S. F. D. says: 1 . A safety plug to a steam
boilar melted out when the boiler was beling blo wn off;
 35 bs. of steam: what wav the cause? 2. Of what alloy
or metal should a safety plug be composed? 8 . How many yeara has the Sorrentrfic Axrrican been pub 1ished? Anserss: I. It 18 quite probable that the iron
was corroded around the plug, too that tt was shaken out by the shock due to the con traction of the boiler.

- For a recipe for fustblometal, see p. P 81, vol.26. trst number of
n August, 1845 .
J.F. W. . . . 2 ys:
and wish towatch the inside of a sman enn copper cylinder. Can I cut a slitit th th, and
then cement a piece of glass over the a perture so that $1 t$ will stand 200 Dibs ot othe square nch? I am a frade of of un equal contraction and expansion. Could I cement it to
any better advantage in a cast Iron cylinder? Answer any better ad vantage in a cast Iron cyllider? Answer
The Committee of the Franklin Institute, who made ex perlments to determine the cause of boilier explosions,
used a boiler having an opening covered with glass. we asela a boner having an openingcoveren with ylass. We
believe the glass wa b broken several times, under high pressures. Your best
the joint with rubber.
E. J. C. asks: Will kerosene oil do in place
of petrole.um for steam boilers? Answer: We thilick not W. R. F. asks: 1 . What is the best and the dust from a small emery grinder? 2. What is the
cause of the clinking noise heard in cold steam pipes cause of the clinkting noise heard to cold steam pipes
when steam is let on? 3. When does the Fair of the A merican Institute close? Answers: 1 . It can be done
by enclosing a shaft with vanes, in a box having suitable openings. It will probably be more sazisfactory for
you to purchase a blower from an established manufac turer. 2. It 1 s caused by the linpulse of the condensed steara acting in a a accuum, and by the movement of the
plpe as it expands. 3 . On November 15 , unless extended pipe as 11 expands. 3. On November 15 , unless es
for one week by vote of the Board of Managers.
$\underset{\text { with a rotarsmovement in boring roer, as is is ane in in }}{\text { J. F. }}$ boring metals? 2 . Could not some form of acid or solv-
ent be used to facilitate the boring of rock? s . What ent be used to facilltate the boring of rock? 3 . What
are tre comparative advantages of the different forms of explosives for practical use in blasting? 4. In clear Ing telas or stone, would it save labor to use the
more powerful explosives Instead of oruinary blast.
ing powder?
Answers : 1 . They would get dull too Ing powder? Answers: 1. They would get dull too
quickly. 2. Agents that would soften the rock milyht process would probably be too expenstve for general
ue. tcal. 4. Yes.
J. R., Jr. asks: 1. What is the longest dis-
ance you have known steam to be conveesed from the boiler to the engine, as for steam pumps in shafts and
mines? 2 . How fardo you think it could be conveyed o have an avalilable working force, from a boiler of 125 place a pump about 2,500 feet from the boiler. Answer We think you can carry out this plan succeessfully if you use a large pipe, protect it carefully, arrange expansion
joints at suitable intervals, and put in efflcient traps to carry of the water. We arvise you to have plans pre.
pared by a competent engineer before putting up the ${ }^{\text {pared }}$ pipe.
F. H. C. asks: What is the nominal ho rse
power of the largest steamer on Long Island sound, also
 horse power, by English
horse power, about 3,000
C. J. H. asks: 1. At what surface sjeed
 mallea ble cast Itron? 2. Is there any better way to attach
emers to leather, than with gooid glue? 3. Wher is the

3. emerry to leather, than with good glue? 3. Where 18 the
beest (sharpest) emery obtained from? be obtained in market, in grades like emery? Is it supe.
rior to emery in abrasive qualities, enough so to pay for he difference in cost? Answers: 1. About $\%$ of a mile a minute. 2. We think so. 3 and 4. Where emery secured
to leather is used, It stays on so short a time that the cheap grades of emery answer as well as the better qualities. Corundum can be obtained, but its use is not re-
commended in this case, for the reason given above. M. W. says: By accident I got some zinc hey be made to work together? There is only a small ance of cold metal in the cast. Answer: The zinc can probably be separated dy vaporizing it. This 1 s, however rather dimcult operation, and you willscarcely succe
unless sou have had some experience in the method.
Y. E. asks: 1. In calculating the horse
power of a boller, do you count any of the breeching, or do you count nothing but the actual fire surface of the saw when cutting pine timber? 3. How is naphtha oil manufactured? 4. What is benzine made from? 5. What horse power has an engine of the following dimensions: he great transatlantic balloon burst from the high pres ure of gas, or did Professor Donaldson cut a hole in it? Answers: 1. Take only the effective heating surface. 2 . ize and quality of the timber, as misa depends on the similar to petroleum. 4. It is ordinarily prepared from coal tar oil. 5. The data furnished are incomplete.
Probably the mean pressure of steam is not 70 lbs ., and ons to be made for back ressure and cushion. But using these figures, we have horse
power $=63.6 \times 70 \times 69 \times 2 \times 16 \div 38,000 \times 12=22 \cdot 7$ nearly. 6. We expect no one but Mr.
give a correct reply to this question.
C. D. M. asks: 1. What horsepower would a propeller engine, 8 inches in diameterx 8 inches stroke
have? 2. Would you advise using a square wate have. 2. Would you adrise using a square water
tube boiler to supply steam for the above engine? It is
to be used in a small yacht, 40 feet keel x 10feet beam. 3 . to be used in a smaill yacht, 40 feet kel x 10feet beam. ${ }^{3}$
How large ought a boiler to be for this engine? An 2. We think you had better use a cylindrical boiler, of the same general character as those now used on ocean
steamers. 3. Allow from 18 to 20 square feet of heating steamers. 3. Allow from
surface per horse power.
J. S. asks: In constructing a compound mi-
croscope, what are the focal distances and diameters of the glasses to be used, to produce amagnifyingpower of
80 ? What are the distances that the glasses should be placed from each other? Answcr: Use for the object glass a plano-convex lens, y_{6} inch focus, with its plane
side towards the object and its aperture one fifteenth of lass, place the eye glass, which, in itssimplestform, is a double convex lens. The magnify ing power can be in-
creased somewhat by increasing the distance by means
of draw tube between the eye glass and the object
lass, but this is at the eacrifice of distinctiness. G. K. M. asks: How can I make paint ad.
ere to zinc?
Answer: Dissolve 1 oz. nitrate of coppe and $10 z$ sal ammoniac, in 64 ozs . water. Then add 1 oz . ydrochloric acid. Apply thismixture to the zinc ; an
when it is dry, paint it. using mineral paint. M. M. M D. H. S. Jr. asks: 1. In fastening pulleys bedriven up or down? In securing bevel gear, ought
he keys to bedriven with or contrary to the thrust? By
, hrust I mean the tendency of the wheel to push out of mesh. 2, What scale of measurement is used in ex-
pressing the gage of a sa w? Ansers: i. Drive the key pressing the gage of a saw? Answers: . Drive the 1 c . There is a great lack of unif ormity on the gage question,
in the practice of different manufacturers. In ordering a saw, it is best to write to the make
him to send a cut of the gage he uses.
J. O. R. asks: Will you please give a for-
mula for finding the length of a lever for working aroll valve, diameter of steam chest, travel of valve and throw of eccentric being known? Answer: Let the cir.
cle described with A B as a radius represent the steam chest. Knowing the travel of the valve, the chord B C
can be found. Then the chord, D E, which represents the throw of the eecentric, beinggiven, A E, the length of

lever can be found by a simple proportion. Example
Diameter of steam chest $=6$ inches. Travel of valve inches. Throw of eccentric $=11$ inches. Angle $\mathbf{B A C} \mathbf{C}=$
$5 \times 360 \rightarrow 18.8496=95^{\circ} 30$, 4.032 inches. Lever $\mathbf{A} E=3 \times 11 \div 4.032=8.18$ H. R., S. H., and H. C. say: Locomotive eccentrics sometimesslip round upon the shaft. Bourne lowing rule : "Draw upon a board two straight lifes a right angles to one another, and from their point of in
tersection as a center describe two circles, one representing the circle of the eccentric, the other the crank
shaft; draw a straight line parallel to one of the diam. eters, and distant from it the amount of the lap and lead
the points in which this parallel intersects the circle the poccentric are the positions of the forward and back Ing eccentrics. Through these points draw straight
lines from the center of the circle and mark the inter section of these lines with the circle of the crank shaft measure with a pair of compasses the chord of the arc
intercepted between either of these points, and the dlam eter which is at right ameters being first marked on the shaft itself, then by transferring with the compasses the distances found in the diagram and marking the point, the eccentric may
at any time be adjusted without diliculty." Can you panying diagram, let FG and EC be the two straight Incs a right angles to
each other, the circle described with A B as a radius be the end
view of the shaft, the circle described with
A C as a radius be the circle described by the center of the eccen-
trics, and H the line trics, and H I the line
parallel to E C, and
distant amount of the lap and
lead. Then if F G represents the direction be the positions of the centers of the eccen
trics, according to the
 pipe, you can use it without any objectionable smell.
There is, however, a great difference in gas stoves. In some, the cembustion is more perfect than in others.
The onls secret is to have cxygen enough to mingle with the carbon to produce perfect combustion, free
R. A. M. says, in reply to C. M. N., who your coins upon a piece of hot tron; the dates will be so
visible as to be plainlyread. The iron must be red hot
H. says, in answer to S. W. G., who asked omical for your purpose. In order to elevast eco 115 feet, you must have a fail of 12 feet from the spring prings, to 3 feet depth, andgroup together as many outets of the springs as possible. Box the sides of the excavation with 2 inch plank and cover the same. Make
a hole sixizches square at the lower end of the box, in the trench or excavation. Cover this hole with a coarse wire gauze, conduct the water from this through a
woodea box 4 inches square into a square box in which wooden box 4 inches square into a square box in which
he ram should set, at the foot of the hill. Close the the ram should set, at the foot of the hill. Close the
end of the wood supply pipe, and in this insert a piece am. The supply or wood pipe feet long. This will take a No. 5 ram, which will re-
celve from 6 to 14 gallons water per minute. The iron celve from
discharge pipe that runs up the hill to the reservoir
should not be less than should not be less than 1 inch. The end of this 1 inch
pipe at the top of the hill should be inserted in a close, heary, iron bound 10 gallon cask, at the lowest point.
At the opposite point of the cask, insert another piece fipe 1 inch in diameter, and continue to the fountain reservoir. The cask is to equalize pressure. The Into the reservoir. For every foot descent in the sup.
ply or drive pipe, you have a raising power of 10 feet in the discharge pipe. The object in having the discharge pipe large is to avoid friction ; for when the pipes are
maller, there is more friction, the ram labors heavily and is more liable to get out of order. The box in which the ram sets should be made double, with a space of 10
Inches, filled with sawdust, to prevent freezing. The scharge pipe and cask should be buried in
eelo freezing point. A void sharp angles.
T. L. M. says, in reply to several enquiries raphic processsp oken of by our correspondent J.N.Q. the sun. The image may be reddened by a dilute so ation of nitrate of silver. Blue leaf prints are obtained
floating paper on a strong solution of ferricyanide of foating paper on a strong solution of ferricyanide potash. They are fixed by simple washing. By Ober-
netter's process, using salts of copper, pictures may be btained in different tints of deep red and violet, with uired, and the process, though not difficult, is rather tedious. Leaf prints of the greatest beauty and delicacy may easily bemade by amateurs by the ordinary processss of photography on paper, scarcely any utensils being oedution of sixty grains of mitrate of silver and sixty rains nitrate of a omonia to the ounce of water. Float peces of albumen paper, obtainable at any photographic supply store, on this solution for half a minute or a
minute ; pin up to dry in the dark. When dry, lay the paper on a thin board, the leaf on the albumen surface pring clothes pins, and expose to the sun till the dark ened albumen paper begins to show a metallic marbling chloride of gold. For a wash, 1 chloride ofgol. For a ted cent sheet of albume mald
gold is needful. Dissolve in a pint of warm water, add
ateaspoonful of sali and a little chalk to remove the acidity; leave the washed leaf prints in this till they
have assumed a pleasing shade (ten or fifieen minutes have assumed a pleasing shade (ten or fif een minutes
will besufficient); thenimmerseten minutesina solution f hyposulphite of soda, t wo ounces in ten of water,
emove and wash thoroughly; if possible, leave over sight in running water. These prints are very pretty. In experimenting with them, I obtained beautiful re ot show on the black ground but the leares thine out like exquisite paintings on ebony. The entire expense
for chemicals (excepting the aniline colors) is 82.50 , for his process ; this will be enough for twenty square fe

COMMUNICATIONS RECEIVED

The Editor of the Scientific American acknowledges, with much pleasure, the re ceipt of original papers and contributions upon the following subjects:
On Electricity vs. Yellow Fever. By 0. On a New Theory of the Universe. By D. L. S.

On Cement Water Pipes. By M.S On Richmond, Va. By H. E. C
On Compressed Air Cars. By J. P
On Propylamin. By C. D. D
Also enquiries from the following J. T. T.-J.M.S. Jr.-H. Z. T.-M.F.-C. W.-J. P.
-F.D. B.-F.C. D. - J.M. - P. L.-S. N.-A. L.B. Correspondents who write toask the address of certain manufacturers, or where specified articles are to be had,
also those having goods for sale, or who want to find oartners, should send with their communications ar amoun tsufficient to cover the cost of publication ander the head of "Business and Personal " which is specially

,

Index of Inventions

OR WHich

Letters Patent of the United States
were granted for the week ending
October 28, 1873,
and each bearing that datz.
[Those marked (r) are relssued patents.] Accordion, etc., Goetz \& Müller. Ants, destroying, Dulany \&
Auger, earth, E. H. Clark.. Axle box for veh:cles, C. H. Axle box for ven.ces, Cun.........
Basket, grina G. P. Coan
Bath, hand shower, D. Sterilng...

APPLICATIONS FOR EXTENSIONS. tor theextension of the following Letters Patent. Hear the days beretnafter mentioned
27,020.-Engine Exhatst Pipe.-G. Edwards. Jan. 14
27,0i3.-Calendar Clock.-E.M. Mixet al. Jan. 14. 27,034.-Harvister.-J. Butler. Jan. 2

EXTENSIONS GRANTED.
25,986.-Cot-OFF VALVE.-E. R. Arnold.
$25,978 .-$ Tachie Bleok.-1. E. Palmer.
25,9.78.-TACELE BLOOK.- 1 . E. Palm
25,94.-BIT Brace. - N. Spofford.
26,003.-TRLEGRAPHIO MACHIAE.-G. M. Phelps.

6.9.-SPOON HANDLE.-B.D.Beiderhase,New York cit
6,968.-FLY TRAP.-D. Thompon. Clark, Pa.
6,960.-SPOON, ETO.-G. Wilkingon, Providence, R. I.

TRADE MARKS REGISTERED.
1,511.-Shingles.-L. M. M. Blakely. New York
1,5i2.-Flour.-Haxall \& Co., Richmond, Va.
1,5: 3.-Flour.-Haxall \& Co., Richmond, Va.
1,514.- Fish.- Ocean Trout Co., Port Monmouth, N. J.
1,514.-FISE.-Ocean
1,515-GLAsS SHADES, ETC.-S.J. Pardessus \& C 0
BCHEDVLE OF PATENT FEES:

On each Cavest..... On each Trade-Mark

On fling each application fors Patent (17............................. On lssuingeach original Patent..
on application for Resioner of Patents,
On application for Extensio
On filing a Disclaimer.
On an application for Design ($3 / 2$ years)
On an application for Dealgn (14 reara)

2atorticements.

ent, fre or postage, to any one who wIRD,
His address
HENRY CAREY BAIRD, 406 INDUSTRTAL PUBLISBER
 months, On Trial. Price \&2 a year. Agents wanted.
Address S. R. WELLS, Publisher, 389 Broadway, N. Y.
Chithiss NKSTAND BEST WORLD,

G Lamps M Moubl for Fruit Jars. Patent

$\overline{\mathbf{P}} \mathrm{AGE} \mathrm{E}$ Water FlameCoaltime Kiln, witb
 The VARIETY MOULDING MACHINE CATTION.

A SPECTMEY COPY of the AMERICAX

WORKING CLASS $\begin{gathered}\text { Male or Female, } 8: \\ \text { week, }, \text { employment } \\ \text { a }\end{gathered}$
\qquad

Niagara Steam Pump. CHAS. B. HARDICK,

A. S.GEAR

Wood and Iron Working

eam Engines \& Mechanical supplies,

S INGLEAND BARREL MACHINERY.-

1832 SCHENCE'S PATENT: 1871.

$\$ 425$ Mo Movil iorse and carriage furnigho

G D. ILLING WORTH, Neville St. Foun-

W OOD-WORLIIN MACHINERY GEN
$\overline{\text { PAGE'S Water FlameCoal Lime Kiln, witb }}$ With coal or of wated. No. No. 1 Soft Whate Lime or Cement,
The VARIETY MOULDING MACHINE CATTION.

 Planing and Matching

HARD W00DS

IN LOGS Plank, boards \& veneers.

 An dauldio Eymater.

Diefe große und täatige đlafie unfrer $\mathfrak{B e}$, boblferung madien twir befonbers barauf
 Ginbung mit KBafgington und ben europaiidden §auptifibten, befonbere $\mathfrak{B o r t h}$ gile sur ©erlar gung bon in und ausfändildden \mathfrak{F} (atenten bietet.
Seder ©rfinder, gleifybier welder शationali-
 fetese ber ßereinigten Ctaaten zum ßatentifiduts firt Erfindungen beredtigt. Intive firma it bereit, geftitizt auf 26 jährige Erfafrung, beut ${ }^{(d)}$)
 $\mathfrak{B r c i j e n t a (d)}$ und piintttidu) ßatentc $\mathfrak{z u}$ erlangen.
Die Dentide Csction ift in ben ほanuben fäbiger bcutdder Sngenieure, weedfe in ber Dffice perfönlid mit Exfinbern bertefren berber.
Dor ,,Scientifc American" wird in feinen ©palten bie bebeutenderen Erfindungen be iprederer.
Sorrefpandenz erbeten und prompt beant twortet. Wamphite in deatider ©prade wes. Den auf ßerlangen franco zugciandt
arbeefire:
2dum \& Co.
Scientific American" Patent Agentur 37 Bate Row, $\begin{gathered}\text { New York Cits }\end{gathered}$

