improved box corner grooving machine.

We illustrate in the accompanying engraving an improved machine for box makers' use, the object of which is to cut, in an expeditious and accurate manner, the tenons or grooves by which the corners of wooden boxes are matched together This operation is effected by bringing the edge of the slab in contact with a set of circular toothed blades arranged in cylindrical form, and rotated at a speed of some 3,000 revo lutions per minute. The principal points of advantage claimed are the simplicity and fewness of parts, compac form, adjustability of table and blades, besides others of more detailed nature, which will be found referred to below.
A is the set of cutters arranged in succes sion upon a horizontal shaft, the pulley of which is rotated by a belt communicating with the driving pulley, as shown. Between each blade is placed a collar, so that a space be tween the cutting portions is left, which forms the tenons between the grooves of the board operated upon. As the cutters are easily removable for adjustment, it is eviden that all may be made of a gage equal to the narrowest groove which might be required because, in case a wider cut is required, blades may be placed in groups of two or even three directly side by side, so as to form a less num ber of cutters, but of greater thickness. In front of the cutting cylinder is placed the table, B, which is arranged with suitable arms so as to vibrate on a pivot at C , and to be swung nearer or further from the cylinder by a pressure of the foot upon the sprin treadle beneath the machine. To this table there are three adjustments; first, by a screw at D, by means of which its angle of inclination to the horizontal is altered. Second, by set screws at E, which are inclosed in spiral springs, and the object of which is to regulate the distance of the inner edge of the table from the cutting cylinder, so that, as the latter wears away, said edge may be brought in the closest possible proximity to the teeth. Third, by another pair of screws at F, which regulate the outward swing of the table or its move ment in a direction a way from the cutters. On the inner edge of the table and placed at an angle, cutting edgeup, is a blade, H, and near the same will be noticed two projections, a, resembling teeth. The latter are attached to carriers which project from and are secured under the table, and, besides, connect with adjusting screws, one of which is shown at I. By means of these screws the distance of the teeth, H , from the edge of the table may be increased or diminished, so that they may enter more or less into the space left between the cutting blades. Lastly, the table is provided with suitable detachable guiding pieces, and there is a swinging cover, which fits over the top of the cutting cylinder.
The mechanism thus far understood, the operation of the device is readily followed. For rough work, the slab is simply laid upon the table, the latter being previously brought as close as possible to (without touching) the cutting cylinder. The board is then fed by hand against the blades which, rotating from left to right, rapidly cut the grooves into the wood, until the motion of the latter is arrested by its coming into contact with the projections, a. These projections, as before remarked, enter between the blades when the table is close to the cylinder, consequently their distance from the periphery of the cutters inward governs the depth to which the latter are enabled to penetrate. This depth depending on the position of the projections, is consequently easily regulated by moving the latter in or out by the screws, I
It is a common defect, of rotary blades acting as above noted, that, although the upper side of the groove. in the board is cleanly cut, the under portion is apt to be ragged or to have small fragments split off inward from the edge. To obviate this difficulty the inventor employs the fixed blade, H , which, bearing directly against the under surface of the slab, ensures the smooth division of the wood, as the portions which are to be cut away to form the groove are forced directly against its edge by the teeth of the revolving cutters. This is a point claimed as of especial advantage and stated to ensure increased neatness and accuracy of work.
In case greater cars is necessitated in cutting the grooves, in thin or short boards, for instance, the stuff is not fed by hand to the cutters, but by the motion of the table. It is laid upon the table and there firmly held by the operator while the latter with his foot presses down the treadle, bringing the table slowly toward the cylinder. The slab is thus carefully brought to the cutters, which gradually form the grooves, thus avoiding the sudden impact and probable tilting of the delicate work, as might be the case were hand guidance alone relied upon. It will be noticed that no bolting in forms is required, nor indeed is there any operation needed for securing the board, at expense of considerable time and trouble. Another merit claimed lies in the fact that boards of any width may be grooved. This is done by removing one of the guides from the table, leaving the other in place. Against the latter the edge of the board is laid and in this position brought to the cutters. These, of course, groove the board for the length of the cylinder. The fised guide is nest removed and the opposite one returned to place. Against this the other edge of the slab is adjusted, nd the grooves on that extremity cut, thus completing the
width of the board, care being previously taken to have the second set of indentations follow those first made in proper succession.
The apparatus is the invention of Mr. Asahel Davis, of Lowell, Mass. The same inventor has also devised some novel machines of equally compact form for planing and dovetailing purposes, so that the present apparatus conpletes a very useful set of box makers' tools, to the per fection of which much time and care has been devoted. Fur her particulars may be had by addressing the patentee a above, and the devices themselves may be seen at the ware

DAVIS' BOX CORNERING AND GROOVING MACHINE
mall roots will seek the water; a straight and tapering stem, with beautiful glossy green leaves, will shoot upward, and present a very pleasing appearance. Chestnut trees may be grown in the same manner, but their leaves are not so beautiful as those of the oak. The water should be changed once a month, taking care to supply water of the same warmth; bits of charcoal added to it will prevent the water from souring. If the little leaves turn yellow, add ons arop of ammonia into the utensil which holds the water, and hey will renew their luxuriance.
Another pretty ornament is made by wetting a spong and sprinkling it with canary, hemp, grass and other seeds. The sponge should be refreshed with water daily so as to be kept moist. In a few days the seeds will germinate,and the sponge will soon be covered with a mass of green foliage.

Temperature Indicator for Petroleum oils.

Petroleum oils, as is well known, contain va rious volatile oils, which, in being disengaged in a state of vapor and mixed with atmospheric air, form an explosive mixture that has been the cause of numerous accidents. It is consequent ly important to ascertain, by a simple method, as quick and exact as possible, the temperatur of ignition. M. Mranier has arranged an ap paratus for the purpose which he has exhibited before the Société d'Encouragement.
A small receptacle, of a cylindrical form and made of metal, is closed by a movable cover, furnished, in the center, with a circular opening This vessel is about two thirds filled with the oil that has to be tested, so that there may be a chamber of air between the surface of the oil and the top of the cover, in which may be received the inflammable gases disengaged by the oil. A tube, soldered to the bottom of the ves sel, holds a wick, the extremity of which end in the middle of the opening of the cover. A thermometer is inserted in the oil to indicate successive and minute changes of temperature.
For the purpose of testing any oil, it is poured into the vessel to the hight already stated. The wick absorbing the oil is then lighted and

New York city.

the yucca pendula.

This is one of the very best species of a beautiful genus, and its graceful and noble habit makes it simply invaluable in every garden. It grows about six and a half feet high the leaves being at first ereet, and of sea green color, after

wards becoming reflexed, and changing to a deep green. Old and well established plants of it, standing alone on the grass, are pictures of grace and symmetry, from the lower leaves which sweep the ground to the central ones that point up as straight as a needle. It is amusing to think of people putting tender plants in the open air, and running with sheets to protect them from the cold and rain of early summer and autumn, while perhaps not a good specimen of this fine plant is to be seen in the place. There is nothing more suit ed for planting between and associating with flower beds, for isolation and small groups, on the turf of the pleasure ground,
Garden.

Simple Ornaments.

A pretty mantlepiece ornament may be obtained by suspending an acorn, by a piece of thread tied around it, within half an inch of the surface of some water contained in a vase, tumbler, or saucer, and allowing it to remain undisturbed for several weeks It will soon burst open, and
thus gradually heats that in the vessel. This is hastened by the presence of some fine copper wire, which extends from the burning wick into the oil, thus spreading the heat through it. When the temperature is sufficiently elevated, the va pors are disengaged, and an explosive mixture is produced which, on catching fire, causes a slight explosion. The temperature is noted at this moment, and the point of igni. tion thus ascertained.

Necessity the Mother of Invention,

Young men are retrenching in these dull times, and making strongefforts to appear well dressed and at the same time save their money. Two young gentlemen of Oil City says the Derrick,have invented a novel plan to attain these two points. The two are nearly of the same size and build, two points. The two are nearly of the same size and build,
and what one wears fits theother. By putting their money and what one wears fits the other. By putting their money
together, they were able to buy one good suit, and now take turns in wearing it, changing about, one weak off and one on. Of course the man who has a week off is unable to ac cept invitations out to tea, hops, and balls; but then his suit or his half of the suit will be there as a representative.

A Mammoth Cheese.

The Painesville (0.)'Telegraph describes a mammoth cheese which lately passed through that town on its way East It was mounted on a substantial platform to which were attached small cast iron wheels, so that it easily moved, and the platform in turn was mounted on a heavy lumber wagon, drawn by two span of horses. The cheese was cased in a tight fitting cheese box which was firmly secured to the plat form to prevent sliding. Its measurement is: Hight, 3 feet 2 inches; diameter, 5 feet 4 inches, and circumference 16 feet. Its net weight is four thousand and fifty pounds. In
In feet. Its net weight is four thousand and fifty pounds. In which stands so prominent in every market. It was manufactured for Messrs. Gass, Doe \& Chapin, of Boston, and factured for Messrs. Gass,
will be cut for the holidays.

Fish Way in the Connecticut River
The Holyoke (Mass.) Water Power Company have just built, under the mandate of the Supreme Court at Washbuilt, under the mandate of the Supreme Court at Wash-
ington, a fish way on their big dam, against which they ington, a fish way on their big dam, against which they
had long held out. It is described as a sort of covered ladder, had long held out. It is described as a sort of covered ladder,
450 feet long, and divided by short zigzag " locks" or checks, 450 feet long, and divided by short zigzag " locks" or checks,
to break the force of the cataract, and permit shad and sal. to break the force of the cataract, and permit shad and sal-
mon to get over the big fall at the dam. It has cost about mon to get over the big fall at the dam. It has cost about
$\$ 25,000$. The State of Massachusetts, four years ago, ap$\$ 25,000$. The State of Massachusetts, four years ago, ap-
propriated half that amount, but the company declined to propriated half that amount, but the company declined to as the courts have so decided. The Fish Commissioners of Connecticut, Massachusetts, and other New England States will meet this month to examine this work.

The Fireless Locomotive in New York Streets.-The Fireless Engine Company, whose locomotive we illustrated and described some time ago, have obtained the permission of the Board of Aldermen to run their machines on any of the city railroads above 14 th street. This is a most important concession, and must be taken as an admission by the city authorities that the system can safely be worked without danger on our street rails. The want of some better out danger on our street rails. The want of some better
mode of propulsion than that of horses is painfully obvious.

