TO EUROPE IN A BALLOON.

Atlantic may be accomplished with a very large balloon. This question he has discussed with n:uch plausibility in his work on the subject, published in 1850; and having discovered, in his former aerial excursions, a current of air Howing to the east at a certain altitude, he has been led to believe a long voyage to the east could be successfully ac-
complished. To test this idea, a person was found, in Mr. Gager of Vermont, who had the enterprise and ability to furnish the necessary funds for the undertaking ; and for this purpose the monster balloon Atlantic was built by Mr. La Mountain, at Lansingburgh, N. Y., and carried to St. Louis in order to make the experimental voyage from that city to this (Nes York), prior to making a grand atmospheric journey across the ocean to Europe. We will now describe the results of this attempt
On the 1st inst., the balloon was inflated with sixty thou sand feet of coal gas, the expansive force of which was capable of raising more than fifteen hundred pounds into the atmosphere. It had a common basket car secured to it and a very light and strong life boat slung below. Considerable ballast of sand bags was provided; a screw steering apparatus for changing the direction of the balloon, several philosophical instruments necessary for the voyage, plenty of provisions, and a bag of papers, letters, and smail par cels from an express company to their office in this city composed the freight. At twenty minutes past seven P. M., all things being ready, Mr. Wise ascended into the basket, and Messrs. La Mountain, Gager, and Hyde (the latter of the St. Louis Republican), took their places in the life boat. The signal was then given for the stay ropes to be cut, when the migh'y mass shot up from St. Louis into the blue ethe like a rocket, amid the plaudits of the multitude. Havin and the to an elevation where the thermometer fell to 42° and away they floated towards New York. At this time Mr. Wise,having been much exhausted with the preliminary duties, resolved to have a nap, and for this purpose he bade his companions below goodnight, rolled himself in his blanke and was soon fast asleep. Near midnight he was awakened
through a peculiar incident. Mr. La Mountain, who had charge of the midnight navigation, discovered that they had ascended to a considerable elevation; and the gas being thu relieved from pressure, he hailed Mr. Wise to open the valve as the balloon had become very tense and the gas was rush ing from its neck with a loud noise. Having received no an wer, he suspected that Mr. Wise was smothered in the gas, and olicited Mr. Gager to mount into the basket by a rope and ee what was the matter. This was done, and the veteran eronaut was found breathing spasmodically; but a good shaking and the removal of the neck of the balloon from his face noon relieved him. Onward the balloon sped, after this, until daylight dawned, and at five o'clock next morn-
ing they were at the upper end of Lake Erie. After some ing they were at the upper end of Lake Erie. After som
consultation it was resolved to sail over the entire length of its waters, in order to test a notion entertained by some per sons that there is a peculiar affinity between balloons and water, which draws the former towards the latter, and pre vents them from remaining suspended above it any length of time. For some time they moved along only 590 feet above the lake; then, when near Buffalo, they rose higher, crossed Grand Island, and proceeded towards Lake Ontario. It was and esolved to land at Rochester to prosecute the voyage, hoping to reach Boston, knowing they were too far north now to reach New York. In order to carry out this conclusion, they gradually descended towards terra firma, where they met with a terrific gale of wind, which frustrated all their plans and nearly cost them their lives. This hurricane struck the balloon with great violence, sweeping it downwards towards the water and
dashing it along at au awful velocity. All the ballast and dashing it along at au awful velocity. All the ballast and
everything that could be cast away were thrown out to enable the balloon to rise, but all in vain. Messrs. Hyde and Gager ascended to the basket, but Mr. La Mountain kept ${ }_{11 i}$ position in the boat, even while it sometimes dashed through the tops of the waves of the lake. Mr. Wise was hopeful all doomed to lose their lives. At last the balloon rose about one hundred feet, but with more apparent danger still, for onward it swept towards the land, and went crushing through the tops of the trees, smashing them like pipe stems, and
continued thus for about one mile, until its progress was arcontinued thus for about one mile, until its progress was ar
rested by a tall oak; and we are happy to state, although rested by a tall oak; and we are happy to state, although
the boat, basket, and balloon were much injured, a kind the boat, basket, and balloon were much injured, a kind
Providence preserved the lives of the daring aerial voyagers, who escaped with only a few bruises.
"Thus ended the longest balloon journey on record; it was commenced at St. Louis on the evening of the 1st inst. at 7.20 P. M., and completed near Adams, in Jefferson county, N. Y., at $2 \cdot 20$ P. M., on the subsequent day. The distance travelled was 1,150 miles; the time occupied 19 hours; a that of a donkey to a deer. The highest point attained was a little over two miles; and it appeared to be a very pleasant voyage until the parties met with th
the balloon became perfectly unmanageable.
"Although this aerial voyage is the longest on record, it does not appear to have added to our stock of knowledge in does not appear to have added to our stock of kno
regard to making ballooning safe and practicable."

The Liberia Advocate, of Monrovia, Africa, announces that its publication terms are: "One bushel of unhulled coffee per annum in advance." Money appears to be an unknown article among the printers of the West Coast.

The Atlantic Telegraph Cables.

We chronicled last week the successful laying of the fifth Atlantic telegraph cable by the Great Eastern, and we now give a few additional interesting particulars .
The squadron consisted of the Great Eastern,Captain Hal pin, in charge of the ex pedition ; the Hibernia, 3,000 tuns,Cap tain Cato; Edinburgh, 2,300 tuns, Captain Manning, and Robert Lowe, 700 tuns, Captain Tidmarsh. The last three both paddles and screw. The electrical staff was in charge of Mr. Laws.
Each of the four ships is fitted up with laying machinery and picking-up apparatus, similar in general character, but with slight variations in details in order to meet special points as regards the build and equipments of the vessels. The arrangements on board the Great Eastern, of course serve as a type for the other ships.
The cable lies coiled in lengths or divisions in tanks filled with water; and as each length is being laid,it passes along a
trough, guided at intervals by horizonial and vertical friction pulleys, to the paying out apparatus in the stern of the vessel.
This consists of a series of six wheels, having V grooves over which the cable passes, each wheel being connected with weighted levers attached to disk wheels working in the is also connected through its shaft with a friction brake. The whole of the lever brakes can be operated simultaneously from one main shaft if necessary. The cable, after passing from one main shaft if necessary. The cable, after passing
over this brake apparatus, takes four turns round a drum 6 feet in diameter, connected with a powerful strap brake, and is passed thence to the dynamometer, by which the train on the cable can be ascertained at any moment of its passage through the apparatus.
From the dynamometer the cable passes over a grooved pulley 5 feet in diameter, which projects over the stern of the ship.
The picking-up apparatus is placed in the bows of the vessel, and consists of grooved pulleys projecting over the stern, and a coiling apparatus having two drums, each six feet in diameter. The coiling apparatus is worked by a small engine which takes steam from one of the main boilers. A dynamometer placed between the bow pulleys and the coiling engine completes the picking-up apparatus, which no less than the paying out gear, is as perfect as engineer ing skill, guided by past experience, can render it
The grappling ropes are of various sizes and strengths nd are adapted for heavy or light work. They are made of wire, the heaviest rope being composed of six strands, each
containing six wires, and he lightest having three strands containing six wires, and he lightest having three strands of three wires, there being two intermediate sizes.
The Great Eastefn also carries eleven iron buoys of five different sizes, ranging from 11 feet diameter by 15 feet high, to 4 feet 6 inches in diameter by 5 feet high.
It may here be interesting to note the lengths of each of the Atlantic cables. That of 1865 , which has recently broken, is $1,896 \frac{1}{2}$ miles long, and the cable of 1866 is $1,868 \frac{1}{2}$ miles: The French cable of 1869, fom Bast laid is. Perre, same length as that of 1865 . Since the latter cable broke, the French cable parted 208 miles from Brest in about 500 fathoms of water. The accident was repaired by the Hibernia, a length of 100 miles having been cut out and replaced by a similar length of new cable.
A most interesting and important work will be the grap pling for the cable of 1865, which broke a few months since it will prove interesting, inasmuch as it will determine whether the physical condition of a cable which has been submerged for eight years is such as to allow of its being
raised, or, in other words, whether the outer covering will aised, or, in other words, whether the outer covering wil have become so deteriorated that it willno longer possess the
trength necessary to resist the great strain which will be brought upon it in raising it. Of its being found and grappled there is but little doubt, the same thing having been accomplished before under less favorable circumstances and The matter derives its importance from the fact that, if the results are successful, it will prove a great commercial gain to the enterprising company to whom it belongs. The cable as parted in about nineteen hundred fathoms of water nd, so far as has been ascertained, the bottom is of a favorable nature for grappling operations. The Great East-
ein and her consorts will continue their efforts to recover enn and her consorts will continue their efforts to recove necessary, for she is equipped for a four months' voyage It is, however, to be hoped that her labors will have terminated successfully before that time, and that yet newhonors will have been added to the science of submarine telegraphy

According to M. Archheim, ky the action of the vapor of bromide of phenylbutylene on lime heated almost to redness, large quantities of naphthaline have been obtained. The
reaction is stated as follows: $\mathrm{C}^{10} \mathrm{H}^{12} \mathrm{Br}^{2}=2 \mathrm{H} \mathrm{Br}+\mathrm{H}^{2}+\mathrm{C}^{10}$ $\xrightarrow{\text { react }} \mathrm{H}$.

Inventions Patented in England by Americans.

 [Compiled from the Commissioners of Patents' Journal.] L. McA voy, Baltimore, MdCarbureter.-H. L. Mca voy, Baltimore, Md.
Horse Shoe.-H. \& P. Moran, New York city Horse Shoe.-H. \& P. Moran, New York city.
Paring Apples, etco RAINGAY CAR.-T. R. Timby, Tarrstown, N. Y. Spip's Berti, etc.-B. Weisker, New York city. STEAM Trap., L. P. Hawes, New York city. Telmgrapa.-G. Little, Rutherford Park, N. J.
TElegraph Condutor.- W. Radde, New York cty Telegbaph, sto.-F. H. Greer (of New York ctty), London, England.

Frcant surcian and fareigu Gatents.
Improved Beer Cooler.
Jacoob Gimilich, Pittsfield, Mass.- This invention has for its object to fur nish an improved apparatus for cooling beer, mineral water, etc., which
shall be so constructed as to thoroughly cool the beer without injuring its havor. In the box beneath the ice chamber is placed a without injuring it beer from a cask placed in the cellar or other convenient place. The bee in introduced into the cask through a pipe inserted in one of the ends Three or more wooden tubes pass through the cask from end to end, and
are placed at differenthights in said cask. The ends of the tubes that are placed at differenthights in sadid cask. The ends of the tubes that pro so as to forma a continuous pipe. The lower end of a pipe is connected with the end of the lowest tube, and its upper end extends up nearly to the ice chamber. It is made funnel shaped to receive the ice water from the discharge pipe of the said ice chamber. By this arrangement the fee water introduce into the lowest tube and esca pes from the highest, the dis so that the said tube may be always full. An air chamber is placed in the box above the cask and below the ice chamber, and is connected with the said casis by a short pipe. The air chamber is designed to receive any ex ess of gas that may be in the cask and which, might prevent thesaidcas om

Improved Spring Bed Bottom.

Charles Gammel, Utica, N. Y. - This invention consists in improving th onstruction of bed bottoms. The ends of the wires that form colled larger diameter than the springs. The springs are arranged in rows and al. ternately. In the vacant spaces between the squares of the springs are nd closes suares of wire of such a size that their sides may be parallel with nd close to the sides of the other squares. The a-ljacent sides of all the aid parallel sides in such a way that the said wires will turnfreely in the aid clasps or hinges. The end parts of the bed bottom may be turned up ver the midide part, thus enabling the bed bottom to be folded into a convilentformf or conventence in handling, st orage, and transportation with out straining the springs. To the lower side of the parts or sections of the bed bottom are secured pleces of Brussels carpet, or other firm thick
cloth, to rest upon the slats of the bedistead and thus prevent noise when he bed is beingused.
Charles Charles Rotter, East Birmingham, Pa.-The object of this invention is to ngpiaster of Paris, terra cotta, stucco, wood and iron ornaments, and busts, which may be placed outside, exposed to the weather, or inside, to he protecting qualitiesof this varnish make it specially usefulfor bust and plaster ornaments. The fnvention consists in the mixture of "mica ilver" and " aurosit" with collodion, in eonnection with aniline and othe olors to produce different tints.

Improved Heating Stove.

Thomas H.Salmon, Brooklyn, N. Y.-This invention relates to stove Which have a down draft through the fuel, and consists in the arrangement scoke pipe. Through a hollow standard a pipe passes upwardly into the combustion chamber. In the datter is hung the basket grate that is provided with a removable cover through whose holes the air is drawn to pro uce the down draft. One side of the basket grate is a broad plate, which omes directly between the smoke pipe and the other part of the grate y thls construction, when there is sufficient heat to create a vacuum in the under the plate and into the chiminey. In order to moderate the strong $\left\lvert\, \begin{aligned} & \text { under } \\ & \text { draft } \\ & \text { air. }\end{aligned}\right.$

Improved Till Alarm.
John F. Baldwin, Nashua, N. H.
assignor to himself and Miles Alarm in manufacturing Company, Providence, R. I.一This inven ivots, and having notches in the curved upper edges, which have to b brought in theline of a hook on a stationary support above the drawer by he pull rods, to allow the plates to pass the hook to open the drawer with out sounding the alarm. The plates have several notches in the edge, and
allbut one are fitted with removable pieces, which can be shiftedfrom one notch to the other to change the combination. When two plates are used they willswingin opposite directions, and their open notches must coin.
cide with each other as well as the hook, to allow the drawe to be opened. The with each other as well as the hook, to allow the drawer to be opened ustment, the hook will push one of the plates a gainst the trip lock of the Improved Governor
Elson Towns, Cisne, ill.- Thisisin vention relates to apparatus for govern Ing the speed of machinery, more especially designed for the steam en
ine. A curved bar is attached to the frame with its curved at hanging ver so as to support the top end ofthe ball spindle. A loose disk or wash moves freely up and down on the spindle, and by means of two pins fllows their mot ion. An adjustable disk is supported by fore washer to which it is jointed. Anis spring is adjusted so that the friction wheel is ratsed or lowered thereby. The friction between these two wieels retard themotionof the balls. The driving shaft is confined to the stand of the frame upon which shaft is a bevel wheel. A yoke carries another wheel
whichmeshes into the latter. This yoke isconnected to a vertical shaft by a pitman. Theyoke is so constructed that it turns, with the wheel, on the a pitman. The yoke is so constructed that it turns, with the wheel, on the
driving shaft,and when the speed is increased the yoke will raise the shaft and weight, but the increased speed is imparted to the spindle and will
raise the balls. If more than the required speed is attained the friction aise the balls. If more than the required speed is attained the friction wheelswill be brought in contact, which will produce a counteracting ef
fect. The difference between the extremes is the speed required, and a Taried by the adjustment of the upperfriction wheel. The welght on th teracted by the ffiction caused by the rising of the balls. The opening
the valve, therefore, does not depend upon the action of the balls, as in o the valve, therefore, does not depend upon the action of the balls, as in o
dinary governors, but by the positive action of the gearing. The balls sin ply check or limit the action of the yoke by means of the friction pro ply check
duced.
Jeremiah Dean, New Baltimore, Ma. - This invention is an improvemen In the class of mills the runner of which is provided with scrapers or plate so attached to it as to remove the meal from an annular trough, into whic fallsafterescaping from between the stones. The improvement consls be tangential to the shaft, around whichtheir innerends center, while their outerones extend beyond its periphery, and are beveled, whereby said ribs Will operate to force the meal out ward from the center of the stone, and o caryt arde the casing.

Improved Dumping Apparatus.

George W. Reed, Middesex, Pa.-The object of this invention ts to con
struct, for use in collieries, mines, and other purposes, a dumpingapparatu struct, for use in collieries, mines, and other purposes, a dumpingapparatu
by which coal or ore zaay be conveyed and discharged over the chute by on attendant in a rapid and effective manner. This invention consiets, mainly in a platform pivoted into the hoisting frame, to which the loaded car is a curely lockedand dumped, the doors opening and closing by suitable me chanical means. To operate the apparatus the car is secured to the platformby the stops and pin, and tipped over by the silde lever opening its
door and discharging the load. The platform is then brought back to the cage, secured to it, and replaced by another, or lowered to be reflled

Improved Method of Adjusting Circular Saws.
Sanford W. Clemmens, Cleveland, Ohio.-It is proposed to have a loose
ollar or disk between the saw and the fast collar, witn adjusting screws serewing through the fast collar agatnst or into the loose collar to adjust the saw true in case the fast collaris not exactly true, or in casethe saw it
self ts not ground true.

