seen that his theory cannot account for a "double light."
4. That section of the atmosphere, above the horizon of the observer, which is illuminated by the reflected rays is also illuminated by the direct rays of the sun, as the dia gram clearly shows; and therefore, I fear, T. R. L. gives a theory, not of the zodiacal light, but of tie ordinary twi light.

Philadelphia, Pa.
Hugo Bilgram.

To the Editor of the Scientiflc American:

Most of your readers, I am persuaded, will need no demonstration to convince them that the theory of your Mount Airy correspondent, which attributes the phenomenon of the zodiacal light to "reflection of the rays of the sun from the earth upon the atmosphere and thence to the spectator," as
contained in your issue of July 26, is untenable. However lest the diagram contained in the article alluded to may con fuse some of your readers, I submit the following as a refu tation of the position taken in that article.

Let E represent the center of the earth, \mathbf{S} the point of the observer, A B the hight of the atmosphere (50 miles, we will assume), and SC an incident ray. Then, from the wel known proposition (Enclid, 36, III), we have $\mathrm{DG} \times \mathrm{DF}=\mathrm{AD}^{2}$ Therefore, $\mathrm{AD}=\sqrt{8,000 \times 50}=$ about 633 miles. Because he angles of incidence and of reflection are equal, the last ray of reflected light that can be seen at D corresponds with he incident ray, SCD, which is tangent to the earth at.C, and onsequently $\mathrm{CD}=\mathrm{AD}$. Now, $\mathrm{AE}: \mathrm{AD}::$ radius : tangen of the angle AED, whence we find angle AED $=0^{\circ}$. There ore angle AEH = angle SDH =twice angle AED $=18^{\circ}$; and consequently the last ray of either incident or reflected light is seen when the sun is only about 18° below the horizon of the observer. But it's well known that the zodiacal light is seen when the sun is much lower; and, according to the tes timony of Mr. Jones, it may sometimes be seen when the sun is 90° below the horizon, that is, at midnight.
Hence it is certain that the zodiacal light is not "cause by reflection of the rays of the sun from the earth upon th atmosphere and thence to the spectator," as is assumed by your correspondent F. R. L.
J. E. Hendricks.

Des Moinés, Iowa.

The Retrogression of the Sun.

To the Editor of the Scientific American:
One of your correspondents, on page 51 of your current volume, argues that the precession of the equinoxes is owing o the motion of the sun in an orbit, and he gives a diagram of the position of the sun and the earth at the summer sol tice, in four different points of the supposed solar orbit.
Now his figure is incorrect, because, it the sun had such a motion in such an orbit, it would not change the direction of the earth's axis in the manner which he represents, or in ny other manner; and the earth at the summer solstice would not be in the positions, which his figure indicates, in the given places of the sun in its orbit, but would be in the positions indicated in the diagram whick I send you. This diagram is a correction of your correspondent's, with the lunar orbit left out as not affecting the question. This figurt represents the direction of the earth's axis as unchanged by the sun's motion in his orbit, which is in accordance with the principles of philosophy and the motions of the moon in regard to the sun and earth.

Now such a motion of the sun as this might cause a pre cession of the equinozes, but it would also cause a change in the angular distance from each other of all the stars in the heavens, which is not the case in Nature. For instance if the sun had receded so far westward from A that it n longer appeared in conjunction with the star, c, but thirty degrees to the west of it (about the amount of the precession of the equinoxes since Hipparchus' catalogue), then the stars and g, wouid no longer be 180° from each other; while and h; and g and h, would be nearer together, while c and would be further apart than at first; besides, the motions of the stars near the poles would not be such as is observed in Nature.

John S. Plumer.
Sandown, N. H.

To the Editor of the Scientific American:

Your correspondent Mr. Hepburn appears to labor under a singular delusion in regard to what is, in reality, a simple mechanical question; and thus, in trying to avoid a merely imaginary difficulty, he has fallen into a real one. For whil
a very slight excess of that retrograde rotation, which, in consequence of inertia, takes place in the earth as well as in all revolving bodies, is fully sufficient to account for the apparent retrogressive motion of the sun, it is equally clear that there could not be such a motion of the sun as is represented in the diagram on page 51 , without such a counterbalancing weight on the other side of the center of revolution as would require a complete change in the arrangement of the solar system.
If astronomers were but able to understand the simple fact that a body in free space, while rotating on one axis in one direction, can, at the same time, have a rotation in a contrary direction on another axis crossing the first at the center of gravity, they would find no difficulty in comprehending many of the so called anomalous motions of the planets which they have so long attempted to account for on the suppesition that one side of a perfectly well balanced body may sometimes be heavier than the other
Canton, Mass.

Hot Air Engines.

To the Editor of the Sientific Amerrcan

Having had considerable experience with hot air engines especially with the Roper engine, I have beer much interest ed in your correspondent F. G. Wood "ard's remarks and suggestions in regard to them. The design which he gives, on page 37 of your current voluse, though possessing some advantages (especially the self-oiling device, which is good), has many defects which, I think, make it impracticable. Among these are the fire box and fly wheel, which must both be of great weight, being placed high; and the whole engine, as it stands on tho air pumps, which must necessarily be small, renders the machine too topheavy for practical use. The location of the cylinders, also, seems to make them dif ficult of access for the purpose of packing, cleaning, etc. The fire dours being so high, also, make it inconvenient to ire up and rake out the ashes; and, the cylinder being placed beneath the fire box, the ashes and dirt, which are sure to arise when raking out the fire, would settle in the cylinder and cut out both it and the packing.
He does not give his proposed arrangement of valves, or the kind of valves which he supposes will stand when placed above the fire. After considerable and careful observation, my impression is that no successful hot air engine can be built unless the valves are placed outside. This is a subject which deserves discussion, and I am glad to see it agitated Hot air possesses advantages over steam which, it seems, sould eventually recommend it almost universally for a ight power, and whosoever has the best engine will certainy have a large field for its sale.
H. S. W.

New York city.
Remaris by the Editor:-We are glad to draw out cor respondence on so important a subject. Mr. Wondward did not send a working drawing of his proposed engine, but nerely a sketch of moving parts, and he may have provided sufficient support for the cylinder. He also omitted to mention several details, to which we called attention at the time. We would be pleased to hear from him, if he cares to reply to any of the criticisms contained in this letter.

The Belief of Hippocrates.

To the Editor of the Scientific American:
In reading the article, on page 320 of your volume XXVIII, on " Medical Practice in Early Times," to the progress of which, as you justly observe, Hippocrates contributed not a little, any one not acquainted with the writings of the Prince of Doctors may be led to infer from the context of the article that good Hippocrates was nothing but a materi alist; whereas he firmly believed that no disease can be ascribed to a material cause. He, in fact, says that it is im possible to discover the nature of ailments if they are no known in the indivisible (part of man) from which they proceed. By indivisible, we, of course, understand the soul of man. All matter is divisible; the soul, being immaterial is indivisible.
That Hippocrates was devoutly religious, his lifeand writings furnish ample proof; in this characteristic, some of our ings furnish ample proof; in this characteristic, some of our
doctors would do very well to imitate his illustrious exdoctors would do very well to imitate his illustrious ex
ample, particularly for their patients' sake.

Philo-Hippocrates

Kingfishers and Fish

To the Editor of the Scientific American:
Mr. Darwin in his last book states that the kingfisher al ways kills the fish before swallowing it. Dr. Charles C. Ab hot, of Trenton, N. J., states that the fish is swallowed with out killing and often while the bird is on the wing. So far as my observation goes, when a fish is large, or about two and a half inches long, it is killed before being swallowed I once saw a kingfisher light on a limb close to the surface of the water in a creek; and the bird, having an eye to the business in hand, did not see me (I was about fifteen feet off); it presently dived ints the water and returned to its perch with a fish in its bill, about the above stated length. The bird then began to beat the head of the fish against the limb on which it was standing; after a few beats it would stop to see if the fish was dead or not; this was done three times, when the head of the fish was bleeding, and the limb times, when the head of the fish was bleeding, and the linb
against which the head was beaten was stained with blood. against which the head was beaten was stained with blood.
The fish was deadl, and it was then swallowed. Now the The fish was dearl, and it was then swallowed. Now the
above named gentlemen may both to a certain extent be correct. The kingfisher may swallow the small fish without killing them; in my mind there is no doubt that they do. San Francisco, Cal.
D. D. S.

IMPROVED CHURN

The accompanying engraving is a sectional view of a new churn which, in addition to having various improvements in its construction, is claimed to produce and gather butter with great celerity. The apparatus rests on a base plate from which arise two standards, one of which is shown at A, which are surmounted by a top piece. The latter is cut to fit partially around the churn body, and is held in place by a detachable strap, B. The churn body is cylindrical in form and has a false bottom in which is pivoted the lower end of the dasher shaft, C. A number of radial arms or blades, made wide and inclined laterally, are secured to the dasher shaft, which is also surrounded by a curb or tube, D , in which it freely revolves. The curb, D, fits intoa similar tube, E, which has radial llanges, F , attached to it, the outer edg.s of which rest against the inner surface of the churn body, so as to keep both curbs accurt tely centered and securely in place. The lower ends of the flanges, F , project below the lower end of the tube, E, supporting the same at a distance above the bottom so as to give a clear passage for the milk beneath. In operation, the curb, D, is adjusted so that its upper edge may be a little above the surface of the milk to be churned. Then, as the dasher is revolved, the blades raise the milk through the curb and project it outward over the edge against the sides of the churn b.dy. A constant inflow of milk is thus caused beneath the lower edge, thus providing a continuous circulation and violent agitation of the contents of the churn, causing butter to appear in a very short time. The flanges, F, prevent the milk from receivinga circular motion from the dasher, by which its inflow beneath the curb would be impeded. The cover of the churn is made in two parts, and has half round notches in the centur, which, when the appliance is in place, form the upper bearing of the dasher shaft. To the upper end of the latter is attached a small pulley which communicates, by means of a belt, with a larger wheel provided with a handle to serve as a crank, as represented. The faucet shown at the base of the churn serves to draw off the contents when desired. Patented April 22, 1873, by Mr. William H. Holdam, of Crab Orchard, Lincoln county, Ky., from whom further par ticulars may beobtained.

ODORIESS WATER CLOSET ATtACHMENT.
There is probably no more insidious cause of disease than the foul emanations from sinks and water closets. In city houses. the latter especially, througl their close proximity to other portions of the dwelling, are often the source of serious nuis?nce.
In order, as it is claimed, entirely to obviate the disagreeable odor attendant upon the employment of these receptacles, the device illustrated in the accompanying engraving has recently been invented. It consists of a bellows, A, arranged with suitable inlet and outlet valves, the supply pipe of which connects with the upper end of the trap or the closet, and the pipe leading therefrom communicates with the lower part of the trap or the soil piue, thus conveying the foul air from the bowl thus conveying the foulair from the bowl to the rangement is operated by a lever, cord, and pulleys in combination with the pull, as represented, or, in hopper closets, by the
working of a cock.
working of a cock.
The device is simple, and easily attached to ordinary closets. The inventor relates that he has tested it for some time in actual employment, with uniformly satis. factory results.
For further particulars address Mr. Philip C. Rowe, 203 Harrison avenue, Boston, Mass.

Improved Ship Signal Lights

William Harvie, a coppersmith of Glasgow, Scotland, is the originator of an excel ent improverurnt in this line, which has come into extensive use for steamships and sailing vessels. He employs lenses on the dioptric system, of pressed glass. and has succeeded in grotting a parafin light to bura brightly in any weather, without a glass chimney.
In order to accomplish this result, Mr. Harvie so divided the lamp that the inside chamber formed the chimney proper, the air for maintaining combustion passing down the upright tube, entering under a false bottom. The funnel by which the products of combustion escape from the lamp is so protected that no blow-down can take place; indeed, it seem; that the Harvie lamp burns better in a storm than otherwise.

When subjected to a photometric examination in the pub lic gas testing office Glasgow, the Harvie patent signal lamp was found to give. in front; a lay of light from the center of the lens equal in intensity to that given by ninety eight standard sperm candles, and at the side a ray of light from the center of the lens equal to the light of sixty-seven candles;
while the common lamp in front gave a light equal to eight
candles, and at the side the light of three candles. And and a half candles, that of the common lamp was only equal and a half candles, that of the common lamp was only equal
to three candles. Hence, not only are the rays of light to three candles. Hence, not only are the rays of light
thrown in the proper direction, but the increased illuminating effect of the light is due both to the lens and the lantern itself.

The Australian water Cooler
In reference to this device, illustrated on page 371 of our volume XXIX, our excellent correspondent Mr. O. C. Wool son states that similar vessels are used in the West Indies;

HOLDAM'S IMPROVED CHURN.
they are made in Spain, of a very porous earthenware from
blue clay. "In no case must you touch your lips to the jar, blue clay. "In no case must you touch your lips to the jar,
but hold it above your head, anywhere from six inches to but hold it above your head, anywhere from six inches to
two feet, and let the liquor run into your mouth, or, rather, clear down your throat. It is a remarkable fact that. in quenching thirst in this way, you cannot drink one drop more than just what your stomach needs; and if you keep on pouring after that point is reached, you run in danger of

ROWE'S ODORLESS WATER CLOSET ATTACHMENT.
would, for the reason rbove given, save many a fellow from the cramp. I am going to try the "clay in this country; to see if it is suitable for the purpose.'

What shall we do with our Boys?

It is as impossible to make a chemist, or an engineer, or a naturalist, of a boy, if he bas no special taste or aptness for these studies, as to make a poet out of a Digger Indian It is no unusual circumstance for parents who have boy just entering upon manhood to come to us desiring counsel in regard to placingthem in a chemical laboratory, that they " may learn the trade," as, to their eyes, the business appear remunerative. They have no special genius no training in preparacory studies, no decid ed leaning towards chemical manipulation or research, but the desire is to have them made " into chemists. There is a mistaken idea, common to many parents, that their children are as well adapted to one employ ment as another, and that they only need opportunities to learn regarding this pursuit or that; to become proficients and rise to eminence. More than half the sad failure so commonly observed are due to being forced into the wrong road in early life Young men are forced into pulpits, when they should be following the plough; forced into courts of law, when they should lee driv ing the plane in a carpenter's shop; forced into sick rooms, as physicians, when they should be guiding a locomotive, or heading an exploring party into the Rocky Mountains forced into industrial aboratories, when they should be in the counting 100 m or shop.
It is a wise provision oi Providence that nearly every boy born into the world has some peculiar distinctive capability, some aptness for a particular calling or pursuit and if he is driven into channels contrary to his instincts and tastes, he is in antagonism with Nature, and the odds are against him One of the earliest and most anxious inqui ries of parents should be directed to the dis covery of the leanings of their children, and if they find thac their boy, who they earnestly desire shall adorn the bar or the pulpit, is persistently engaged in constructing toy ships, and wading in every puddle of water to test their sailing qual ities; if he reads books of voyages, and when in a seaport steals away to the wharves, to visit ships and talk with sail ors, it is certain he is born for the sea. Fit him out with a sailor's rig, put him in the best possible position for rising to the honorable post of ship-master and you tave discharced your duty. If, on the other hand, he is logical discriminat ing, keen, fond of argument, let him enter the law; if he is fond of whittling, planing sawing, constructing, and neglects his studies turn him over to a good carpenter, to learn the trade. If he begins early to spend his pennies for sulphur, niter, oil of vitriol, aqua fortis, etc. ; if he is such a persistent experi menter that you fear he will kill himself, or set your buildings on fire; it his pockets are full of abominable drugs, and his clothing so charged with the odor of stale eggs that you refuse to admit him to the table at meal times, why, the chances are that he is a "born" chemist, and it will be safe to start him off to some technical school for instruction.
The question is, not what we will make of our boys, but what position are they manifestly designed to fill ; in what direction does Na ture point, as respects avocations or pursuits in life which will be in harmony with their capabilities and instincts? It is no use for us to repine and find fault with the supposed vulgar tastes of our boys. We must remem ber that no industrial calling is vulgar; every kind of labor is honorable; and it is far better to be distinguishtd as a first class cobbler or peddler than to live the contemptible life of a fifth rate lawyer or clergyman.
There are thousands of boys born into the choking yourself. There may be some of your readers and \mid world possessing scarcely a trace of ambition. Such do not thinkers who doubt this, but I state it as a fact; and you may try again and again to swallow more than you really require, and you will be folled every time; and for this reason I regard the practice of quenching thirst in this way the most healthy that was ever tried. In very warm weather, when one is inclined to drink often and much, to the injury of health, it goes beyond the practice of taking one swallow and two breaths, etc. It takes a little practice to accomplish the throwing the water in the mouth, and the firstattempt will probably require a change of shirt and possibly one's whole attire; but that would only occur with those that are extremely awkward; generally the third or fourth attempt is successful; and then it is as simple as drinking from a glass. In some parts of Spain, they drink wine from these jars; and it is said that, when it is passed around the table for each person to drink, in case any one, not accustomed to the practice, allows his lips to touch the spout, the next in turn takes it and without a word throws it upon the floor and calls for another jar. That will do very well for Spain but we do not handle wine in that way. I hope the tim will come when these jars are generally used in this country. For rolling mill and furnace men they are very suitable, and
care for distinction, or even trace of ambition. Such do not the humblest fare, by constant toil, the aspirations of their boyhood, and subsequently of their manhood, are fully met. They are negative characters, happy with nothing, and suffer no elation or depression, whether in sunshine or under a cloud. These boys, who often afford much mortification to ambitious parents, fill a most important niche in the world; in fact, the world could rot do without them. They constitute the great army of men who build our railroads, tunnel our mountains, load and unload our ships, cut down our forests, and manipulate the red hot, iron masses which come from our blast funnaces. We cannot alter the temperaments of such boys. Nature is stronger than we are, and well is it that this is so. We may hold them by the power of wealth or controlling influences, but when these fail they fall at once to their place, in obedience to a law as irresistible as that which Newton discovered in the fall of the apple. Study to learn what they are capable of doing for themselves; encourage them to do well whatever work is suited to their natures. Regard every calling as honorable, the labor of which is honorably performed, and thus insure happin ss and prosperity to our offspring.-Boston Journal of Chemistry.

JAPANESE BIRDS.

We select the herewith illustration from a handsomely gotten up work on Japan, by the celebrated German traveler Wilhelm Heine. It represents birds of the heron and crane species, and was made from a sketch by himself personally. These birds are very numerous, and are diverse in their appearance and characteristics. They are not allowed to be hunted except by the nobles; and according to the poto be hunted except by the nobles; and according to the po-
pular belief, they are the symbols of happiness and good pular belief, they are the symbols of happiness and good
fortune, and are frequently represented as such in the plastic and pictorial arts.
The ibis (No 4) is a beautiful and rare bird, the first specimen of which was brought to Europe by Siebold. It is two feet six inches high; the bill is of a dark violet brown, red at the point. The skin covering the head and ears, and also that of the legs and feet, is of a brilliant red; and the nape of the neck. is covered by a bunch of long narrow feathers extending to the base. The color of the bird is white.
The white crane (No. 2) appears in the southern part of Siberia as well as in Japan. The color of the young birds is of a reddish brown, which soon changes into white. The feet, the bill, and a piece of bald skin above the eyes, are of a brilliant red color.
The monk heron (No. 7) is two feet eight inches high, being covered with black feathers on the upper part of the neck and head. It has similarly colored legs, with a bill of a greenish gray, which changes towards its base into a rusired color.
The great spoonbill heron (N). 3) is two feet nine inches high. It resembles, in general, the European species, with a small difference in the length of the feet and bill. The color is white, the bill being yellow and the feet black.
The small silver heron (No. 1) differs greatly from the Eu-
ropean herons, and from those of Egypt and Persia. Th specimen represent d in our engraving measures two feet in hight. The feathers which cover the neck and back are long and thread-like, and are used in trimmings and other ornamentation, being of a resplendent white color. The feet are mentation,
The bittern (No. 5) does not differ from the kinds indigenous to Europe, Egypt, Nubia, Abyssinia, and Siberia.
The great kingfisher (No. 6) is frequently fornd in the presence of a company of herons; he appears to listen at tentively to the chattering of the birds, with the air of a reporter to whom it is necessary that not a word should be lost.

The Cause of the Gulf Stream.

Mr. John P. Whipple, of Whitewater, Wis., sends us a pamphlet in which he argues that the Gulf Stream and all other ocean currents are produced by the tidal wave and the land with its peculiar formation. We fail to perceive the practical scientific value of our correspondent's suggtstions, particularly as he observes that the land and tide are continually making the water unequal and that, the tide and winds stir up the ocean. Some of the theories advanced are hardly in accordance with accepted views, especially those relating to the trade winds where "the sun is continually warming the air at the surface of the earth, which makes it lighter, and the night cools it and makes it heavier, so the cool air follows the sun around the earth and that is the cause of its keeping one direction:" and also the statement
that the earth's rotation is due to "the sun continually expanding the side nearest it, making it lighter; night condenses and makes the opposite side heavier, and its motion round the sun forces it to rotate."

As the inventor of these novel ideas naively remarks hat his Gulf Stream theories depend on the fact of the water on the east shore of the Isthm us of Panama being on a higher level than that on the opposite side, he probably will abandon them on learning that the mean hight of the two oceans is precisely the same. The old idea that the Atlantic is many feet higher than the Pacific has long since been exploded.

Iron Shipbuilding in Iowa.

A correspondent, J. H., states that two irnn steam yachts have recently been built in Dubuque. They are built on the same style as the Cunard steamer China, built on the Clyde The building of the yachts was done under the superintend ence of a man who worked on the China. The dimensions of each yacht are: Length of keel 47 feet, width of beam 7 feet 6 inches, depth of hold 4 feet. They are propelled by screws which make 300 revolutions per minute and propel the boats at a speed of 12 miles an hour. The screw of each boat is driven by a twelve horse power upright boiler, and ngines of unique pattern, which will soon be patented Everything aboard each yacht is so arranged that she can be entirely managed by one person. They can be used as sail boats and are capable of carrying 50 passengers earh. They are the fifth and sixth iron steamboats built in this city (one of which, the Clyde, has a 150 horse power engine and is one of the fastest tow boats on the Mississippi river). She was he first built west of the Alleghany mountains. Except the masts and seats, there is no woodwork on the two yachts. Their names are the Island Queen and the J. D. Eddy. They cost $\$ 2,000$ a piece, and are built. by Rouse \& Co., proprietors of the Iowa Iron Works.

SCIENTIFIC AND PRACTICAL INFORMATION.

tUNGSTEN in the arts.

In the last few years the consumption of tungsten and its compounds has vastly increased. It is now used for im proving the quality of puddled iron and steel as well as cast steel, and is one of the constituents of Mushet's special steel Its addition to German silver renders it tougher, and it i employed in many other alloys with gold, silver, lead, etc. One alloy called minargent contains 100 parts copper, 70 nickel, 5 tungsten, and 1 aluminum. Bartels in Hanove makes a large number of tungsten preparations for use in dyeing and printing; the tungstate of soda serves as substi tute for tin salt, for fireproofing fabrics, and for the manu facture of bronze powder and blue carmine. In cosmetics, tungsten is taking the place of white lead and zinc. Tung sten in steel gives it the property of retaining magnetism for a longer time and makes it useful for magnetic needles.

CONVERSION OF STARCH INTO SUGAR

The conversion of starch, cellulose, and the like into glucose or grape sugar has usually been accomplished by the use of dilute acids in open vessels. Sone Parisian chemists, Gibon, Dusart, and Bardy, now propose to conduct this operation in closed cylinders under a pressure of 3 to 4 at mospheres. The proportions taken are 35.3 cubic feet wa ter and $4 \cdot 4$ pounds sulphuric acid to 4,400 pounds dried starch, and the operation lasts two hours. If a thick er sirup is desired, it is only necessary to diminish the amount of water taken. Some other acid may be used than sulphuric. The advantage of the process consists in obtain ing the desired product by a single operation, since neithe concentration by evaporation nor filtration is necessary. determining the quantity of alcohol in fusel oil.
When fusel oil is imported into England, it is admitted free of duty, provided that it does not contain over 15 per cent of alcohol of 0.92 specific gravity. The method employed in the London custom house for determining the amount of alcohol depends upon the insolubility of fusel oil in water. A certain quantity of the liquor to be tested is shaken with an equal volume of water and left standing for 12 hours. At the end of that time two layers are formed, the upper one of fusel oil, the lower of alcohol and water. The specific gravity of the latter is taken, and from it the percentage of proof spirits is calculated

This method, according to Dr. G. L. Ulex, gives too high a percentage of alcohol, for crude fusel oil contains not only amylic alcohol, but also ethylic, propylic, and butylic alco hols, which are more soluble in water. Ethylic alcohol is soluble in every proportion, propylic alcohol is very soluble, butylic alcohol dissolves in 10 parts of water, amylic alco hol is as good as insoluble.
From some experiments by theauthor, he found that fusel oil from beets consists of 2 parts of soluble alcohols and 1 part insoluble alcohol, and that only a small part of the former is wine alcohol. Although this liquor contains only 3 to 4 per cent of proof spirit, according to the custom house rules it would seem to contain 40 per cent of proof spirit
and be taxed accordingly. This leads to very great injusand be taxed accordingly. This leads to very great injustice in English import duties, and although this law is not
in force here, we give the following more accurate method in force here, we give the follo
The boiling point of absolnte (ethylic) alcohol is 173.12° Fah.; that of propylic alcohol, 206.6° Fah.; butylic alcohol, 2282° Fah. ; amylic alcohol, $269^{\circ} 6^{\circ}$ Fah., so that this difference can be employed in separating them. If wine alcohol is present in considerab'e quantities, it alone will be found in the first portion of the distillate. Three and two fifths ounces of the fusel oil to be tested is placed in a retort and 1.35 drams distilled off. This distillate is mixed with an equai quantity of a saturated solution of common salt, and, after shaking, left to settle. If the quantity of fusel oil then found floating on the top is 40 minims or more, it is certain the thess than 15 per cent of proof spirits is present, and hence it is free of duty. If the quantity of fusel oil is less than that, the liquor is tested by mixing it with an eq
quantity of salt solution, shaking, and allowing to rest
The salt solution is then separated and distilled by itself, and the quantity of proof spirit determined in the distillate by taking its specific gravity.

the velocity of liaht.

Olaf Roemer, an eminent Danish astronomer, whiie ob serving the eclipses of Jupiter's satellites, in 1676, found that light occupied about 16 minutes and 26 seconds in passing through the diameter of the earth's orbit, and assuming the distance of the earth from the sun to be nearly $95 ; 000$, 000 miles, he determined the velocity of light to be 192,500 miles in a second.
In 1723, Bradley, an Enylish astronomer, discovered the aberration of light, and determined its velocity to be 191,515 miles per second.

In 1849, M. Fizeau invented an apparatus for measuring the velocity of light between terrestrial stations, and determined it to be 194,677 miles a second.
M. Foucault, with substantially the same apparatus, de termined the velocity to be 185,177 miles per second, and termined the velocity to be 185,177 miles per se
showed that this result was correct to within
Quite recently M. Fizeau has published the particulars of a long series of experiments, made between stations about 6 miles apart, using the rays from a oxyhydrogen light; and he gives, as the mean of 650 good observations, a velocity of
186,363 miles per second. The result obtained by Roemer is usually given in test books, and in fact is commonly quoted as the correct velocity of light. But the close agreement of the more recent researches of MM. Foucault and Fizeau, and
the elegant methods used by these philosophers in their researches, render it nearly certain that the velocity of light i the air is between 185,177 and 185,363 miles per second

SULPHITE OF SODA AS AN ANTICHLOR

The term antichlor, which applied originally to any sub stance employed to destroy the free chlorine remaining in fabrics bleached with i^{t}, is now almost entirely limited to hyposulphite of soda, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. During the reaction of this salt upon chlorine, free suiphur is deposited upon the fab ics, much to their detriment. The probable reason, that thi as never before been observed, is because its injurious ef ects have been attributed to overbleaching. This finely di ided sulphur, when deposited in the fiber of paper, gradual oxidizes to sulphurous and sulphuric acid, which render the paper brittle, and, if wriiten upon withiron ink, bleaches or fades it. This effect upon paper has sometimes been at ributed to its containing too much wood fiber.
A larger quantity of active sulphurous acid can be ob ined from a given weight of sulphite of soda, $\mathrm{Na}_{2} \mathrm{SO}_{3}$ han from an equal weight of the hyposulphite, and from this no sulphur is deposited, so that it ought most certainly to be preferred for use as antichlor on a large scale. We are informed by large manufacturers of chemicals that sul phite of soda can be made at a price not higher, in propor tion to its efficiency, than the hyposulphite

Jet-o-How and Where it is obtaine

A writer in the Practical Magazine gives the following interesting particulars regarding jet, a material much used for the manufacture of mourning jewelry. In this country, w may remark, the substance is largely imitated by vulcanize rubber, which, when new, closely resembles the genuine arti cle. Real jet jewelry mounted in gold is worth from five and six to as high as seventy dollars per set, the price, how ver, depending principally uponthe quantity of precious metal used. It is very serviceable, and, unlike rubber, it re ains its brilliancy
Jet is of two distinct species-hard jet and soft jet-but the latter is of very minor importance and will be referred to ereafter.
The hard jet is found in the strata known as the jet rock, which appears to be a deposit of sea anemones, and some years ago a patent was taken out to distil petroleum from

The jet rock occurs in the lias formation, some thirty yards above the main band of Cleveland ironstone, and is discov red in compressed masses in layers of very different sizes, being generally from half an inch to two and a halfinches in hickness, from four to thirty inches wide, and four or five eet in length. It invariably tapers away, running, as the iners say, to a "feather edge"
These jet layers are always protected by a skin, the colo aking another division; for that found in the cliffs by the sea has always a blue skin, while that discovered in the in land hills has a yellow coating. The jet found in the same mine varies very much in quality; its worst specimens, those which are quite brown and will not take a polish, are termed dazed jet.
T"ue soft jet is confined to the lower oolite-in the sandstone and shale-some 160 yards higher than the hard jet, and is undoubtedly of a pure ligneous origin, the fiber and the branches of trees being more or less distinctly marked.
The most valuable finds of jet have been washed down by the sea's action, where the jet rock crops out in the cliffs, and on the cliffs, where the seams are exposed. The dealers of the town of Whitby, in Yorkshire, England, where the principal deposits of the material exist, rent these jet cliffs and inland seams from the owners, generally for a fixed lump sum paid in advance-not for a royalty-for the right to work a certain number of yards. Nearly all the jet now obtained is found inland, but in former days tales are told of men being swung by ropes over steep cliffs like the eiderdown hunters of Norway. At present, cliff jet is worked with the same mining operations as that lying under the inland hills.

The process is very simple, and, to those acquainted with the intricacies of iron and coal mining, of no very great interest. A mine is commenced by drifting into the face of a rock a passage of seven feet by five. A tramway is then laid down, and the shale is tilted from the mouth of the mine, the drift continued for about forty yards, at the rate of from two to fcur feet per diem; then cross drifts are started in a variety of directions. As soon as the rock
becomes too hard, the miners retire, pulling in the roofs as they recede, for the bulk of the jet is found generally in the falling top rock.
There are at present twenty-three jet mines in full work, only one of these being of soft yet. The average number of men employed in each mine is six, and there are now some hundred and fifty miners engaged in this industry. The men are generally paid by the week, and only earn from twenty-four to twenty-six shillings-a sorry contras to the high wages of the iron miners.
Hard jet varies in prices from 75 cents to $\$ 3.50$ per lb.; soft jet from $\$ 1.37$ to $\$ 7.50$ per stone, according to size and quality, and sometimes also according to the fluctuations of the market. For instance, when the Prince of Wales' life was in danger, Whitby was thronged with buyers for both the raw and manufactured article at any price, and
some speculators were severely bitten by his happy resome sp
covery.

It is stated that the turn-over in rough English hard jet mounts to $\$ 200,000$ annually.
The material is manufactured as follows: The jet is first peeled and stripped of its skin, be it blue or yellow; by means
of a manual chipping process with a heavy iron-handled chisel It is then sawn up into the exact sizes for the object for which it is intended, the saw being guided by an ingenious ar rangement of little wooden directors. Much care is taken in this process of " sawing up," for great economy can, by rigi supervision, be effected, one manufacturer stating that by very simple arrangement he was able to make his raw ma terial go a fifth further than any of his rivals. The little ragments are then delivered to workmen, who, with the aid of small grindstones driven by a foot treádle, take off the anguiar portions and reduce them more nearly to the re quired dimensions. They then pass into the hands of th carvers who, with knives, small chisels, and gouges, soon f it be rough work only, cut them into the desire 3 pattern f the work, however, be really artistic, the carving is of course a much more artistic process; and it is curious to se lads and men, who one migbt fairly think had not the slight est knowledge in the world of art principles, cut deftiy and rapidly cameos that in their beauty of profile resemble he old masterpieces; flower scrolls and groups of frui that have a marvellous fidelity to Nature herself; and cru cifixes and pendants that rival all the ingenuity and patienc of the "heathen Chinee." Sometimes you notice them with pattern placed before them, or with a rough design scratched by a knife's point upon the material itself-often est, however, it would seem as though the work were alto gether original.
After being carved, the goods are removed to the polishing oom, where the first process, in the case of rough goods again takes place, upon a treadle grindstone fed with oil and 'rottenstone." Then the finish and the polish are given by what is termed "rougeing." Here the articles are held against quickly revolving wheels, covered with chamois leather for the larger portions and with strips of list for the indented parts of the pattern, the beautiful polish being given by means of a composition of a red pigment and oil They are then set (the settings all coming from Birming ham) and taken to the warehouse, where they are carded, or strung if necèssary, and priced and packed by young women being then stored for the inspection of the buyers.

NEW BOOKS AND PUBLICATIONS.

The Commercial Agency Register, published by th McKillop \& Sprague Co., 109 \& 111 Worth Street, New York.
We are pleased to learn that our old netghbors and friends, Messrs.
CcEillop and Sprague, continue to prosper, and to issue their semisannua Mckiliop and Sprague, continue to prosper, and to issue their semi-annua
volume, improved and enlarged. Their present premises are much bette and larger than those they occupied at 87 Park Row; and are, we beller the best and most commodious offices in the United States used in that business. The up town movement, however, has not disconnected then from their down town subscribers, as they have established a branch offic
at 128 Pearl Street, near Wall, connected with the office $109 \& .111$ Wort at 128 Pearl Street, near Wall, connected with the office 109 \& 111 Wort
Street by telegraph; they can also, from their own office, telegraph to the correspondents at any point. Thefr Register is a large volume, full o information such asevery dispenser of credit requires, be he machinist o manufacturer: while their weekly circular gives the important changes occurring from d.y to day. On their circular they indicate the change, th Private Key to which is printed in front of the Register. To us this appear
a most valuable feature, and it enables every holder of a book to mark of 2 most valuable fealt.
the changes, weekly.
The Unity of Natural Phenomena, a Popular Introduc tion to the Study of the Forces of Nature. From the French of Emile Saigey, with an Introduction and Note
by Thomas Hreeman Moses, A.M., M.D., Professor of
Natural Science in Urbana University. Price $\$ 1.50$ Natural Science in Urbana University. Price $\$ 1$
Boston: Estes and Lauriat, 143 Washington Street.
In this work, M. Salgey has collated some of the more strikingly simila natural phenomena, and applied them to furthering the belief in the grea ruth that all Nature is one harmonious system. Although the doctrines o ciences, have been already promulgated by higher authorities than ou present author, there is much food for reflection and pleasant reading in his work, which aspires rather to popularize facts already ascertained tha startle the world by its originality
REECH LOADERS. By "Gloan." Price $\$ 2$. New York
G. E. Woodward; Orange Judd \& Co., 245 Broadway.
GEECH LOADERS. By "Gloan. Woodward; Orange Judd \& Co., 245 Broadway. The author of this readable little book has given, in addition to a practi cal description of the construction, mechanism, and treatment of a breec loading shot gun, a very curious historical account which will sucprise many
readers, as it demonstrates the origin of the breech loading system to be a least four centuries old. The book is written in a chatty, pleasant style and will be acceptable to the numerous votaries of outdoor sports.
Report of the Minister of Public Instruction for the
Province of Quebec, for the year 1871. Montreal: La Minerve Press.
This pamphlet gives the reader a favorable impression of the state o education among our Canadian neighbors, and explains the system, of imparting instruction in all

Yeast, Protoplasm, and the Germ Theory. B
Thomas H. Huxley, F.R.S.
Relations between Matter and Force. By Joh he Relations between
H. Tice, St. Louis, Mo.
H. Tice, St. Louis, No.
25 cents. Boston : Estes and Lauriat, 143 Washington Street
The first of the papers in this pamphlet is most weloome, as it gives us on of the most strikitgy of modern theories on the mystery of the origin of life
as explained by one of the creators of contemporary solence, in a popular and as explained by one of the creators of contemporary science, in a popular an and will be widely read as a new contribution to our knowledge of the question of all questions in the world of pnysics.
Table of Change Wheels for the Screw Cutting
Lathe. Camden, S. C. Lathe. Camden, S. C.
This heading is all the information we possess as to the origin of one of
, me most handy little books we have ever seen. We have, dozens of times the most handy little books we have ever seen. We have, dozens of times,
answered quertes on the proportions of cerew cutting gear, and here we have, neatly printed, the whole subject reduced to tabular form and giving the figures to three places of decimals. We regret we cannot give the

Digestion and Dyspepsia; a Complete Explanation of th Physiology of the Digestive Processes. By R. T. Trall, M.D., Author of "The Hydropathic Encyclopædia," "The
Hygienic Handbook," etc. New York: S. R. W'lls, 389 Hygienic
Broadway.
Accurate information on health and dietetics is a public recessity; an we have here a
ject. The book is coplously illustrated.

DECISIONS OF THE COURTS.
 United States Circuit Courtom-Southern District of New York.

 Paint CAN PATENT.

Inventions Patented in England by Americans. From July 12 to July 17, 1873, inclusive. Copying Brush.-W. Shriver, New York city Grate bar.-W. b. Rogerson, Paterson, N. harness Connector, etc.-S. Reynolds, Pittsburgh, Pa metallio Cartridge.-H. Berdan (of New York city), Berlin, Germany. Preserving frọn and steel.Printiva Telegraph.-G. M. Phe!ps, Brooklyn, N. Y. Rail way Rails and Spikes.-W. B. Rogerson. Pate
Tooth brush.-W. o'Donoghue et alo, New York city

Fecent sumcricau aud foreigy equtents.

lmproved Shirt Bosom
of which the bosoms are made in suchmanner as to re-enforce the portion between the plaits with one or two webs to strengthen it where it wears out soonest, and to do it without sewing on extra strips, as has been done
in some cases. The single web is re-enforced between the plaits of a shirt osom by means of narrow plaits formed of the cloth of which the wide
anin
Improved Belt Guide for Paper Machine. Robert tutton, Holyoke, Mass.-The endless wire belt carriers of paper
making machineryare very difficult to keep in the truecourse on the roller over which they are carriea, owing to the variations of the tension cause by the shifting of the wires, and they cannot de kept in place by having the
edzes run against stationary guides, because the wires bend and double over the bearings of one of the rollers arranged so that it can be shifted, so as to vary the tension at the edges of the belt, and provide mechanism in connec tion therewith, whereby the belt itself will cause the bearing to be shifted automatically whenever it runs out of ths true course so as to correct it it would be caused to run to the left and come in contact with a plate and move a bar in the same direction, the bell crank would be shifted thereby so as to move wheels toward the front, so that a blade would act on the front wheel and turn it so that a screw shaft would draw the bearing toward
the front, which would lessen the tension on the left hand side of the belt and prevent it from running in that direction. If the tension be greatest drection, so that the of the belt, the shan the other wheel and cause the screw to move the bearing in the other direction.
Improved 'rooth Brush.
James D. o Donoghue and whlliam O'Donoghue, New York city.-This invention consists of an ordinary tooth brush having a convex bruch ar ranged at the end of the handle, crosswise to it, in a different plane and
fronting the other brush, so that, holding it by the end wheren the arranged, and placing the convex brush in the mouth inside of the teeth the convex form will apply to the concave wall of teeth in a manner calculated to brush the teeth at the inside more efflciently than can be done by the ordinary brushes.

Improved Well Bucket.
Charles F. Stiles, Cincinnati, Ohto.-This invention consists of an im proved self emptying or dumping well bucket, composed, essentianly, of a
metal cylinder and wooden bottom, anc provided, on the upper end, with a metal tilting buffer cast into a slotte 1 part, which embraces the top of the the bucket, by arresting one side of it under a stop projecting beyond the water spout from a point a little above it. By their use the emptying of the stops it is much less than when the butfers are not used

Improved Apparatus for Treating Cane Juice. George C. Taylor, Thibodeaux, La.-The object of this invention is to
construct an improved condensing machine for sugar plantations and chemical establishments, by which cane juice and molasses may be rapidly bleached without allowing the escape of sulphurous gases from the machine to the other parts of the building. By a fan wheel the required supply of gas is regulated, and the action of the same on the juice effected by a cen
trifugal or spray wheel in connection with a reacting shelves, producing a thorough contact of the gas with the greatest surface of juice.

Improved Saw Filing Machine

William B. Bizzell, La Grange, N.C., assignor to himself and W. H. Hardee of same place.-This invention has for its object to furnish an improved
machine for use in flling saws, whith will enable the saw to be flled quickly machine for use in fling saws, which will enable the saw to be filed quickly
and accurately, and will render the operation of "striking" unneceessary projecting about one and a quarter inches above said clamps, which ar then placed upon the saw and another clamp. The guide frame is placed
upon the clamps and the file handle is placed in the groove of the guide frame. The guide frame is adjusted to bring the flle to the desired angle across the sa , and is secured in place by a set screw. The clamps are
adjusted to bring the flle to the first tooth, and the screw is tightoned. The screws are adjusted to fle the teeth to the desired depth. A rule is adjusted to bring the appropriate notch in the circular frame of the clamps to
division mark of the proper scale. After flling one side of the teeth, division mark of the proper scale. After filing one side of the teeth, the

Improved Cloth Holder for Sewing Machine
Lewis Aladin Dupre, Donaldsonville, La.-This invention has for its
object to furnisha neat, simple, and convenient device for holding cloth object to furnish a neat, simple, and convenient device for holding cloth
while being sewn upon a sewing machine, to avoid the necessity of bast ing the work before sewing it. Tade wider at one end and narrower at the other end, having a single bent point at its narrower end, two bent points
at its wider end, and a short slot in its wider end, and bent so that its nar atits wider end, and a short slot in its wider end, and bent so that its nar
rower end may be passed through the slot in its wider end, and the two ends may project parallel with each other.

Improved Sewing Machine.
Improved Sewing Machine.
Edwin D. Smith, New York city.-It is proposed, in this invention, to cast
the head for the needle and presser bars on the branches of the supporting arms, then saw the lower arm off from the head close to the latter, and $i t$ in an adjusting screw to spring the head toward the arm thus separated from it , and to utilize the elasticity of the upper branch of the arm, together
with the adjusting scre v, to adjust the needle toward and from the shuttle, with the adjusting screv, to adjust the needle toward and from the shuttle,
and thus save considerable labor heretofore expended in fiting a head made separately to the overhanging arm. It is also proposed to arrange the lever for lifting the presser bar on this adjusting screw between the het.
end of the arm sawn from it to utilize said screw from the pivot.
Improved Saw Set.
Gustaf Swenson, Hackensack, N. J. Thisinvention relates to an improved combination of parts or devices for setting teeth on both sides of the sam are attached two plates, which are kept at the proper distance apart by are attached two plates, which are kept at the proper distance apart by
bar which also serves as a stop for the points of the saw teeth to rest
against while using the machine. The saw teeth to be operated upon pass
between $t w o$ bars, one of which, whe the and may be adjusted according to the siza of the saw teeth. The other bar is formed upon the side of he lower edge of a plate, to the upper part of
which is attached a pin, which passes in through a hole in another plate Which 18 a tached a pla, which passes in through a hole in another plate to clamp the saw against the bar while a tooth is belng operated upon. The teeth are set by the punches, which pass in through holes in the forward ative teeth bars set which are so arranged as to operate upon two consee utive teeth and set them at the same time. The punches are forced in to set
the teeth by the levers by the revolution of the cam wheel. The length of the feed may be adjusted according to the size of the teeth. Bs suitable mechanism, as each pair of teeth is set. the machinery is drawn forward the ma-hine is tesigaed to meve the next pair of teeth. Asdiectiod, desired, the machine may be inverted and secured in a vise, the saw moving th are set.
Improved Dash Board Bag.
Samuel Hipsso, furnish to the public a neat, stron , and waterproof bag for dash boards of
carriages of all kinds, which may be readlly taken off and placed on another veh'cee as required, and which will not interfere at all on enter.ng the car-
riage, being an ornamental appendage to the same. The invention consists riage, being an ornamental appendage to the same. The invention consists
of a strong main piece of leather, to the upper part of which strong spring of a strong main plece of leather, to the upper part of which strong spring
hooks are attached, which are slipped over the dash board. The bag is expanding too much and protruding too far into the carriage.
Improved Stamp for Crushing Ores.
James M. McFarland, Golden City, Col. Ter.-The most essential part o this invention consists of a novel mode of operating stamps for crushing and pulverizing ores, etc, by a horizontal revolving cylinder, through
wbich a series of bars, with a stamp head at each end, are arranged diamet rically, so that they can slide pndwise a short distance. The cylinder is arranged a suitable distance above the bottom of the bed containing th ore, and caused to revolve slowly ; the stamps, as they approach the vertic af line, side in the cylinder and strike a blow on the ore, and are the
forced around by the cylinder, and have a grinding or crushing effect. The forced around by the cylinder, and have a grinding or crushing effect. The
strike two blsws at each revolution. They are arranged as close together both lengthwise and circumferentially, as they can be and work well, an this invention consists of a bollows cylindrical rotating ore holder, int which the ore is fed at one end and caused to work along slowly to the
other end during the progress of the work, and discharge through holes on to a screen, which is arranged to separate the fine particles and carry th ibs in the hollow rev.

Improved Method of Enlarsing Oil Wells

Martin Gillespie, Smith's Ferry, Pa.-This invention relates to a nove method of enlarging the bore of an oil or analogous well, and in peculia
nears for carrying out this method.
Improved Portable and Adjustable Hoisting Apparatus.
Gporge A. Myers, Williamsburg, N. Σ. This furnish an improved hoisting apparatus for tiering or stacking goods orehouses, and which shall be so constructed that it may be readily move from one part of the room to another and swung around to work in any
desired position. Tc the stanchions of the room are attached one or more clamps which are so formed as to fit upon the stancilons. The clamps ar hinged so that they can be readily detached from one stanchion and attache voted the drum, around which the hoisting rope is wound, and to th ends of its journals are attached a larger and it smaller gear wheel. In th rame also works a shaft, to which are attached a smaller and a larger gea Wheel, in such position that when one of the gear wheels meshes intu th tudinally the apparatus mor befoced to may be desired. To the ends of the shaft are attached the cranks by which the power is applied. The frame may be swung around so as to work in apparatus the rope from the drum is passed around the pulley of a block which is connected with and supported from the joists or rafters by mean of a clamp something like an ice tongs, so that, the greater the weight of he package being handled, the firmer the said clamp may hold. With th mount of labor, the may be tiered rapidly and with a comparatively smal the tiers may require.
Improved Reciprocating Churn.
William M. Thompson and John L. Mahurin, Rockfield, Ind.-This inven on consists in the arrangement of perforated dashers, sliding in groove within the churn, which are moved and operated against by similar perfo-
rated dashirs fixed to a plunger rod passing through the sliding lid, which prevents the splashing of the cream.

Improved Sky Light Bar
York city.-This nuvention is an improvement th he class of sky light bars formed hollow or of sheet metal; and consists in orming the bar with a central, vertically projecting part, inclined side sup ports for the glass panes, and fuclined gutters. The long and narrow shape
of the bar is favorable to the admiss:on of the light-more so than the bars of the bar is favorable to the admiss:on of the light-more so that for lighte
with projecting gutters and parts. In a modification designed for structures, the ma'n support is bent of one or two pieces, and the gut
part projects sidewise instead of approaching toward the central axis.

Improved Driven Well.
Alphonso Wilson, Plainfield, N.J.-This invention has for its object to improve the construction of drive well tubes so that the wire gauze cannot
be cut or torn off, by stones or other obstructions, while the tabe is bein be cut or torn off, by stones or other obstructions, while the tabe is being
driven. The invention consists in a water section of a drive well tube cast of malleable iron with a conical point, alternate contracting and expandin perforated and covered with wire gaze, and a screw thread cut upon it tubular top section
Improved Combined Refrigerator and Beer Cooler. George Nuss, New York city.-This invention is designed to furnish an
mproved device, so constructed as to hold a beer cask and keep it cool nd which device, so constructed as to hold a beer cask and keep it cool, The invention consists in the box provided with a cooling chamber, an ice chamber, and one or more downwardly projecting recesses, projecting unnward into the ice chamber, which keep

Improved Window Weather Strips.
Giles P. Potter, Coventry, R. I.-This invention consists in providing the attens or vertical guide strips of sash windows with india rubber strip et obiquely into the battens to project with their opposite ends and act like spring packing on the window sash. Suitable recesses in the
allow the receding of the strips on opening or closing the windows.

Improved Surgical Splint
Ara Wheat, Canaan, N. H.-This surgical splint for the lower limbs con sists of a thigh plece. leg piece, and a heel and foot piece in three separate itably th the dife cent parts, the thigh and leg plece being conscete y a hinged joint, the foot and leg piece by an extension jonnt, and the low joint and upper section provided with extension screws.

Improved Door Spring.
Leipsic, Ind.-Tuis invention co
Charles w. Oldham,Leipsic, Ind.-Tuis invention consists of a hollow ve which opens freely to allow the piston to rise unobstructedly when the door opens, and raises the arm of an elbow lever, to which the piston is conthe door closes and forces the piston down, so that the closing of the doo a spring attached to the
 generally, but more particularly to euch as are employed to transfer coal
from the bottom of the mine up a alope and to the landing from which it is to be discharged. In consistst in several mprovements upon the paten granted to the esame party February 4, 1873 .
Cevedra B. Sheldon, New York city.-This invention consists in a ring Constructed with journals that are arranged at intervals and provided wit friction wheels to allow the cap to be dispensed with altogether Improved Glove.
Remus D. Burr, Kingsboro, N. Y. - This invention consists, 1 , 1 , in a a glove
or gauntlet in which the bray back of the hand is formed or cut without or gauntietin which the bray back of the hand is formed or cut withou
fingers, and with which,in a gauntlet, the back or portions of the frumt of
 fremaining portion of the wrist that, when folded or made, the seams are brought on the inside of the wrist. 3. A A gove or gauntlet having the parts
that form the palm and the front, back, and side portions of the fingers
 A glove or gauntlet in which those pieces, portions or parts that form the
side of the palm and back portion of the tingers are connected, joined to side of the palm and back portion of the fingers are connected, joine
and closed on the body of the back with a continuous stitched seam. Improved Bee Hive.
orer bees resement relates, 1st, to chamber, and also entrapping them by means of adjustable pivoted guide arranged in the bee entrance, and of a cage or prison placed at one side of the cos ib frames, both the guides and cage serving for other useful pur.
poses in the ordinary coonomy of the hive when not thus utllized. 2. To poses in the ordinary economy of the hive when not thus utllized. 2. To
providing the comb frames with removable guides, thus enabling ghe fille comb of one frame to be and transterred to an empty frame or to a box for transportation to market or e else where without removing the frame
titself. 3 . To a cloth or flexible guide plate for forming a divi ion bet ween comb frames and thus compelling the bees to build comb the whole lengt of one frame int tead df building it in one end of several ad acent frames
as they will often do if left to themselves. 4. To devices for closing th as they will often do ff left to themselves. 4. To devices for cilosing
bee entratce, which are adapted to co-pperate with the guide strips abov beentioned.
ment
$\quad \begin{gathered}\text { Improved Fire Place. } \\ \text { John L. Garlington, Snapping Shoals, Ga.-This in }\end{gathered}$ grate, which may be adjusted to any chimney place, of the fire and of a grate with inclined back plate and sliding dampers to throw forward the heat and regulate the same. It also consists in adjustable side plates

mproved Subsoil Plow.

Angustus L. P. Vairinn, Ripley, Miss.-This invention consists in an im
provement of subsoil plows. The front of the standard is made upon the arc of a circle, and is made sharp from near the beam to its junction with the cutter of the share, forming with the said cutter of the share a contin
uous colterirnm the beam to the point. The back part of the standard made of such a form and thlckness as to giveit the strength necessary for the particular ritid of worl for which the elow may be intended. By Buit. able construction the bottom of the furrow is cut flat, and the slice is grad.
ually raised from its old position and is broken to pieces by its own weight as it falls over the raised rear edge of the share, pulverizing the ground as
deep and wide as the furrow is cut. The standard and share, presenting three cutting edges, go easily through the ground, making the draft light. The concavity of the share, raising the middle part of its bottom from the
bot t of the furrow, diminishes the friction, causes the plow to run stead bott 3 m of the furrow, diminishes the friction, causes the plow to run stead ily and makes it self-sharpenting.

Tmproved Washing Machine.

William K. Flietstra, Holland, Mich.-This invention is designed to fur nish an improved washing machine in which the clothes are washed by be
ing projected from end to end of the machine as it is rocked upon its pivots, the labor of rocking betng lessened by a balance weight connecte with it. To the sides and botton of the box are attached ribs or cleates.
against which the clothes are rubbed as they slide back and forth; and in one or both ends of the box are secured a number of plates, the upper etges of which are formed with. rounded prejections, gradually increasing
in hight toward the end of the box, and which are designed to catch upon the clothes and turn them over as the box is oscillated.
Mahlon Burtless, Seneca Falls. N Y. - To open the
up so thatits rear end may enter the space between the a arts of the fron vertical bar of the frame, which allows the gate to be slid back upon wheels
for half its length or less. The gate and frame may then be swung around upon hinges to fully open the gateway.

Improved Cutter Head for Moldings.
Eide H. Hinners, New York city.-The object of this invention is to pro separated frum the molding by a narrow strip too thin and weak to sustain he strain to which it would be subject if the rabbet was formed with the
ordinary rotary planing cutter; and it consists of a staggered saw attached ordinary rotary planing cutter; and it consists of a staggered
to the cutter head of the molding planer to form the rabbet.

Improved Washing Machine.

Francis B. Preston, Fayette. Mo., assignor to himself and william H upright position, the clothes are inserted between the beaters, and the cov er is closed. As the levers are lowered the beater moves forward, pressing
the clothes against a forward beater, forcing the water and dirt out of said clothes and through the perforations of the said beater. As the levers ar again raised the beater moves back for another stroke, and the forward
beater is rocked, its upper edge moving rearward and its lower edge for ward, so as to loosen and detach the clothes.

Improved Blasting Plug.
nsists in having the meet ingedges of a hollow blasting plug made in sections, rabbet-jointed to-
getherto prevent the escape of the blast until it has nearly expended its force on the object to be blasted or wholly separated it. It is also proposed to provide the plug with strong spurs on the sides, to be forced into the
wall of the hole of the object to be blasted, to prevent the plug frombeing forced endwise out of the hole.

Improved Horse Power

Zachariah P. Landrum, Columbus, Miss.-This invention is an improve-
ment upon the horse power for which letters ment upon the horse power for which letters patent No. 136,075 were grant-
ed, and consists in a novel mode of combining certain parts so as to faciliate the dratt and simpiny the gen conron. Improved Table Caster, etc.
Cevedra B. Sheldon, New York city.-This invention reates to caster and analogous devices having a seat or holder that is allowed to rotate on
ts.stand or support. It consists in converting nearlv all the sliding fricts.stand or support. It consists in converting neariv all the sliding fric-
tion which is usually created by the surface contact or the holder and the
bolt into rolling friction, by making the guide tube bear a against the bolt bolt into rolling friction, by making the guide tube bear against the bol
only at the top and causing the enlarged bottom to bear on the outside o only at the top and causing the enlarged bottom to bear on the outside o
the bearing plate that moves on and with subjacent anti-friction rolls. It consists also in a peculiar construction of the bearing plate to enable it t self is prevented altogether from contact with the bolt, and therefore rom all sliding friction.
Improved Pump Valve.
Wilson Barnes, Maquoketa, Iowa.-This invention relates to the lower o
check valve for pumps, which are liable to break off, to twist out of pos check valve for pumps, which are liable to break off, to twist out of posi-
tion, get out of shape, retain sand or grit, and become useless in a short tion, get out of shape, retain sand or grit, and become useless in a short
time. The invention consists in constructing a valve with a series of eather, rubber, gutta percha, or other suitable packing, and in, forming th valve seat upon a raised and tapering tube with a bottom flange.
I. Ygnacio Cassiano, San Antonio, Texas. - For an exten achment to hat brims, to for use or foldedsion sunshade a proposed to havea wide annular piece of cloth, baving an india rubber jecting from a supporting ring the the base of the crown under the ordina brim to the edge, with brauched extension arms pivoted to them, so as to wing outward and engage with socket clips on the flexible cord to exten ene brim. These clips, with which the extension arms connect detachably, folded back under the principal brim, to hold at up close to the underside of the latter. At the same time the rubber cord shirs the edge of the re-
versed extension brim around the opening of the crown in a manner to dis pose it completely and neatly when it is not required to have it extended The same inventor has also patented a similar device, which consists of a brim, with folding arms for extending it, which are mounted on sliding arms for moving them out or in for extending the brim more or less, and elastic straps on the extension brim, in combination with the sliding exten-
sion, to control the extension brim when not wholly extended. The slidiug tension arms have spring catches combined with them in such manner hold them in any position to which they may be adjusted.

Improved Harrow.
ille, while the second are flat, and the first notched underneath so as to receiv and brace the second. This forms a very strong, durable, and cheap har ow frame, which any farmer can construct for himself. The harrow may made larger or smaller, according to the work for which it is designed two of them may be connected toge w of

Improved Plow.

Levin B. Richardson, Carroliton, Ill.-This invention has for its object to and hold them until turned under by the plow so as to wholly cover the nd leave the ground clean. An iron roller revolves in the bent down end of a bar which extends along and parallel with the said roller. To the ba angles, or into U shape, to pass over the beam to keep it in place, and at the same time allow the roller to rise and fall to conform to the inequalities of theground. Several holes are formed in the rear part of a brace bar to re-
ceive the bolt that secures it, so that by shifting the said bolt from one to nother of said holes the roller may be moved toward or from the plow to dapt itfor use with short or long grass or weeds. A rod projecting fo
ard and bent upward, rearward, and inward, is designed to prevent the tubble or weeds from falling down toward the plowed land, so as not to b rolled down and held by the roller, and consequently not fully covered by the plow.
Improved Boot Blacking Kit.
inary polishing brush with a blacking box attached to consists of an or aubing brush attached to the handle, so that all are collectively combine nd thus preventing accidental separation and misplacement of either of the articles. The daubing prush is detachably connected to the handle or the polishing brush, so that it can be taken off to use.
John G. Gallet, St. Amproved Traction Wheel. Thi. T This invention consists in the mean or holding the rubber sections of a tire on the wheel, so that they will be eld securely and yet be easily detachable. The solid plate or spoke whee is
of suitable metal, is provided with two projecting rims. The outer rim is placed around the tained on the wheels by guard plates. By tightening the bolts in slots or holes in the rim, the rubber tire will curve out slightly between the inter stices of the guard plates, forming. instead of a polygonal, an almost circu ar, periphery, avoiding thereby, in connection with the elastic washers. the
coisy coucussion of the old wheels. The breaking strain of the rubber tir is, by means of the strong support of the guard plates, obviated, and the elastic material app
gainst concussion

Value of Patents,

 and how fo obrair rieic.
Practical Hints to Inventors.

ROBABLY no investment of a small sum of money brings a greater return than the expense incurred in obtaining a patent
even when the invention is but a small one. Larger invantion are found to pay correspondingly well. The names of Blanchard,
Morse, Bigelo:\%, Colt, Ericsson, Howe, McCormick, Hee, and others, who have amassed immense fortunes from their inven have realized large sums from their patents. of the services of MUNA \& Co. during the TWENTY-SIX yea acted as solicitors and Publishers of the Scientifio American Thev stand at the head in this class of business: and thetr large corps
of a ?sistants, mostly selected from the ranks of the Patent Office: men sap ble of rendering the best service to the inventor, from the experience prac
tically obtained while examiners in the Patent office : enables MUNN \& Co to do everything appertaining to patents better and cheaper than any

H0W T0
OBTAIN PR ARNE
This is the closing inquiry in early every letter, descril ing
ome invention which comes wer canonly be had by presenting a complete application for a patient to the Commissioner of Patents. An application consists of a Model Draw-
ings, Petition, ath, and full Specification. Various offcial rules and fornalities must a.so be observed. The efforts of the inventor to do all this delay, he is usualy, glad to seck the aid of persons experienced in patent
business, and have all the work done over again. The best plan is to sollct business, and have all the work done over again. The best plan is to solici
proper advice at the beginning. If the parties consulted are honorable men hs inventor may satoly confide his ideas to them they will advise whether needfui to protect his rights.

How Can IT Rest Secure My Invention ?

This is an inquiry which one inventer naturally asks another. Who has had
some experience in obtain'ng patents. His answer generally is as follows ome experie
ble-and sen meat model, not over a foot in any New York, together with a description of its operation and merits. On re eipt thereof, they will examine the invention carefully, and advise you as
to its patentability, free of charge. Or, if you have not time to its patentability, free of charge. Or, if you have not time, or the means
at hand, to constrnct a model, make as good a pen and ink sketck of the
of a patent will be received, asualy, by return of mail. It is sometımes best to nave a search made at the Patent Office. Such a measure often saves
the cost of an apylication for a patent.

Preliminary Examination.

 In order to have such search, make ouc a written description of the inven-tion, in your own words, and a pencill, or pen and ink, skecth. Send these
with the fee of $\$ 5$, by mail, addrees ad to MuNN \& Co., 37 Park Row, and in due tume you whreceive an acknowledgment thereof, followed by a writ ten report in regard to the patentability of your improvement. This special
search is made with great care, among the models and patents at Washing.
ton, to aseertain whether the improvement presented is patentable.

Rejected Cases.

Rejected cases, or defective pars, remodeled for pplications for themselves, or through other agents. Terms moderat

To Make an Application for a Patent. The applicant although sometrmes it mar be dispensed with; if su vention be a chemical production, he must furuish samples of the ingredients of which his composition consists. These should be securely packed he inventor's name marked cis them, and sent by express, prepaid. Smal models, from a distance, can often be sent cheaper by mail. The safest
way to remit money is by a draft, or posral order, on New York, payable to he order of MUNN \& Co. Persons who live in remote parts of the country can usually purchase drafts from their merchants on their New York cor espondents.

Caveats.

Persons desiring to fle a caveat can have the papers prepared in the short
est time, by sending a sketch and description of the invention. The Govern ment fee 2 caveat is 810 . A pamphlet ot advice regarding application or patents and caveats is furnished gratis, on application by mail. Address MUNN \& Co., 37 Park Row, New York.

Reissues.

A reissue is granted to the original patentee, his heirs, or the assignees he entire interest, when, by reason of an insumicient or defective specific tion, the original patent is invalid, provided the error has arisen from inad
vertence, accident, or mistake, without any fraudulent or decentiv inte A p .
A patentee may, at his option, have in his reissue a separate patent for
each distinct part of the invention comprehended in his original application y paying the required fee in each case, and complying with the other uirements of the law, as in origi

Design Patents.

Foreign designers and manufacturers, who send goods to this country rom fabricating or selling the same goods in this mariet. A patent for a design may be granted to any person, whether citizen or Heliev, for any new and original design for a manufacture. bust, statue, atto
relief; any new and original design for the printing of wool en, silk, cotton, or other fabrics; any new and original impression, ornament, pattern, print, or picture, to be printed, painted, east, or Design patents are e full particulars send for pamphlet to MUNN\& Co.. 37 Park Row, New York Foreign Patents.
The population of 1 reat Bran is Patents may be ser,ured by American citizens in all of these countrie Nuw is the time, while business is dull at home, to take advantage rf these immense foreign fields. Mechanical improvetients of all kinds are always in demand in Europe. There will never be a better time than the present to take patents abroad. We have reliable business connections with the
principal capitals of Europe. A large share of a.ll the patents secured in MUNN \& Co., 37 Park Row, New York. Cinculars with full information on coreign patents, furnished free

Value of Extended Patents.

Did patentees realize the fact that thell inventions are likely to be more
productive of profit during the seven years of uxtension than the first full productive of profit during the seven years of uxtension than the first full term for which their patents were granted, we think more would avail them-
selves of the extension privilege. Patents grated prior to 1861 may be selves of the extension pitvilege. Patents graited prior to 11061 may be ex
tended for seven years, for the benefitio of the inventor, or of his heirs in case of the decease of the former, by due applicati n to the Patent Office, ninety
days before the termination of the patent. The extended time inures to the benefit of the inventor, the assignees uider the first term having no rights nnder the extension, except by special agreement. The Government
fee for an extension is $\$ 100$, and it is necessary that be obtained to conduct the business before the Patent Office. Full informa. tion as to extensions may be had by addressing MUNN \& Co., 37 Park Row.

Trademarks.

Any person or firm domiciled in the United States, or any firm or corpora-
ion residing in any foreign country where similar privileges are extende ion residing in any foreign country where similar privileges are extended
to citizens of the United States, may register their designs and obtain proly so to foreigners. For full particulars address MUNN \& Co., 37 Park Row New Yors.

Canadian Patents.

orce, a me and patents are now granted to citizens of the United States on the In order to apply for a patent in Canada, the applicant must furnish a applying for an American patent.
The patent may be taken out either for five years (government fee \$20) or or ten years (government fee \$40) or for fifteen years (government fee $\$ 60$). The five and ten year patents may be extended to the terpn of ifteen years. The formalities for extension are simple and not expensive.
American inventions, even if already patented in this
American invention, even ir already patented in this country, can be
All persons who desire to take out patents in Cauada are requested to
communicate with MUNN \& Co., 37 Park Row, N. Y., who will give prompt Copies of Patents.
Persons desiring any patent Issued from 1836 to November 26, 1867, can be supplied with offcial copies at a reasonalie cost, the price depencing upon
the extent of drawings and length of speci facation. the extent of drawings and length of speci fication.
Any patent issued since November 27,1867 , at which time the Patent offlce commenced printing
A copy of the claims of any patent issued since 1836 will be furnished
When
name of ame of patentee, title of invention, and date of patent. Address MUNN Co., Patent Soliciters, 37 Park Row. Nerr York clty. MUNN \& Co. will be happy to see nnventors in person, at their offlice, or to
dvise them by letter. In all cases, they may expect an honest op nion. For nee, no charge is made. Write plannly do not use pencil, nor vale ink; be brier.
All business committed to our care, and all consultations, are kept secret and strictly confdential.
In all matters pertaining to patents, such as conducting interferences, of patents, etc., special care and attention is given. For fuformation, and or pamphlets of instruction and advice

Address

[^0]
cusiness and exriomal

 The charge for Insertion under this nead $18 \mathbf{\$ 1}$ a Line.Foreman wanted, in a Manufacturing Foundry 11 milies East of St. Louis. The right man can have
reasonabe wages and a chance to buy an interest in the
business, 1 fed destred. Address Pump and Skein Company,

I want the sole or part agency of Can. of a
few specialties that are protected by patent or cheap

Wanted-Several first class machinists. Good wages to toperight men.
\& c... Oneida Communtry, N. \mathbf{Y}.
Inventors or parties having, for sale, Ma
chines for digging Potatoes, send illustration and descrip tion to D. G. Penfield, Flushing, L. I, N.Y
Inventors who desire to have their inven-
tions and patents stroncucced and represented in Europe tions and patents introduced and represented in Europe
by a gentileman of experience and integrity, should To Capitalists and Manufacturers. of Edge
Tools-Address John G. Cobb, Shoe Heel, N. C., as he

Turner Wanted-Good chance for a man
with small capital. Adde ess Box 318 , Keene, N. H. Yeast-Rights. on Sale for Making the
White Rizing Ye.st. This yeast is made from Rice and
Wise

Wanted-Buyers and Manufacturers to buy
Rights all over the United States of my Patent Com
 dications, with full particulars, addr.
bings Rox 430 Youngstown, ohio.
 Rights for Solele Adadress
Street, Philadelphia. Pa.
For Sale-Cok and Rymes double drum
Hoisting Eagine and Boiler, complete, in good ordereach cylinder 6 H.F. Apply to oonn A.Lilghthall, Room 7 , Bowing Green, New York.
For Sale-A pair of 40 inch Blacksmith's
Bellows - Berrian, maker-in good order. Bellows-Berrian, maker-in good order. Price $\$ 25$.
Erie Basin Engine and Pump Works, foot Van Brunt
State R Rhts for Sale, or work on royalty.
valuable Patent on Bo ler Feeders. Must be seen to
valuable Petant on Bo ler Feeders. Must be seen to
appreciated. Address E. Brock way, Haverstraw, N.Y. For Sale- New Patent for Refrigeratar and
Beer Cooler, etc., combined. Enquire of or address G. Nuss, 55 1st A denue, New York City.

The New Remedy yetains the Rupture in ease
and comfort,night and day, tiil cured. sold cheap. Fitted without charge, by the Elastic Truss Co., 683 Broad way Key Seat Cutting Machine.T.R.Bailey \& Vail. Buy Boult's Patent Moulder for all kinds of
Edge and surface Moulding on Wood. B. C. M. Co., Edge and Surface
Battle Creek, Mich.
For Sale-Two New Locomotives, Cylinders
$16 x 24$ gauge $4 \mathrm{ft} 8 \%$ ins. Can be deivered in 30 days. Alse, three Second hand Dummies, weight 7 tuns-Cylin. dere 7×10-good order. Address
Fifth
Street, Philadelphia, Pa.
Portable Hoisting and Pumping Engines-
Ames Portaole Engines-Saw Mills, Edgers, Burr Mills, Allmax Truarine, vertical and Horizontal Engines and Binlers; all with raluable improvements. Hampson,
Wh:tenill \& Coo, Newburgh Steam Engine Works, Depot T re Cornell University. Ithaca, N.Y., offers
iberal and practical courses for agriculturists, archieets, civil engineers, master mechanics, mechanical ee:gineers, agricultural and manufacturing chemists, print.
ers, veterinary surgeons, etc.,wtt 1 laboratories, draught. ing rooms, farms and work shop. In andiciture and
imechanic arts, various courses are provided to meet

Buy Boring and Sawing Machines of Gear,
 just out, $\$ 1$, , mailea
Street, New York.
Hydrofluoric. Acid, for Etching and Cleaning
Glass, put up in all size Lead and Rabber Bottles, for
sale by sale br L. \& J. W. Feuchtwanger, Chemists, 55 Cedar
Street, New York.
Manganese Black Oxide, for Steel M'f'ct'rs
and oil zoilers, for sale by L . J . W Feuchtwanger, 55 Trite to L. \& J. W. Feuchtwanger, New
Uork, for all Crude Minerals, Metals, ores, Drugs and York, Ior ail Crude Minerals, Metais, Ores, Drugs and
Chemicila, at owest Itates.
Lathes, Planers, Drills, Milling and Index Lathes, Planers, Drils, Milling and nnex
Machines. Goo. . IIncoln \& Co., Hartord, Conn.
Scale in Steam Boilers-How to Remove Scale. in Steam Boilerr.s.-How to Remove
and Prevent it. Address Geo. W . Lord, Putidelphia, Pa. Williamson'sRoad Steamer and Steam Plow,
with rubber Tires. Address D. D. Williamson, 32 Broad.
way, New York, or Box 1809 .
Buy Gears Improved Variety Moulding
Machine. Ware Roomp, Boston, Mass. Rot's Wrought Iron Sectional Sa fetv Boiler.
1,0oo in use. Address Root steam Engine Co. 2d Avenue and 28 sth Street, New York

 promptly filed. Circulars free. Adress Shorit Manu-
facauring Company, Carthage, , .
Cabinet Makers' Belting-Best Philadelphia Oak Tanned.
c. W. Aruy, 301 and 303 Cherry street, Philadelphia, Pa. For Solid Emery Wheels, and Machinery,
send to the Union Stone Co., Eoston, Mass..for circular. All Fruit-can Tools,Ferracute,Bridgeton,N.J.
 fire proof walls, with ample water power. Room and
power in quantities to suit. Address Iudustrial M'f'g power in quantities to suit. Address IL
Company, Rock Falls, Whiteside Co., III.
Gauge Lathe for Cabinet and all kinds of han-
dies. Shappg machine for Wood working. T. R. Banles

Ccvering for Boilers and Pipes. The most
economical and durable article in use. Took first prize at Anerican In nututute Farir. Van Tuy
Tompany, 528 Water Street, New York.
Five different sizes of Gating Guns are now
nanufactured at Colte Armory, Hartford, Conn. The narger sizes have a ral.pe of over two miles. These arm
tren are indispensable in modern warfare
The Olmsted Oiler is the best; it is self-
Ighting, strong and cheap. All Hardware and Tin Machinists-Price List of small Tools free
Mear Wheels for Models Price List tree ; chucks and Gear Wheels for Models, Price List free, Chucks and
Orills, Price List free. Goodnow \& Wightman, 23 Corn
For Solid Wrought-iron Beams, etc., see ad.
Fertisement. Address Onion Iron Mills, PItsbiurgh, Pa... Minning, Wrecking, Pumping, Drainage, or
Minging Andrew's Patent, inside paze.
Bookkeeners should. ryy the Olmsted Patent
Bill File and Letter Culp. They are admirable for all Bill File and Letter clip. They are admirable for all
papers. Save thetr cost in one day's business. Sold by all
Stationers. Peck's Patent, Drop Press. For circulars,
address Milo, Peck $\&$ Co.. New Haven, Conn.
For best Presses, Dies and Pruit Can Tools
Bulse $\&$ williams. cor.of Plymouth \& Jay, Brooklyn,N.T. Parties desiring Steam Machinery for quar
cying stone. address steam Stone cutter co:IRutland, vt. Boring Machine for Pulleys-no limit to
eapactr. ${ }^{\text {T. R. Balley \& Vall, Lock ort. N. Y. }}$. Brown's Coalyard Qnarry \& Contractors' Ap.
aratus for hoisting and conve V.D. Andrews \& Bro. 414 Witerst.N. Y.
Stave \& Shingle Machinery. T.R.Ba ley \&Vail. The Best Smutter and Separator Combined
America. Address M. Deal \& Co... Bucyrus, onho. Damper Regulators and Gage Cocks-Fo
he best. address Murrul E Keizer, Baltimore, Ma. Cheap Wood-Working Machinery. Address
Steam Fire Engines,R.J.Gould,Newark,N.J. Sure cure for Slipping Belts-Sutton's pat-
ent Pulley Cover is warranted to do doubie the work

Muldex Muriss

J. M. C. asks: How can I make a permanen
and brilliant green for the enges of blank books? C. R. C. asks . Are buttons made from rice
in mititation of pearl?
H. R. asks for a recipe for a composition W. H. asks: How can I make some sort of
alarm to wake me at nisht which will not make suffldent noise to wake the rest of the family?
D. \& M. ask (1) how to prepare zinc so tha eive a fine finish. \%. How are ornaments fastened on

B S. asks: 1 . Where is the crank pin of a
ococomitive when the cross head 18 exactly mid wayinits ravel? 2. I have heard of instances of the lower flue In a locomotive boiler being burned while the upper ones
were unharmed. What is the cause of that? 3 . When n engine is pulling a train, where is the actual center
of the drivers? I have been told that it was at the poit Where they came tn contact with the rail. Answers: 1.
It depends on the length of the connecting rod. When It depends on the length of the connecting rod. When
the cross head is at t he center of the stroke the conjecting rod, if detachedf from the crank pin, would swing
to the center of the driving wheel, so that you can lar down center ort tule driving wheel, so that you can la
down any parte to scale and determine wha you want to know. 2. Probably on account of scale o mud. 3. So far as we know, t.
ing wheel is always the same.
C. H. M. asks: Having an ordinary steam
sage, showing pressure of foibs. per square tinch, would
 the amount of pressure? Answer: It would, if gradua-
tea in the same manner, and having the same sizees spring as the frrst. But In practic
both would register alike.
W. W. A. Says: We have trouble with the
ate to our reservoir. There is 25 feet head. Will a马ate, substantalally like the circular dampers sometimes
seen in stoves, answer a good purpose? If not, what seen in stoves, answer a good purpose? If not, what
will be better? Answer: If the moving parts are tnside, it would be difflcult to open the gate ; and if they are on
he outside, a great deal of water will leak through, when the gate is closed. There are several good gates In the emarret, and you can obtain pariticulars by
municating with a plumber or hydraulic engineer.
H. C M. asks whether a photorgapher is is
Ilable to suffer in heallch in consequence of handing th necessary chemicals; and if so, are there any means of
avolding this by flltering the a irinhaled while using tre poisonous chemicals? Answer: There 15 nothing abou the practice of photography that is necessarily injurlous
to health. The handiling of the chemicals, if ordinary care is taken, is not deleteritous. The apartument should S. M., Jr., says: I claim that if if two balls of
the same diameter, one made of wood or any other light substance, and the other of a heavy substance such a iron or lead, are dropped from the same hilght at the
same time, hey wrill reach the ground toghther, while
my friend claims
 Answer: Tou had better try the experiment. We think
the lead ball will reach the ground a little the sooner; the lead ball will reach the ground a little the soon
though in a vacuum, they would both fall together.
$\mathrm{J} . \mathrm{H}$ K. asks: What is the cause of water
athering on the outside of a pitcher flled with ice water? Is It the water passing through the pitther, or
is tit he moisture of the atmosphere condensed upon it? is in the moisture of the atmosphere condensed upon it?
Answer: When the water in the pitcher is colder than the surrounding air, the molsture in the air is condensed
in the form 0 d dew unon the outside of the pltcher In the form of dew upon the outside of the pitcher. If
the water is as warm or warmer than the air, no oonden.
T. H. and J.P. D. ask what phosphorescence It cause, ete. Annwer: There e elists spome difirerence
opinion among scientific men, but the best authorities consider it a s slow oxidization of phosphorus, since
experiments prove phosphorescence impossible in a
in racumme. Phosphorus, in the state of slow combustion
vacuan which takes piace on exposing it to the air at ordinary
temperatures, glves off acid vapors, which shine in the eemperatares, , ilives of acid vapors, whict shine in th the
dark with a
taint buish light, hence the term phospho similiar luminosity, from whatever casese it may arise.
Famillar examples are phosphorescence of dead and decaying wood (fox fre) and of putrid fish. Some plant,
aliso emit in the dark a faint continuous light, probably 1so emit in the dark a faint continuous light, probably
arising frout the combustion of some substance, such as hiddrocarbon, emitted from them. A more familiar
ind of phoshnorescence is that exhibited by many living animals, as by the glow worm and fire dy , and the numberless small marine animals which give rise to the
 combustion; for it increases in brightness in pure oxy gen gas, and ceares altogenent in a vacuum. The e emale
glow wwrm (lampyyrs noetilicuca), whose abdomen is di vided into 6 segments, silines on the under part of the
last three abdominal rings. Within these is found the uminous matter, a yellowish white transparent sul stance, consisting of ramifying fibers and granules of an
organic structure, heavier than water, yellow and organce stracture, heavier than water, yellow and
opaque when dry and consising principal1 of a mate-
rial which exhibits the chemical properties of soluble
 ion on page 25 of of our volume XXVIII.
T. C. W. asks: What will soften hard
 the water by adding carbonate of soda-washing soda-
as long as a whitush precipitate is formed. Let it sette no
oolling will render the water after setuling fit for was
F. R. Rasks: What is zopissa? Answer Zopissa is the patent name of a a patented conpound in
which we believe that proxylin or gun cotton is a prominent ingredient. In
it is a marvelous suostance.
A. asks for a touchstone for testing gold
Answer: The materialcommonly emploed as a touchstone, and generally known by that name, is a species
of quariz, colored dark by bituminous matter, of which
 same purpose. A set of needles or bars, of various de
grees of fineness, are rubbed on the stone, and acid is ap piled to the estreaks made by the neecle end by the piece
of jewerry to be tested. If the jewelry 1 n not so good as of je welry to be tested. If the je welry is not so good as
the eest needle, the streak made by it will dissolve first. the eest needele, the etreak made by it will dissolve first.
Nitrice acld of a specific gravity of 1.2 is commonly em. d for testing gold
H. M. asks: 1 . Will a type setting machine
hat will only set two sizes of type be useful, and how nany type should it set per hour? 2 . On a alocomotive,
why do they have two eccentrics to each valve, when why do they have tove eccentrics to each valve, when,
by fastening the sloteded piece on a pivot in the midale alve rod up or down, the slot would produce the same
 ments in the Scirintirici Amprions of rellible parties,
and are we sure of getting the worth of our money by sending to them?
naking tice cream: Please give mie a good reciipe for matug ice cream. Anewers. 1 . A good workman sets
aboutsuo type ems per hour. A machine should beat that. If ft sets two kinds of type, all the better. It de.
pends upon the sind of work you wish to do. 2. If only motion, it must be free to revolve partially upon the shaft. It it not enough to move the valve to the back.
ing position tiee eccentric must be shlfied also and ng position; the eceentric must be shfited also; and it
is generally considered more convenient to have two eccentrics. 3. We endeavor to exclude all advertise
ments from unrellable parties, but some little latiud is given to advertisers, every manufacturer thinking his own goode the e best. In buying articies with which you are not practically acquantred, it it best tio obtann advice
from some reliable agent. 4 . The best ice cream 1s said to be made of prere cream, , bugar, and flavoring extract.
We consider ourselves good judges of the quality of the annufactured articles good juades of the quality of the nanufactured artic
talls of making ti.
A. B. L. Says: In the engraving of the Scott \& Morton revolving steam engine (in your 1ssue
of A prin $) ~$
I see a a bearing on both sides of the cylinder in which the cylinder reovives. I would like to to know
how the bearing between the cylinder and fiy wheel is supported, seing that all means of supporting it is cut
off by fywheel, crank pin, and piston? Answer: This off by flywhel, crank pin, and piston? Answer: This
cearing is attached to the bub of the flywheel, and is supported by the wheel bearngs.
E. B. says: In view of the coming aerial
voyage of Messrs. Wise and Donaldson, I submit to you the following propositions: 1 . That a rocket shots ap
when ired. 2 . That a cannon, when tired, is thrust der (as stated in your paper) the same wes new fre lad. ward by the stream of water, suddenly issuing from the hose on the top of the ladder. The moving effect in
these 3 cases 8 caused by pressure aganst the these 3 cases 88 caused by pressure against the atmos-
phere; and if such heavy bodies are moved by it , how much more would this be the case with aerial crafts, which are floating in the air, and are thus without
any welght? It would be difficult to apply steam or any weight? It would be difflellt to apply steam or
gas, but I believe that a rotary blower, built of as light material as possible, would produce a stream of compressed air. strong enough at least to serve as a rudader
A spherical form of the balloon would, however, not practicable, as any propelling power ought to be con
centrated, and should povern the craftequally, Ithere centrated, and should govern the eraft equally. I there,
fore would suggesta form wherein the balloon consist of two separate gas bags, the boat beeing between them.
This scheme of course can be wurked out in many different ways, but I believe that a rotary blower driven by hand with the help of a fywheel would answer the
purpose adnutrably. Answer: The power that could be
 have eard a much netter pon proposed. an is to proexplosive, such as nitro-glyceetin, and thus guide the
T. B. Jr. says: 1 . I have a small steam enports. What boiler and what sized feed pipe will it re-
quire? 2 . What power would it have, and (3) would 14
 What a pattern for such a cylinder would cost. An-
swers $: 1$. About2ssquare feet of heating surface, pipe about $\%$ inch area. 2. About one horse power. 3.
Yes.
W. S. M. asks: 1. What is the best plan of
anneailing cast steel, to make it very soft without inju ry? 2. Supposese a well formed baot runn st to tin mile per
hour with 10 horse power, how many horse power would hor with 1 horse power, how many horse power would
be required todive dit at 15 miles or 5 miles per hour Pease explain the increase of power required for the to the proper size, power, and speed of well shaped
boats boats. Answers: 4 . Heat to a cherry red, and allow the
steel to cool very dowly, elther covering it with hot ashes, or keeping it in the fre in which it was heated
nlowing the fre to dit law is that the e torse power varies as the cube of the
speed. on this assumption, the horse power require speed. On t1.1. assemption, the horse power require
will be Fe For 15 miles an hour, 33%; for 5 miles an hout 4.tions fo will probabiy soon give some general pro trom such of our readers as have been building small
teamers. teame
C.P. T. asks: What can I put into tonic
beer to make a heavy foam when poured into the glass

 Answer: Try adding enough sugar or sirap to give it
consistency. We would not advise adulterating with
S. G. Gr. Says:
mens of paper which had been made extremely hari
nard It was said to have been done.by soaking the paper in solution of chloride of zinc. I Inave tried it, with weak
and strong solutions, and on different kinds of paper and strong solutions, and on different kind of peaper,
but have failed to get any hardening results. Ialso saw some pieces of gastipe, with screws and sockets, whic
was made out ot paper. A nswer , The hloride of zinc has of hardening paper was irst disco ered accidentally by Dr. R. Bobme tn 1849. This gentle-
man was fitering a concentrated solution of chloride of
 paper became thick and strong. He suggested that it it
might be rendered very useful, but little attention was milgh be rendered very useful, but little attention was
pald to it until 1899, when T. Taylor took out an English patent for its use in ma ing parchment paper. The so Lulion used was as thick as sirup, and made perfectly
neutral by adding the ox de or carbonate of zinc. The speciic gravity is then 2.1.0. The e action on the paper is
stronger when heat, from 60° to 2120 F stronger when heat, from 60° to $2212^{\circ}{ }^{\circ}$ Fahr., 18 employed
When several sheets are prepared and presed together
they unite to torm When several sheets sare preparaed and pressed togethe
they unte to form one. The ammonia sulphate of cop
per is nuw h bel per is now highly recommended.
C.C. F. E. says: Our water contains iron, cal.
sum, sodum, potash, alumina, sillica, and magnesia, basic elements, with chlorine, sulpoanuric aud carbonic
acide cidas as non.basic. One gallon of the water, as it flow evaporization by heat. This residue, after reaching a certain point of condensation, gives upa portion of the
carbonic acid which is neld in the water in combinaticr carbonic acid which is neld in the water in combinaticic
with bases as bicarbonates. Can it be used with safe ty in a fire ensine? Is it a good way to blow off a cer tain portion with a surrace blow.of, saw, every five
ninnutes while running, and after stopping blow off all the water and flllu up with fresh water from river? A Still, with seme good scale preventhe use of tusis wate nate of soda, it might be safely emploged. But in the
oiller of a steam firc engine, the spaces are so smal C. P. C that amount of pressure is necessary, and if any sul are numerous recipes for the manufacture of coalk crayons. One of the esimplest is as fillows: Pipe clay
and the finest prepared chalk, equal parts, or pipe clay and the finest prepared chalk, equal parts, or pipe clay
anone. Coloring matter according to tint desired. Mix nto a paste with mild pale ale. Various substances ar Castile soa used to give the chalk a clay consistency, Ons solidity, manuacacturers use a cyli doer two or thre Inchesin diameter, open at the top aud bottom, the lowe
 through the holes in long fingers, forces the boft mas cut into pieces and dried. The coloring matterward
are indigo, Prusian blue, yellow ocher, carmina, ver milion, etc.
S. G. asks: Was the meteoric display of the citizens of Lexingttn, Ky., noticed at any other
place? Have astronomers or scientists given nation of the phenomenon? Was it eonnected wit
Wit Biela's comet, which must have been near the earth at that time? Answer: Meteors are comparatively rar
between August the 29th and 30th of angust at midday, lasting from noo ntil four o'clock," is vary unusual. We have not hear
of such a display elsewhere. If seen again this year please let us know.
 bars? 2. Is there any way of reducing old rusty scraps
of sheet irsn into cast Iron? be worked on a smanll sacale with a hand bellows, proft ably, if coal and ore were plentiful and cheap? Answers

1. It can be re-melted. 2 . Yes, in an ordinary blast fur I It can be re-meted. 2 . Yes, in an ordinary bla.
ace. . . Not unless labor were very cheap, also. E. C. B. says: An amount of oxymuriate of be precipitated and returned to tis metallic state? An.
swer: The protochloride of tin, commonly known by
sit dyers as tin salt, is soluble in water, but by contac
with the formed, which remains suspended in the solution, givin it a milky appearance. If this is the oxychoridge that
you referto you will tind that tus soluble in an excess you referto, you wili find that this soluble in an excess
of hot murialic acid. From this solution tin may be precipitated in the metallic state by a strip of zinc, the tin forming gray lamine or a spongy mass. Some man
if acturers of tin salt mix sal ammoniac with it to prefacturers of tin salt mix sal ammoniac with it to preIg. asks: 1. Is there any reward offered by
thisor any government for the discovery or invention of perpetual motion, and if so, how much? ?. Would the inventon of sucha device dervive any great benent
therefrom? Answers: 1. No reward is ffered. 2. We hink not. But you may try it practically. Put your sen with in a tub and pull steadily at the nandles. This
is the simp.est form of perpetual motion. In other forms. cog wheels and levers are arranged to pull against
themselves. This is the "idee" in all perpetual motion
H. asks: If a tug boat can tow a ship at a ship, be made to propel her it the same rate? Or does the engine, by betng in the tug, have more power to
move the ship than if it were in the ship ttself?

A．B．Eays：I Iclam that a solid column of mer．My opponent claims it is not．Which is correct？
ter Answer：The solild column
of the two being the same．
J．Y．of Leeds，England．－The Science Re－
cord has been published two years．We can send you the two volumes，postage prepaid，for $\varepsilon 1$ ．
J．H．H．Says in answer to J．S．S．C．＇s query
about oil of rhodium：
oleum rhodil＂from riodium wood（the root），genis＇：a crnariens s： 80 lbs．of old resin－．
ous wood yields 2 ounces of oil．Color of oil，light yel．
 for fumigat
the Levant．
W．W．A．replies to T．W．W．S．，who asked Wr ile coosing，about a teasponfull too o pint of paste．
The alum wil a alo keep the fles out of the paste pot． S．P．，Jr．，asks how to proceed with a drive well after driving down a certain distance and not ob－ taining water．＂I have driven down into the ground 22
feet of $11 /$ inch tubing and attached my pump thereto but am unabie to start her．Ido not think that tit is or for want of water，as water can be outaned here almost at
any timeat a depth of from 2 to 8 feet from the surface of the ground．I had todig a hole 4 feet deep in order
to put down the set length which is attached to the pump．and before I could screw the set length on to the tubing I had to odidp out the exater that had accumplated Li the hole，which was half full．＂Answer：We can best answer this question by relating a little anecedote．
＂Suppose，＂said an examiner to a competitive in engl－ neering，＂y you should bulld an engine yoursclf．perform every part of the work without assistance，and know that it was in complete order，if，when put into a ves．
sel the pump would not draw water what would sel，the pump would not draw water，what would you

do？＂＂Go to the side of the vessel and ascertain if | there |
| :--- |
| titive． |

A．K．S．says，in answer to B．A．O．＇s queries eason as the nonrt v Jlume：Girdle trees as early in the season as the oark will peel，in the following manner：
Commence three or four feet from the ground，cut the bark entirely around the tree ；then strip the tree down to the ground，leaving the bark intact at the base of the
trink．This will kill most kinds of timber so that the
 killed（except by fre）so thatit did not sproutfi．om roots． few times grubbing of the sprouts willend this．In an－ are to query 4．I would say that iron is a permane at cure
for nose bleeding and for boils．The best prenaratio is the tincture of the murlate（tinctura ferri imuriatio） Take 20 drops in a wineglass of water twice a day for hree weeks．The above is a dose for an adult．I have lum sometimes gives a temporary reslef．
Minerals．－－Specimens have been received ined with the results stated： A． F
fuel．
M．M．G．－The mineral is felspar
J．T．C．－No． 1 is felspar，used in the manufacture pyrites，and galena，all valuable if in large quantititi and near to means of transportation．Nc． 3 is horn－ blende；of no value；it occurs with copper pyrites，and
snown as＂dead rock．＂No． 4 is copper and in pyrites in as＂dead roc

W．M．A．－The specimens you send are kaolin and gration of the feispar．The kaolin contains too disinte－ grit，or undecomposed felspar，to be of use without washing．You may find some，however，as the deposit
is so large，that is free from grit．This is easily deter－ mined by crushing a small piece between the front teeth． The specimens of felspar are good．It is used by the
potters under the name of＂spar；＂and kaolin is even more extensively applied to the same purpose． W．C．A．－The sample enclosed is ferruginous sand，
c onsisting of the protoxide and sesquicxide of firon or magnetic iron ore mixed with some silica．It sometimes contains a considerable quantity of titanium．If found
sufficently pure and abundant，it might pay to smelt． S．K．-1 ．Quartz，and iron pyrites．2．Pyrites．3．Cop． per pyrites．4．Galena and quartz．5．Galena．6．Py－
rites．7．Quartz．An assay or analysis for silver or gold will cost \＄ivo for each specimen．

COMMUNICATIONS RECEIVED

The Editor of the Scientific American

 acknowledges，with much pleasure，the re－ ceipt of original papers and contributions upon the following subjectsOn the Crewe Engine Works．By J．R． On Meteors．By S．G．
On the Origin of the Earth and Stars．By B．J
On French Telegraphy．By T
On Retrogression of the Sun．By C．H．B． On Solar Reaction．By R．B．S．
On Inversion by Vision．By J．M．R． On a Balloon Safety Valve．By S．W．G． On a Suggestion for Balloonists．By J．W．S． On Boilers and Boiler Owners．By A On the Zodiacal Light．By
On Fire Arms．By C．P．T． On Fire Arms．By C．P．I＇．
On the Patent Right Question On the Patent Right Question．By H．A．W On Setting Saws．By J．F．T On Deviation of the Compass．By J．W．S On Tool Holders．By H．W．P． On a New Mechanical Principle．By D．M．B On Turbine Wheels．By J．H． On Navigation of the Air．By C．B．S． Also evquiries from the followin：

E．S．－A．H．－C．M．H．－J．M．A．－J．W．－E．A．H

 Correspondents who write to ask the didress of certain manufacturers，or where specifl－：ac．cles are to be had，also those naving gooda f ，r suit，or who want to find partners，should soud wit ：their communications an amouns suideient toc ver the cost of publication under the head of＂Br siness and Personal，＂which is specially

Index of Inventions

 FOR WHICH
Letters Patent of the United State

WERE GRANTED FOR THE WEEK ENDING

July 15,1873 ，
and each bearing that date．
［Those marked（r）are relssued patents．］
Abdominal supporter，E．J．Harding
Auger，earth，Baisley $\&$ Wilson． Auger，earth，Baisley \＆Wilson．．．．．．．．．．．．．．．．．．．．．
Alum！num，electro－deposition of．J．A．Jeangon． Bale tie，cotton，F．Cook
Barrel hoop，H．Willard
Bed bot making machinery，H．P．Hall．
Bed bottom，J．v．Taylor
Bed bottom spring，Van Wert \＆Crooley．
Boiler，wash
Boiler，wash，E．H．McDonald
Boot soles to uppers，uniting，
Boots，cutting off pegs in，A．Whittemore
Box，match，c．Prahl．
Box scraper，A．Tester．
Bustle，A．W．Thomas
Car awning，street，C．B．Turnbull
Car coupling，E．W．Barke
Car coupling，W．P．Sidden
Car coupling pins，die for，C．H．Williams Car，coupling pins，die for，
Cump， J ．Hughes
Car starter，T．W．Johnsto
Car stove，railroad，W．S．Jones．．．．
Carding waste remover，G．W．Cran
Carpet rag looper，W．Clapton，J
Carriage springs，clip platef or，N．C．C．De．．．．．．．
Carts，apparatus for loading，J．Byerly
Carts，apparatus for loading，J．Byerly
Chair，chid＇s，J．F．Downings．．．．．
Chair，invalid， T^{\prime} ．Armstrong
Churn，reciprocating，Barrett \＆Fenimore．
Churn，reciprocating，L．I．Bodenhame
Chigar bunches，making，S．Scholfield
Cigar bunches，making，S．Scholfield．
Cigar bunches，making，D．A．Wighnma
Cigar machine，C．J．Delbridge．
Cigar machine，T．Ernst．
Cigar machine，s．Scholfel
Cigar machines，rull for，D．A．Wightman Cigar trimmer，S．Sch olfield． Clamp，J．E．Sinclair．．． Clay articles，mold for，C．A．Fische Coke from lignites，etc．，H．E
Cooler，milk，J．F．Hawkins．． Cooler and show case，water，P．J．Hancur

Cotton gin，M．E．Pratt．．．．．．．．．．
Coverlet，C．K．Peve
Crane，R．Briggs．
Cultivator，J．Caylor．．．．．．
Curtain fixture，L．J．Earli
Curtain fixture F．Walker
Cutter head，J．F．W．Erdmann
cutter，rotary，Mellor \＆Orum ．．．．．．．．．．．．．．．．．．．．．．．．．
Cylinder burring machine，J．K．Proctor（r） Dental gold，manufacture of，R．S．Williams． desk school，A．F．Wilbe
Dish heater，A．S．Fitch．．．．．．．．
Ditching machine，H．Gonella
Doors，construction of，w．W．J．Toussaint Dress facing，w．H．Gallup
Drillingmachine，metal，J．C．Keller Drills，feeding mechanism for rock，J．Doty Egg carrier，J，A Bean
Engine，compound steam，Cooper \＆Emery Engine，rotary steam，C．Grotz Eye glass，S．Greacen．．
Eye wash，R．C．Fisher

Fare box，J．F．Winchell
Fence，iron，B．G．Devoe
Fence，iron，B．G．Devoe
Fille，paper，J．F．Winter
Filter，J．M．Evarts．．．．．．．．．．．．．．．．
Fireproof shutter，I．S．Metter．
Flat iron heater，Wright \＆Sursa
Floor，L．S．Wood．．．．．
Fruit jar，E．G．Haller
Furnace for roasting ores，shaft，T．McGlew． Furnace slag，cooling and remo
Gage，idal for pressure，J．Anni
Gaiters，goring，J．Walden（r）．．．．．．．．．．．．．．．．
Gas and water main coupling，w．Kilburn Gas from oils，making，S．H．Goldth Gate，change，A．W．Wood
Gate，farm，T．Steers．．．．．．．
Generator，steam，I．Barton．
Grain binder，J．F．Gordon．
Grindstone，J．F．\＆S．H．Green
Harness saddle，S．E．Tompkins．
Harness saddle，S．E．Tompkins．
Harness saddle，S．E．Tompkins
Harness saddle，S．E．Tompkins
Harvester，E．M．Awry．．．．．．
Harvester，corn，G．M．Tope
Harvester knives，grinding，J．M．Connel
Hat．．．．．． Harvester knives，grinding，J．M．Connel Hat stretching machine，R．
Hinge compound，H．Loth．．
Hinge，tahle，J．W．Ps．1mer．．．．．
Hoising machine P．W．Mel
Hook，siding，J．F．Eiliots．．．．．．．．．．．．．．
Hoop tie for coton bales，E．Bear
Hoop tie for H ．
Hose coupling，S．Inger
Hose reel，T．J．Mayall
Hose，manufacture of，T．J．Mayall．
Houses，construction of Houses，construction of，T．W．H．Moseley
Inhaler，N．I．Donaldson，（r）
Ink for stamping purposes，J．B．F．Jud
Insect destroyer，J．A．Finney．．．．．．
Iron and steel，Bolton，Jr．．\＆Pedd
Ironing board，E ．Bass $f t \mathrm{tt}$
Journal box lining，S．Gwynn．．
Journal box lining，S．Gwynn．．
Knitting machine，C．Callahan

Knitting machine，O．F．Trip Knives，forks，etc
Lamp，J．M．Clark
Lamps，supplying oil to street，R．V．Deguinon． Last block fastener，D．Huard
Lemon squeezer，J．H．Mead．．
Logs，machine for turning，E．Tarrant，（r）．
Lubricator，steam cylinder，L．F．Fmith．．
Meat chopper，H．P．Rankin．
Meat and vegetable cutter，Hall．\＆Ellis
Medical compound，т．т．Wright．．．．．．．．

Mirror holder，W．Simpson Miter box，G．M．Stevens．

Miter machine，D．Bull．．．．．．．．．．．．．．．
Motion，transferrin Movement，intermittent rotative，R．C．Reynolds Nozzle，steam，w．Ebbitt． Numbering heads，C．W．Dick
Organ，reed，R．Burdett，（r）．． Packing，piston rod，W ．W．Wanderbilt Pavement，W．Kilburn．．．．．．．．．．．．．．．．．．．．．
Pavement，laying cement，A．F．Shyma Pen，fountain，J．Goodyear Pencil case，S．s．Rembert．．．．．．．．．．．．．．．．．．．．．．．．．
Pencils，machine for finishing，T．H．Muller Petroleum，refining，s．Van Syckle． Pipe，smoking，W．H．Morris．． Pitcher，molasses，D．C．Ripley
Planter，potato，C．Svendsen Potato screen，G．Clafin．．．
Powder keg，Green \＆wils Press，cotton，J．P．Pridgeon Printing press，C．B．Cottrell．．．．．．．．．．．．．．．．．．．．．．．
Printing press，feeding paper to，stodard et al．
Pruning shears，G Vanfossen Pump，lining wooden，R．W．Wheeler． Pump，double acting force，J．P．Flanders Pump plunger and pump，N．
Railway rail joint，J．Bishop
R Railway signal circuit closer，D．Rousseau Railway switch，A．C．Garra
Railway switch，M．\＆J．W． Railway switch，M．\＆J．
Railway switch，B．Hall．． Railway switch，F．P．Hanchett Railway tie，G．R．Richardson．．．．．．．．．．．．． Roof truss，iran，A．Gottlieb．．．． Roofing，metallic，C．Lewando．． Rubber into strips，cutting，T．J．Mayall． Saddle tree，S．E．Tompkins， Sash holder，Devol \＆Okey Saw，pulley for band，Roche $\& ⿳ 亠 口$
Scaffold，ad Justable，J S．Tilley． Scraper，Mayfield \＆Payne scraping hogs，McNeil \＆Dal ton．．．．．．．．．．．．．
Screw cutting machine，Jaycox \＆Webste Sealing cans，solder for．E．Morr Seat，revolving，G．F．Dawson．
Seeding machine，H．F．Stinde． Seeding machine，H．F．Stinde
Sewing machine，T．L．Melone Sewing machine stand，H．Loth． Sewing machine table，J．Benno Sewing machine table，J．Bennor．．．．
Sewing machine treadle，W．D．Wood Sewing machine balance wheel，D．G．Wi．liam
Sewing machine extension tadle，J．Bennor Sewing machine threader，M．A．\＆J．T．william Shoe，ladies＇gaiter，H．C．Letsinger Sifter，A．Bardell．
Soap，manufacture of，F．M．Pleins．． oda，extracting nitrate of，R．F．Fairli Spike，G．N．\＆G．N．Sanders Spinning ring，J．B．Bancrott． Steel for punching，etc．，treating，G．W．Billings Step and step box，J．Watson
Stereotype molds，maklng，R．A．Hil
Stone and glass polishing，J．Meisse
Stove，heating，J．L．Ring．
Stove pipe shelf
D．
Stove pipe shelf，D．R．Morere
Stove pipe shelf，W．Patterso
Stove，summer，W．A．Barlow．．．．．．．．．．．．．．．．．
Tassel for umbrellas and canes，w．Harnach
Telegraph，pneumatic，A．Jaynor．
Thill coupling，C．F．Kidder．．．．．．
Tobacatomatic，H L．Brower
Toy automaton，R．J．Clay．
Toy catapult，W．S．How．．．
Toy money box，T．A．Ta
rrap，ant，L．Rubar
Trap．hog，A．B．De Vore．．．．．．．．．．．．．．．
Umbiella notches，A．\＆I．Herzberg． Vessels，oscillating cabin for，B．Weiske Wagon welg hall Washing machine，J．W．Conroy．
Watch escapement，D．J．Mozart Water closet，J．H．Stevens Water elevator，S．Bennett
Water，elevating，Blancha Water supply valve，P．Harv Well，driven，G．W．Storer．．．．．．．．．．．．．．
Windmill，W．W．Marsh \＆O．E．Miles Windmill，J．F．Ste war Window sash and frame，D．Mackay

APPLICATIONS FOR EXTENSIO
Applications have beenduly flle，and are now pending
or theextenston of the foilowing Letters Patent．Hear ngs upon the respective applications are appointed for he days hereinafter mentioned：
$25,673 .-$ Boor Lasting Mactive
25，673．－Boot Lasting Machine．－J．Purinton，Sept． 17
$30,692 .-$ Sewing Machine．－K．Vogel． 35，692．－SEWiNG Machine．－K．Vogel．September 17.
$35,701$. Skelemon Skirt．－J．Draper．September 17．
थ5，783．－Double Friction Coupling．－J．Hendy．Sept．24
ě，884．－MAking Barrels，etc．－G．W．Banker．Sept． 24

EXTENSION GRANTED
24888－Pupine Evere－P Worthato DESIGNS PATENTED．
6，771．－BURIAL CASEET．－B．F．Hetmbach，Allentown，Pa
777．－BERIAL CASE．－B．F．Heimbach，Allentown，Pa

TRADE MARKS REGISTERED

CANADIAN PATENTS．

Official List of Patents Granted in Canada from February 14，1870，up t and including April 7， 1873.
Patents taken by citizens of the United States ar
narked U．S
（Note．－Under the new patent law，nowin vogue， American citizens may patent their inventions in Canad Co．，Office Scientific American， 37 Park Row，N．Y Axle blank finishing tool，H．E．Forrest，U．S．．．．．．．2，19 Barrel hoops，C．W．Rider，U．S．． Blind slat tenoning machine，A．Ca Boot sole finisher，B．S．Bryant，U．
Bridges，truss，C．G．C．Simpson．．． Bridges，truss，C．G．C．Simpson．
Burner，a vapor，R．W．Park，U． Burner，a vapor，R．W．Park，U．S．．．．．．．
Cant hook machine，W．P．Kilgore，U．S． Car brake，J．Heberlein．
Car brake，steam and air，o．W．Ketchum．
Car coupler，Li．Forrest．．．．．．．．．．．．．．．．
Car coupler，G．W．Putnam，U．S．．．．．．．．．
Car coupler，J．F．Holman \＆E．Hen wood．
Car coupler and buffer，W．P．Scott．．．．
Carriage shaft attachment，G．B．Stock．．．
Carriage pole and thill shifter，J．Macbeth．
Castor，furniture，F．G．F
Cheese box，A．H．Moore．
Churn，H．J．Wattles \＆A．D．Cable，U．S．
Churn attachment，J．Bates \＆．
Clasps for tubes，E．A．Day，U．S．
Clothes，cutting，J．A．Johnston．
Clothes rack，G．A．Kennedy．．．．．．．
Cooking range，portable，J．Magee，U．S．．．．．．．．．．．．．．．．．2，150 2,204
Creeper，tee，E．B．Colby，U．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Curtain fitures，O．Buckley \＆L．L．Sawyer，U．
Cutting textile material，A．
Dye salts，etc．， T ．Steers，
Dye salts，etc．，T．Steers，Jr．．．
Dyspepsia compound，v．Brosse
Fire extinguisher，J．Gardner \＆W．F．B．．．．．．．．．．．．．．． 2,073
Fishing，bait for，W．Harper \＆W．Smith．．．．．．．．．．．．．．，110
Fish spawn hatcher，M．G．Holton \＆S．Green，U．S． 2,220
Gas，heating and lighting，C．W．\＆A．H．Harrison．． 2,179
fas lighting apparatus，J．P．Tirrell，U．S．．．．．．．．．．2，129
Gas generator，hydrogen，H．P．Allen，U．S
Gas illuminator，A．Cuppers，U．S．
Gas，manufacture of，w．D．Ruck．
Gas，process and machine
Gate，farm，J．E．Fraser．
Gate，farm，J．A．Faner．．．．．．．．．．．．．．．．．．．．．．．．．
Grain cleaner，
Grain cleaner，A．Hunter \＆E．H．Oborne，U．S．
Graphite covering，A．Hitchcock
Grate bar，J．W．Stanton，U．S．
Grate bar，J．W．Hough．
Harvester，self binding，．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Goron et al．，U．S
Harvesting nachine grinder，J．H．Curran，U．S Hat，felt，J．T．Waring，U．S．．．．．
Heating ir and gas，
Hoes，M．Cookerly，U．S．．．．．．．．．．．．．．
Herse
Horse hoof spreader，T．Armstrong．．．．．．．．．．．．．．．．．．．．．．2，
Horse power，endless chain，G．C．Hodge，U．S．．．．．
Horse rake， 0. B．Austin，
Horse shoe，J Galipo．．．．．
Iron and steel process，C．．
Iron crus，smelting，P．E．Jay．．
Jack，lifting，F．S．Smith，U．
Kitchen smell conductor，J．Newhall．．．．．．．．．．．．．．．．．．．．．． 2
Knitting machine，J．S．Shailer \＆J．C．Ford，U．S．．${ }^{2} 125$
Lamp，T．．．White \＆E．Kight，U．S．．．．．．．．．．． 2,081 Lamp，．H．Hitchcock，U．S．．．．．．．
Lantern，kerosene，J．H．Stone．
Lantern，kerosene，J．H．Stone．．
Lock，time，J．Burge，U．S

Locomotive smoke consumer，R．Ha wkes et | l．．．．．．．．s． 2,198 |
| :---: |
| 2,188 |

Lyes，treatment and re－use of，C．M．Tessie du Motay 2,158
Maple sap evaporator，H．Pagñelo．．．．．
Melodeons，A．F．Yarwood．．．．．．．
Milk weighing can，P．W．Strong．．．．．．．．．．
Nail cutting ma hine，J．La wrence，U．
Nail machine，horse sh oe，H．A．
Nutmeg grater，T．J．O＇sullivan．
Oils and varnishes，clarify ing F． Organ，L．K．Fuller，U．S．．
Organ，reed，L． K.
Fuller，U．
Paper pulp propeller，T．Nugent，
Paper，manufacture of，G．Noble
Paper，manufacture of，G．Noble ．．．．．．．．．．．．．．．．．．．．．．2，168
Potato digger，P．M．Bawtinhimer．．．．．．．．．．．．．．． 2,186
Pot tilter and holder，J．Grant．．
Power，transmitting motive，A．D．Fox．．．．．．．．．．．．．．．．．．．．．2，170
Printing，adjusting cards，etc．for，G．W．Verrall．．．．2，109
Pulley hub，triction，H．Cox. ．．．．．．．．．．．
Pulp，reducing wood to，W．M．Howland et al．，U．S． 2,100
Pump，E．Graser，U．S．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2,186
Railroad car spring，P．G．Gardiner，U．S．．．．．．．．．．． 2,117
Railroad chair，A．Van Guysling，U．S ．．．．．．．．．．．．．．．．．．2，127
Railroad chair and supporter，A．Van Guysiling，U．S． 2,128
Railroad chair and supporter，A．V an Guysing，U．S．
Railroad cars，safety shoe for，S．W．Emory et al．，U．S． 2,197
Railway car wheel，W．Wilmington，U．S．．．．．．．．． 2,212
An

3dertisfmats.

 GREAT REDJCTION IN PRICES

$T_{\text {and }}^{\mathrm{HE}} \mathrm{PROVINCILL}$ AGRICULTURAL

HYURAULIC.JACK. P ${ }^{\text {STMON guided from both ends; all working }}$

Srieutific

Massachasetts Agricultural College,

BUULT'S PATENT Single Spindle
Combined Moulding, $\underset{\text { Paneling, }}{\boldsymbol{\&}} \mathbf{\text { tailing Dove- }}$

M ASONS PATVT FRICTION CLUTCHFS

T\& OFOUNERIES, Factories, Ropewalks,

Americau.

Machinery,

Cold Rolled Shafting.

Sturtevant Blowers.

PATENT RUNCHING
 Farrel's Patent Railway Crane Patent Ground Chilled Rolls,

Cown Pat in Door AND GATM

PATENT:

GEAR'S PATENT VARIITTM MOULDING MICHINE

$\$ 72.00$ EACH WEEK

| 疾 | Improved |
| :---: | :---: | THOMLS LRPMLL.

 $\overline{\text { PUNCHING }}$

WAYNESBORO'
STEAM ENGTNE and
 Sitatonery and Poratale Engines, siperior Ralanced An deut)dore Ertinder.

[^1]

A POPUTAR IDEA.

Prien fle
Tids \% $=$
$2=2=2$
$\mathrm{R}^{\text {ICHARDDSON, MERIAM } \& \text { CO }}$

FOR SALE-The right to manufacture and

Niagara Steam Pump.
CHAS. B. HaRDICR,

TO INVENTORS
 Manufacturers

Institute, of the City of New York, beg to Amnounce 63 d and 6 xhth Stition Buildings on 2 d and 8 d Avenues an
6 , will be ben for
for the reception o September 1st1873. August 18th and for other articles,
Sxhibition will be fromally For particulars, address "General Superintenden
American Institute, New York."
N EW \& IMPROVED PATTERNS.-MA

ROPRR ITOT AIR
giventrmate

Waltham Watches

 each. send any watch ordered from our List, by
 chaser to open the package
watch before paying.
With every with

Certificate of Guarantee of THER AMERRICAN WATCH COMPANY OF WAL
 Genuine Waltham Watches

HOWARD\&CO., No. 222 5th Ave., New York.

ERTGUTH

TVTM safety hoisting
OTIS' Mathinimary
No. 348 BROATWAY, BROS YORK. CO.

STEEAM VARTETYS Sinio for hustrated catalocue намыток,оно.

 ${ }^{r}{ }^{\text {rim }}$
SCIENCERECORD

-GEOLOGY AND
13: EASTRONOMY.
14: BUUGAPHY.
Every person who desires to De well informed concern.
ing the Progress of the Arti and Sciences should have a
 630 pages. Ocravo. Handsomely Bound. Over 150 En-
 MUNN \& CO., Publiehers,

37 Park Row, New York City.
The SCIENTIFIO AMKELICAN will be sent one jear THE SCIENTIFIC AMERICAN WII be sent one y
and one copy of SCIENCE RECORD FOR 1373, on

William Smith's National Foundry and Pipe Works,
 Pittsburgh, Pa., Oct. 22, 1872

Mr. B. F. Sturtevant,
72 Sudbury St., Boston, Mass
Dear Sir, We are pleased to report the most satisfactory results with your No. 9 Pressure Blower running on our 72 inch Cupola, melting 45 tons of Iron in two and one-half hours. and believe we could do better still by resarrangins our blast pipes.

Yours, Truly
WM. SMITH \& SONS

WIREROPE.
JOHN A. ROEBLING'SSONS FOR Inclined Planes,Standing, Ship Rigging

ROOTS FORGE. BLAST BLOWFR SPEED ONLY 100 TO 300 REV. PER. MIN. SAVES HALF THE POWER REQURED FOR FAN.

MORRIS, TASKER\& CO., american charcoal iron

Boiler Tubes

WROUGHT-IRON TUBES
AND FITTINGS, FOR GAS, STEAM WATER, AND OIL.
 NO. 15 GOLD ST., NEW YORK.

Machinist's Tools, LUCIXTRA MAFY AND IEPRDOVED,
 THE HASKINS MACHINE CO.

 to 30 horse-power. Wareroms, 46 Cortlandt stree
Jew York. Send for Circular.
NEAFIE $\&$ LEVY,
PENN WORKS,

P. BLAISDELLL \& CDO,

Patent Drill Presses, with Quick Return Motion,
In the Market, also other Machinist Tools.

Working Models

LEFREL'S IMPROVED DOUBLE TURBINE
"ater Mueel NewBooxdusTOUT-160PAGES SENT FREB

JAMES LEFFEL \& CO.,
JAMES LEEFFEL \& CO.
SPRINGFIELD, OHIO, or 109 LIBERTY ST, N. Y. CITY. SHLIUALC UH NOUA.
HODGES, COOLDGE \& CO.. BOSTON, MASS. LATEST IMPROVEMENT
LUBRICATORS
This MEEDLE-VALVE OIL FEEDER for
 PORTLAND CEMENT,
 I RON. PLANERS, ENGANE LATHE-

FITRRMTITH TOBE THE BESTEVERINVNTED

$\mathrm{R}^{\mathrm{ANSOOM}} \mathrm{SYPHON}$ CONDENSER perfecte

SILICATE OF SODA.
L. © J. w. FEVCCTWANGE SEW Yoik

IIIAHOGANY,

ROSEWOOD, WALNUT, WHITE HOLLY SATIN WOOD HUNGARIAN ASH, AND IN LOGS, PLANK, BOARDS, AND VENEERS GEO. W. READ \& CO., Easthampton, Mass. EmERY W HEEL MaCHiNER
 ming Sang

The Pulsometer or Magic Pump.
 siuat ons and performs all the funct ons
of a steam pump without its consequent
wear and care. No machinery anout it.
wit Noarting to wear out. Will pump gritt
or mudty water without wear or iniury t.
or parts. It cannot get out of order. C. HENRP HALL \& CO,
20 Cortland
New Yorte
Nety

No. 1 Periv St, Neer York.
Movable-Toothed Circular Saws, PERFORATED CROSS-CUT, SOLID SAWS.

RHEHEALD\&NLSCO Patent Centrifugal Pumps,

 HOUSTON'S PATENT

THE STANDARD MAKE!

CCIENTEIC RTCAN

 One copy, one yearOne copy, six months

MUNEN \& CO.

37 PARE ROW NEW YOR
THE "Scientific American" is printed with

[^0]: MTUNN \& CO.
 PUBLISHERS SCIEN ITFIC AMERICAN 37 Park Row, New York.
 office in mashington-Corner Fand gth streets, opposit

[^1]: Dicfe große unb tyätige ©lafic unficr $\mathfrak{B e}$ boblfermg maden twir bejonbers barauf
 Ginbung mit Maifington und den curopaiidjen
 gung von ill sumb atsländifiden झatcuten bictet.
 Seecr ©rfinter, greidybier twelder \Re Rationafität angefforig, ift durd bie liberaten \mathfrak{F}^{2} atentige fesc der Bereini:gten Etaaten zum Fateruiduk für ©rfindunger becedtigt. Hafre firma if bercit, gefiiikt auf 26 aährige ©r fafrung, beutidde ©efinber jeber Beit zu beratl)er und zu mäßigen Prciien rajd und piintftlid $\%$ §atente $\mathfrak{z u}$ erlangen. Die Deutide Gection ift in ben ફanben fäfiger bentidfer Sugcrieure, velde in ber Difice perföntid) mit Exfinbern werfefren weribct.
 Der ,Scientifc American" wirb inf feinert @palter bie beocutenberen Elfinturngen be= (predfen.
 Gorcipondenz erbeter und prompt beant. wortet. Famphlite in bcatidicr ©prade twer= ben auf \mathfrak{B} erlangen franco zugefantst.

 > Qorefifire:

 Prumu \&
 „Scientific American" Patent Agentur,
 37 §art Mow, York City.

