

 ead, an has become stoppet by some objeet, I think
ouse. How can I clear it out without takingit down?
uld oill of vitriol do it, without destroying the pipes?

Wion sys: have a horse power en :

 1 not make the change, with the present arrange-
of valves. L. C. asks: What will produce a very
t permanent red color on leather, to be polished
a hot iron? Answer: Scarletmoroccos and roans a hot iron? Answer:
yed with cochineal.
B. G. asks: 1. How can I grive a fine blue
h brown color to small articles made from sheet onzed? Answers: 1. After the articles are tem-
, polish them, and heat to con , polish them, and heat to color, overa spiritlamp,
harcoal fire, ora lead bath. 2 . See p. 331, current
F. B. asks: What is the lifting power of
,the shape of which is an inverted isosceles trian10 feet perpendicular, surmounted by half a circle
et diameter? Answer: We published on p. 331, It volume, a table of the force of the wind, at dif-
velocities. Knowing the weight of the kite, and
F. asks: How can I make Babbitt metal?
r: Melt 4 lbs. copper, add by degrees 12 lbs. best 38. regulus of antimony, and then 12 lbs. more tin.
.or 516 s . of the last quantity of tin nave been
reduce the heat to a dull red and sdd the re.
3. A. asks: 1. How much power will it
cuta plate of iron $11 / 2$ inches thick? the effect of expansion and contraction on the
at St. Louis, Mo.? Answers: 1 . The resistance 18ht iron to shearing is about 45,000 pounds per
inch, on an average. 2. The effect will probably iseand lower the crown of the arch a little, if
, lestructure is rigid. I. asks: What is the difference in cot-
tween ordinary and middling, for instance), and t detecte is Answer: The classification of dif
rades of cotton is made according to length and of fiber, and is expert work.
When Tirst appearing over the horizon, seem uan when in the zenith? Is it owing to the pe
ondition of the atmosphere near the earth?
says: Chemistry teaches that, when a
of hydrogen and oxygen contains comman air of nydrogen and oxygen contains common al
y nitrogen) it will explode when ignited. There ie water tor charging boilers were drawn from
m of a deep tank, the superincumbent column would weigh more than the air (or more than 15 I the suare inch) and all air would be ex
I think that all surface ground water con. losives in solution. In the tank containing
ere should be arranged some fiat vessels conlumtna or the tike incombustible substance, explosives would be neutralized, the water
'ified for that purpose. Answer: We believe
nnittee of the Franklin Instilutemade experinimittee of the Franklin Institute made experi
 R. anks: What it oillof of citronla, androphogon schenanthus, which grows wild
ibundantly in Ceylon, whence this oil is chiefiy
says: In Culpepper's "Complete
here is mention made of a plant called Christ's tancical name of that plant? Answer: You
refer to the fiower of the bush known as orn, or palinurus aculeatus.
asks: Is the ocean level? How much the city of New York than Liverpool? An-
evel line is one that coincides with the generthe surface of the earth, which is that of an san low tide, were it not for the wind. As it
I varses indifferent locations. The difference te level of New York and Liverpool, if any, P. asks: 1. What is carbon disulean make a hauid of transparent color to
ewers: 1 . Carbon disulphide is form a fompouse znd sulphur, made by passing the vapor of
ar fragments of red hot charcoal in a porceidcondensing the gaseous product. It is also
tide of carbon, and sulphuret of carbon and iof carbon. 2. Collodion is used for the pur-
ention. This is made by dissolving gun cotention. This is made by dissolving gun cot
xylin, in a mixture of ether and alcohol. It a druggist. as its preparation involves skill specially in making the pyroxylin, which, he satisfaction to railroad managers anticiconsidered, over a first class fron rat1? 2.
e silicon rail compare with the Bessemer in wers: 1. Yes. 2. So far as we know, verg
dide of the sillicon steel have been laid down, 1.8 not
ade.
D. B. P. says: I wish to run a woven iron Tinning does not answer the purpose, snd galvanizing
fills up the meshes. Can you suggest a remedy? The
cylinder will be subjected to some wear. night overcome the difficulty by constructing the cylinder of wire cloth with a alarger mesh than you require,
so that, when it is galvanized, it will be of the proper size. Or you might have the cloth made of galvanized
 scraped off, but it has to be done often. What is the
best thing o hold it in solution thatitmaybe blown off? ing, bursts, or cracks it. What is good cement for the cracks? Answers: 1. Probably your best plan will be
che to filter the water, before it enters the boller. There
are feed water heaters in the market that are said to
remen emoveall impurities which are held in solution. 2. We mighttry a cement made of red and white lead and fine
iron borings. Put this over the crack, cover with a iron borings. Put this over
piece of tin, and wrap strongly.
$\underset{\text { F. N. says, in reply to A. R.'s query in re- }}{\text { ard to the locomotive, that air can be pumped in the }}$ boiler to almost any pressure where there is power suf-
ficient to draw the engine; of course the engine is reversed. I have frequently seen engineers oil their throttle valves by reversing their engines for a few sec-
onds while rolling down hill just after tallowing the cylinders, when there was, perhaps, a pressure of 140
pounds of steam on the boiler. A. R. seems to think that the air would escape by the way it entered. The
throttle valve prevents this by acting as a check. throttle valve prevents this by acting as a check.
T. B. J. says, in reply to L. W. : Brass can mixture of iron scales 1 lb ., arsenic 1 oz., murlatic acid 1 lb , and
the solution.
G. M. says, in reply to A. D., who asked for
remedy for snails other than sait: Put ashes with the eeds into the ground
nails may oe found.
F. V. F. says, in reply to G. W. C.'s ques-
ton as to two locomotives: If the wheels were of the same size on the two locomotlves, it is evident that they
would both reach the foot of the incline at exactly the ters, it is equally evident that nothing csn influence the the friction of the two sets of wheels, which friction 1 t found by experiment to be inversely proportional to
their radii. Hence, since the radii of the two sets of nhersely proportional to the radil we have S
 conse quence of thetr making a greater number of revo
lutions during the descent than the larger wheels, the rods, shafts, , hinks, etc., , attached to them would move
faster, and hence increase the friction. I conclude from these facts that, since the locomotive with the fou foot wheels has a little more than 16 is much friction as
the other 10 ocomotive, the last mentioned locomotive
will arrive at the foot or the incline in a little less than will arrive at the foot or the incline in a little less tha
$\%$ of the time that it takes the otherto arrive there. A. G. Jr. says, in reply to J. N. R.'s query
as to coloring photographs: An exact representation of any transparent leaf orplant of any color or shade can
easily be made by obtaining direct from the leaf carbon negative, then using tissue, of the color desire for positives. You can obtaln, from the following s
utions and their admixtures, almost any shade of blu lutions and their admixtures, almost any shade of by
green, yellow, and brown. Solution No. 1, to
used as a bath: used as a bath: dissolve 2 ozs. lead in nitric aci
and evaporate to dryness. Then dissolve 2 ozs.
the resulting nitrate of lead in rain or distill water, in a glass or porcelain vessel. In or another, dis solve 2 ozs. of the ferricyanide of potassium (red prus.
siate of potash), mix the solutions, and fil er into iate of potash), mix the solutions, and if er into
sutable bath. Then float, upon this, either plain or albumen paper, and dry in the dark. Then use a paper,
or carbon, or ordinary photographic negatives as J. N. Q. or carbon, or ordinary photographic negatives as J. N. Q.
describes. After finding the proper time to expose (and few experimental failures will soon do it), immerse mate of potash $3 / 2$ oz., perchloride of iron $1 / 2$ oz., wate about one pint. For red: sulphate of copper 1 oz.
water 1 pint. For brown: weak solution perchloride o water 1 pint. For brown: weak solution perchloride on
iron and a little sulphate of copper. For dark brown,
E. J. O. says, in reply to J. N. N.'s query as
to common house fiy, surrounded by a kind of opaque vapor,after death: It isa mold or fungus, and is caused
by the bite or sting of the mosquito. I have watched and immediately following the death struggles of the
fiy.
W. E. H. says, in answer to W's question
as to mensuration of circles: I use rules that are not given in school arithmetic books: To find the cir-
cumference of any circle: Multiply the dimeter by 9 nd divide by 3 . To find the area of the same circle : Tak 5 of the square of the diameter. Having the circumfer. ence, to find the diameter: Bivide the circumference bs 19 and multiply the quotient by 6 .
J. C.S. says: " When our belts slip, we
pour castor oil on them just in front of the pulley the effect is always satisfactory; we also use tanner's or neats' foot oil on the outside of the belts. We run the grain side of our belts next the pulley, preferringalways
to use, for our own purposes, large pulleys and long belts, keeping them soft and pliable. and having them
C. H. R. says, in reply to C. C's question on
page 250, currenc volume: Tne answer is : $\{2,5331 \mathrm{bs}$. less friction, which in this case would be over $1 / 3$, and also less an amount in proportion to the distance the pin for
C. M. N. says that A. M. can solder brass to adding a little silver while melted in a crucible. One iece to be soldered begins to flow. Two parts bra $\underset{\text { J. }}{\text { J. E. E. current volume: Disregarding rriction (which }}$ will be about $1 / 3$), the pressure on W will be 7,2888 lbs four times the po
the four pulleys
Minerals, etc.-Specimens have been re examined with the rowing corresp
R. W. H-Your
ishing material.

H. S.-The black material is carbonate of iron.
J. J. T.-
ad, con nainder being of lead 85 and sulphur 13 parts, the reometimes a little silyer. Lead is obther impurity, with oasting in a reverberatory furnace. and smelting the due with coal and lime.
M. E. B.-Nos. 1 and 3 are trap rock, of no value. No.
is trap with spangles of plumbago, and perhaps some
J.T. C. - No. 1 ted hrought
J.T. C.-No. 1 is a vein of trap, ofigneousor eruptive
origin. No.2, hornblende. No. 3. This is possiblymetal.
iferousat some denth.

COMMUNICATIONS RECEIVED

The Editor of the Scientific American acknowledges, with much pleasure, the re. ceipt of original papers and contributions upon the following subjects:
On River Navigation. By G. W.
On Sexadigitism. By W. T. R.
On Ecclesiastical Bickerings. By J. R.P
On Insect Nests. By A. B.
On Snake Poisons. By T.J.
On Flying Spiders. By E. F
On the Proposed Great Telescope. By W. M.

Also enquiries from the following :

Correspondents who writeto ask the address of certatn manufacturers, or where specified articles are to be had,
giso those having goods for sale, or who want to find
partners partners, should send with their communicatons he head of "Bustness and Personal" which is speciall

[official.]
 Index of Inventions

 FOR WHICHLetters Patent of the United Stat were aranted for the week endina November 4, 1873,
and each bearing that date.

Axle, vehicle, L. Martin.

Axles, sand bar for, Winchel...
Bage, manufacture of traveling, J. W. Lieb. Balance, E. C. Pickering.
Bed bottom, spring, J. S.J Beef, machine for slicing, A. Iske
Beefsteak tenderer J . Beefsteak tenderer, J
Billiard cue tip, G. W
Blackboard, J. revolving, C. B. Lyon
Boiler, steam, Worswick \& Lewis
Boller, wash, , . J. Harrison...................
Boiler incrustation, preventing, C. Burfitt
Bolt, seal, J. E. Thomson
Rolt for prison doors, T
Boot tree, T. Branigan.
Bosum and collar, combl
Box, match, M. L. Orum
Caps, shearing, Cooke et al
Car axle, G. W. Millimo
car axle, G. W. Miltim
Car brake, W. Naylor.
Car brake, Warwick \& uggan.
Car coupling, W. R.Coovert
Car coupling, W. B. Snedaker
Car coupling, J. M. Wells....
Car coupling link guide, Warriner
Car heater, Berghausen \& Kiesling
Car heater, Berghausen
Car propeller, Steel \& Austin.
Car replacer, J.. . Burkhardt
Car spring, volute, P. G. Gardine
Car starter, A. H. Croz

Carriage cover, E. H. Ellio

Carriage offsets die, , Wilcox...........
Carrage step cover, etc., J. W.Gosling Cattle stanchion, C. W. Sawdey hair, Morrison \& Hutch
Churn dasher, G. Rider....
lock escapement, A.Plat
Clock escapement, A.Platt.
Comb holder, E. E. Wheele
Compound for cleaning metals, etc............... . Moore Cooler, milk, E. Martin
Cornice and gutter, , $\begin{aligned} & \text { B. C. Cornell } \\ & \text { Cotton chopper, etc , M. L. Nearn }\end{aligned}$
Cultivator, S. Crutcher....
Cultivator, A.S. Mc onell
Curtain fixture, H. Marchand
Cushion, etc., spring, D. N. Selleg..
oor check, J. Bader.
oor check, M. R. Perkins.
oor securer, W. H. Phipps
Urop light and hanger, Blaisse \& Crites
Eaves trough hanger, T. Gillams
Eaves trough hanger, T. G. Willams.
Elevator for buildings, etc., G. Müllar
Engine governor,steam, J. E. Hugou
Engme. hoisting, F. Murgatr
Engine, condenser, J. Houpt.
Fraser, rubber, G. Stackpole.
Faucet, A.D. \& G. W. King.
Faucet, J., A., \& T. Mc Kenn
Fence picket he9ds, cutting, A. Burnham

Fire escape, scott \& Hiltz
Fruit basket, w. R. Wilcox
Furnace fcr reducing ores,, . H. Hoyd.
Furnace for reducing ores, J. H. Boyd.
Furnace, hot air, A.Pfund
urnace, steam boller, U. B. Striblin
Furnace,feeding fuel to, J. H. Boyd
Furnace, hot air draft, E. Boughton
Furnace, C. Schemioth.
Gage, carpenter's, E. Sahm,.................

APPLICATIONS FOR EXTENSIONS.
Appltcations have been duly filed, and are now pending
for the extension of the foilowing Letters Patent. Hearings upon the respective applications are appointed fo the dayshereinafter mentioned:
7,043.-Lock for Umbrella Stand.-A.M.Foote. Jan 21

