Husiness and zersomal.

Protect your Buildings with Patent Liquid late Roof Paint. Fire Proof and Elastce and very Cheap. Send for CIrenlar of Prices and Certid cates. Nsw York.
City Oil Coo., 116 Maiden Lane, New York, Sole Agents. Wanted-Second handed photographic out-
fit in exchange for bullding lot. Address Box 227 , Elizabeth, N. J.
The cheapest and incomparably best Steam
Pipe Covering Am. Nonconductor Co.,Providence, R.I. Bac n's Hoisting Engines for Mines, Con.
tractorr, Blast Furnaces, exc., idapted to every possible daty. Earle C. Bacon, Gen. Ag't, 36 Cortland St., N. Y. Wanted-A purchaser for the best Self-
Raking Attachment for Reaper in the country. G. W. Bigelow, springileld, Ohio
Enginering and Scientific Books. Cata-
logues mailed free. E.\& F.N.Spon, 446 Broome St.,N.Y Wanted-To manufacture, under contract,
neavy Machinery, Steam Engines, Ore Crushers, \&ce., ©ce. Address Herrman \& Herchelrode M ' f 'g Co., Dayton, Ohio Stationary and Portable Steam Engines and
Boolers. Send for Circular. Clute Brothers © Co., scheFor Bolt Forging Machines, and Hiflciing Smes to pseet be hand. J. R. Abbe, Manchester. N.I.
Small Tools and Gear Wheels for Models.
List tree. Good no w W Wightman, 23 cornhill, Boston,Ms. Wanted-Set of Patmerns for a Model Looc.
motive Engine ; also, set fora stationary Engine. Small Motive Engine; aliso, set fora Stationary Engine. SMal Bross ear Whee s, for models, \&o , , made to
order, by D. Glibert \& son, 212 chester St., Phila., Pa. Notice of Removal-The American Photo
Reiler Printing Co. (Woodbury Process have removed to No. 624 North 244 St Street, Phlladelphia, to which No . Superior to all others-Limet \& Co.'s French
Files. They are cheaper than English fles. 7 hey are hieavier, better fnlished, and better tempered. Send for गrice list. Homer
Street, New York.
Metal Patterns, Models, and Dies for cutting metal or .ny kind, made to irder. Hendey Brothers, Millstone Dressing Diamond Machines-
Simple, entective, eeoonomitcal and durabbe, giving uni Simple, efective, eeonomitcal and durable, giving uni
versaal satitiffaction. J. Dickinson, 64 Nassau St., N.Y.
 Pew faven, Conn.
Telegraph \& Electrical Inst's-Cheap inst's
for learners Models and light Mach'y. G. W. Stockly, for learners - - 1 odelels
Sec., Clevereand,
anto.

Nobody will buy the metal Truss with its
 English Roof Paint, ail mixed in oil read
for use, 50 . a gallon, 116 Maiden Lane, New York. Patent Petroleum Linsead Oil works in all
pain's as Boiled Linseed oil. Price orly socts. a gallon, patn ts as Boiled Linseed Oill
116 Malden Lane, New York.
Buy ©ear's
Boston, Mass. Batent Chemical Metallic Paint-All shades
ground in oil, and all mixed ready for use. Put up in
 per gal. Send for card of colors. New York City
Company, Sole Agents, 116 Maiden Lane, New York. Belting- Best Philadelphia Oak Tanned.
o. W. Aryy, 301 and $¥ 3$ Cherry Street, Yhiladelpha, Pa. Mercurial Steam Blast \& Hydraulic Gauges,
of all pressures, very accurate. T.Shaw, 913 Ridge av., Phll For patent Electric Watch.clocks, addreess
Jerome Bedidng $\&$ Co. 30 Hanover Street, Boston, Mass. $\underset{\text { Irrigating Miachinecry, tor sale or rent. see advertisement, }}{\text { Ming }}$ Andrew's Patent, Instide page.
Buy Steam Engines and Boilers of Gear
Boston, Mass Lathes, Planers. Drills, Milling and Inde
Machnes. Geo. S. LIncoln \& Co., Hartora, Conn. For Solid Emery Wheels and Machinery
send to the Union Stone Co., Boston, Mass.,for circular, All Fruit-can Tools,Ferracute,Bridgeton,N.J
 Fivedififerent sizes of Gatling Guns are on
manufactured at Colt's Armory, Hartord, Conn. The arger sises s ave a range of over two milles. These arms
are tindispensbile in modern warfare. Tool Chests, with best tools only, Send for
circular. J. T. Prat \& Co., 53 Fulton St., New York. Hydraulic Presses and Jacks, new and sec-
ond hand. E. Lyon, 470 Grand street. New York. For Solid Wrought-irou Beame, etc., see ad.
vertisement. Address Sui:on Iron Mills, Pittsuurgh, Pa., orithograph, etc.
Damper Regulators and Gage Cocks-For
the best, address Murrill Keizer. Balitimore, Ma. Steam Fire Engines,R.J.Gould,Newark, N.J Peck's Patent Drop Press. For circulars,
daress $M 110$, Peck $\&$ Co., New Haven, Cona.
 1,000 in use. Address hoot
and 28th Street, New York.
At American Institute and Chicago Exposi-
Hon-Boutrs Univaled Panelling, Variety Molding and Dovetalliug Machine. Manufactured by Battle Creek Machinery Company, Batule Creek, Mich.
Dra wings, Models, Machines
 2 to 8 H.P.Engines,Twiss Bros.N.Haven,Ct. Wil eorkman's Hand Book-Ind Mantacturng pursuits.

 J. W. C. asks: If a cone is 2 feet in diam-

 eter at the base, and 30 feet h igh, and a 1 line 18 fastenedat the top and then wound aronad the cone at every $t w o$ feet perpendicular hight, untll it reaches the bottom,
What is the length of the line?
 the dip or sag of a chasin or cord connecting therr tops,
the cord belng 100 feet long? What 18 the nature of the

R. R. asks: How can I restore the color of
teather and cloth backs of books 3 They have suffered rom the sun and from dust.
W. C. A. asks: How is the silvering pre-
pared and applied in making glass reflectors? O, says: Astronomers tell us that the plan-
et Neptune is 40,000 or 50,000 miles in diameter, and can not be seen with the nated eeve. Would it be reasona-
ble to supposet hatallthe stars that we do see (outside the orbit of Neptune) are over that magnitude?
T. F. . de S. says: : A friend says that if one
anes a ann and shoots straght up (no wind blowing), takeg a gun, and shoots stralght up (no wind blowng),
that the ball will not come down at the point whence it was discharged from the gun, but that the motion of the
earth willmove the gun from the ball. He says that one Would have to hold the gun at an ang ge to correspond t the spot whence tit started. Is this so

H6 why

P. S. A. asks : How do lapidaries cut, grind andpolish amethyst and other quartz and hard, soneses?
Answer: The rough tonenar ar frit cut to alian sur-
face by means of sitts ace by means of a slitting mill. This consists of a thin
drcular plece of tron like a circular saw without teet Cowever, the periphery of which 18 covered with dia-
hond mond dust. It is made to revolve rapldy, and the stone
applied to tis efge. The stone tis then taken to the ppilied to its edge. The stone is then taken to the
roughng mill where the surface is prepared for polishIng. The roughtng mill consists of a revolving poaden
disk coveres with emery. This glves a mooth eurface o the stone, which is las lly polished at the polishing
mill. The pollshing millis a revolving leaden disk kept th rottenstone and water
E. R. G. asks: Can you give me directions end of a rake or rafter molding? Answer: As we un-
derstand your questlon, you wish to fnd thc bevels, AC and BD of the ends of a rafter, A BCD D, setat anypitch.
Draw a triangle, A B E E, makling A Brepresent the inclination of a rafter. Construct a miter box in the usual
manner. Draw asquareline, K L, acrosstne top of the b 1 x . On the side, BE, of the triangle, lay offadistance,
BF , equal to K L , the extreme width of the box. Draw BF , equal to KL L , the extreme width of the box. Draw
GF , perpendicular to BE , and note the point G , in which it cuts the side, A B, of the triangle. From the point. I,

n the miter box, lay off on the outer edge a distance, LM ,
equal to GF . From the point, K , on the othe. oute edge, draw a line connecting K and M. Thisgivesinebevel
for $A C$, the ower end of the rafter. To find the bevel or, B D, draw anothersquare line, N O, across the mitter tance, AI, equal to KL or No, the width of the miterbor.
From Idraw I H perpendicular to A E; and from O, lay From Idraw I H perpendicular to A E; and from O, lay
off a distance, $O P$, equal to $I H$. Then $N P$ represents off a distance, OP, equal to IH. Then NP represents
the bevel at which the uppere end of the rafter is to be cut. These constructions are based on theprinciplethat
the angles of the miter box aie the complements of the angles BAE and A B E.
S. Y. O. asks: 1. Is it a fact that the ani-
mal body, espectally that of man, is heavier when asleep than when awake? In other words. is there a power to counteract gravitation in the living human
body? 2. Isitan established fact that tables are moved ody? 2. Isitan estabished fact that tables are moved
by the mereact of the will by so-called mediums? Anthink not. 2 No.
E. H. F. says: If I take a piece of plate
ooking glassand cut a fine line through the amalgam coating on the back, and then set this glass firmly onand perpendicular to the surface of a plane table, so that the
ine on the glass wll be truly perpendicular to the table and (turning the face of the glassnorthward, at the time of the transit of Alloth, and standing in front of the glass) adjust the table andglass so that the line on the glass
shall blisect boththe north star and Alioth, will a line shall bisect boththe north star and Alloth, will a line
drawn truly perpenaicular to the plane of the glass, aross the plane table, be a true meridian line, making allowance of 17 minutes after the transit to bisect the
north star by the line? Or, in other words, would the tar, the eye, and the line on the glass be all in the same vertical plane at such time? Could the star, as seen in
the glass, be bisected by the line on the glass without che glass, be bisected by the line on the glass withou
bringing the eye into a plane perpendicular to that of the glass? If not, thenby reversing the glass, with the
table thus fixed with reference to the north star, could tablethus fixed with reference to the north star, could a shadow of the sun be bisected by the line on the glass
as seen by the eye, at any other time than when the sun as seen by the eye, at any other time than when the
is on the meridian of thie plane? The reflection of the
eye, as well as the star, in the glass, must be bisected by eye, as well as the star, in the glass, must be bisected by
the line on the glaes,at the time of the transit. Answer: To ensure, with the arrangement you propose, the line
drawn on the plane table being in the same vertical plane with the line of sight, it would be necessary to
plane plave two pieces of glass, and sight through both to the
north star. We think there are betterplans than this in
no F.T.T. says: The feed pipe of a heater
fromtank enters the top. The pipe leading to torce from tank enters incses from bottom of heater. The glass
pump 18 .
water gage or tube is attached so that center of pipe is evel with center of glass, that 18,6 inches above and 6 inches below the center of pipe. Pipe is 14, inches dimeter. On starting engine after a few hours' stoppage,
the water always leaves the glass tube, the lower end of which is 4 inches below the lower edge of feed pipe. In which is 4 nches below the lower edge of feed pipe. In
the course of 5 minutes all comes rightagan. Can you
explann the reason? Answer: It may occur from the formation of a
E. C. H.'s calculations as to the rotundity of the eart h per mile are eorrect $:$ but hemisunderstandis
the orar rotundty y th this connecticn. The question is: If astraight line tangental to the curve leaves the earth's surface at a particular polnt, how far will the
earth's surface be from a polnt in the line one mile dis tant from the starting place? Answer: Elght tnches.
 or booksellers' add resses
P. asks: How can I preserve leaves? Anwith a heavy welght, untilall the jutces are driedup. G. W. F. asks : 1 . Is spherical gearing illus-
rated the science Record for 1333 ?
2. Why 18 drate that connecets to a s steam gage bent into an Sform naswers: 1. Yes. 2. so as to retain water in the pipe,
H. F. B. asks: What is the value of the EkVIngs of sole leather as a fertilizer? The fiesh part of the skin 1s steamed untillit becomes a pulp, and then
is dried and ground. Is the liquor valuable also? Can bonss be made oft so that they will crum ble easilly by steam pressure? If so, are they worth less or more,
when ground, as a fertllizer? Answers 1 . We must ask some of our farmer readers to answer this question.
Ground bones are generally considered the best.
J. E. H. sends the following solution of
C. H. A.s guestion, on page 187, of our current volume: H. A.s question, on page 187, of our current volume
Let $h^{\prime} \alpha^{\prime}=\mu$ represent Let $h^{\prime} a,=y$, represent
any distance of the ball from the axis $b c$. Then, from the laws of central
forces, we shall have-
$h^{\prime} a^{\prime}(=y)$ ts proportion $\begin{array}{ll}h_{1} & \begin{array}{l}h^{\prime} a^{\prime}(=y) \text { is proportion } \\ \text { al to the centrifugal force } \\ \text { at } a^{\prime} \text {. Let the curve } a^{\prime} c\end{array}\end{array}$ at α. Let the curve $\alpha^{\prime} c$
represent the resultant of the centrifugal and gravitating forces at all dis
tances from the axis be tween zero and $h^{\prime} a^{\prime}$, and let $c h^{\prime}$ be represented by
x, and draw $k l$ indefi nitely near and paralle
to $h^{\prime} a^{\prime}$; and draw l perpendicular to $h^{\prime} \quad a^{\prime}$
Then will $l i$ represen $d x$ and $a^{\prime} i^{\prime}$ will represent $d y$. Now because x may var x and y represent the components of the two forces at any point, $. \cdot d x: d y:: 1: y . \quad . d x=\frac{d y}{y}, \ldots(1)$. In
tegrating (1) we get: $x=$ log. $y . .$. tegrating (1) we get: $x=\log . y \ldots$ (2). As (2) is a we
known equation and represents the Napierian system of log arithms, and as the tangents to the required curve must be perpendicular to this curve, therefore the required curve is
the evolute to the Napierian logarithmic curve. The equathe evolute to the Napierian logarithmic curve. The equa-
tion to this curve I have not investigated; its tangent, however, which is perpendicular to and limited by the result ant curve, is $i^{!+y^{2}} y^{-\frac{3}{2}}$. The question, as I understand it, may be definitely stated as follows: Suppose a ball to re volve in a horizontal plane, at variable distances, about a suppose the resultant of the force of gravity and the centrifugal force due the several distances from the axis to form a continuous curve from its greatest distance at d^{\prime} to the
axis at c : Can another curve be drawn whose tangents axis at c : Can another curve be drawn whose tangent
shall be perpendicular to the resultant curve and which shall also be continuous between the greatest and least distance of the ball from the axis? The answer to this latter ques
tion must be a negative; for, as I have shown in the solu tion must be a negative; for, as I have shown in the solu-
tion, the resultant curve will be the Napierian logarithmi

to the evolute, and find it tobe: $u=\log .\left(\frac{1}{(} v \pm \frac{1}{4} \quad \sqrt{v^{2}}-\overline{8}\right)-\frac{2}{8} v^{2} \pm \frac{1}{8} v V v^{2}-8-\frac{1}{2}$.
The evolute may be constructed from this equation, and The evolute may be constructed from this equation, and
consists of the twobranches of P and $P p$ as above. A nswer:
In It is required to draw a curve, whose tangent shall be per-
pendicular to the resultant of the centrifugal force and force pendialar to the resultant of the centrifugal force and force
of any direction with this resultant. Suppose the problem to be solved, and that OCE is the required curve, its normal

B C , at any point, C, having the same direction as the resultant, C R, of the centrifugal force, C F, and the force of
grarity, C G . Let $w=$ weight of ball $m=$ mass of ball $g=$ acceleration due to $\mathrm{gravity}, v=$ angular velocity, $r=$ radius
 $\mathbf{W}=m \times g$; tangent of angle $\mathrm{FCR}=\frac{\mathrm{CG}}{\mathrm{CF}}=\frac{m \times g}{4 m \times r^{2} \times r}$ $=\frac{g}{4 \pi^{2} \times r}$ Theequation of the line $\mathbf{B} \mathbf{D}$ is $y=-\frac{g x}{4 \pi^{2} \times r}$

+ . To find $\mathbf{O} \mathbf{~ B , ~ m a k e ~} x=0, \mathrm{~B}=b$. make $x=r, \mathrm{~A} O=-\frac{\theta}{4 \bar{\pi}^{\overline{4}}}+b$. Hence subnormalof curve $=\mathrm{OB}-\mathrm{AO}=\underset{4 \pi^{2}}{g}=\mathrm{a}$ constant, and the curve is a para
B. F. asks: Why is it ithat street cars are
not run by compressed alr?
Could there not be enough
 and a hollow or double floor) tarun a smallengine which
would propel the car from station to st tion? To inwould propel the car from sta tion to station? To in
crease the efflency, thecompressedalrmight be heated In the cyllinder of the the engme writh a a mutable lamp. 2 .
Could not Could not gas be generated out of water by electricity
with a suffecient force of expansion to run a
 Wouldit not be better to lay a floor of buards. as in the
Nicholson, then a thin layer of sand, and perhaps coal Nlcholson, then a thin layer of sand, and perhaps coal
tar or cement, and on that basis (while the cement and tar or cement, and on that basis (while the cement and
sand ortaris setsoft) put common paving stone? An.

 economically. 3. The Nitholson pavement, as agenerally
laid, does not have a good foundation. Were this at. tended to, and proper care used in the selection of the
W. T. H. asks: How can I put quicksilver of tin foll, the size of the glass, upon a perfectly smooth solld marble top table, and carefully rub down all the wrinkles in the metal with a brush, taking care not to break the foll. Then pour over it a small portion of
mercury, and rub it over the th foll gently with a clean piece of very soft woolen stuff Then pour ou as much mercury as it will holld, placing a strip of cloth around the edges to prevent waste, and slide a perfectly clean and dry sheet of glass over the surface of the Hquud metal, beginnnggat one end and ending at the other.
Some experience is necessary in sliding the glass, to make a perfect mirror. Afierwards the glasi 18 placed weighs, to remove superfluous mercury.
O. M. says, in reply to the question of of a hemisphere whose base 18 horizontal, will ileave the
side: I think it will oot leave it a a all for after 1 starts, ae: I think it will oot leave eit at allif for after it starto,
there will beas as it were, two forces acting on it, the oritinal moving force a ceelerated by the force of gravity, acting in a line tangential to the sphere, and the
force of gravity acting in a line pereendicular to the force of gravity acting in a line perpendicular to the base. The tendency would then be to move in the diag.
onal of these two forces, which lies withln the base of the hemisphere; hence it would never leave the side. Answer: When the body is at itt startting pornt, the propelling force ts applied tangentlally, or in a h horizontal
drection. Hence the resultant motion will be that due direction. Hence the resultant motion will be that due
to motion in a horizontal direction and vertically downto motion in a horizontal direction and vertically down-
ward ; and this resultant may fall without the base of
F. H. M. asks: Is there any metal, or com posit on of metals, or any other known substance, that
will resk the attractive power of a magnet if placed
vet ween between it and its armature? Answer: We thrik not.
C. W.C. asks: How can I plate polished sue. Probably it will be cheaper and mure satisf acto-
ume ry for you to send the artlices to an esta.
they make a spectalty of such business.
 would make sufficient heat to boil water? 2. Is there
any known comb nation of chemicals which will bave he desired effect? 3 Is there any known chemital make considerable vapor? Answers: 1, 2. Yes. Lime and watar. 3. Yes. Gunpowder.
E. W. asks: How can I make Russianshee Russia exclusively, if indeedanythat we usecomes from Rusia exclusively, if indeedanythat we usecomesfrom
that country. Very pure fron is used in the manufacby heating the sheets, molstening them with a solution of wood ashes, and passing them through polished steel rollers.
C. V. D. says: A vessel, 6 feet in diameter
at the bottomand 5% feet at the top, is 6 feet deep. How at the bottomand 5% feet at the top, is 6 feet deep. How
can I estimate the amount of outward pressure upon the least amount of sel being filled with water, and where should the hoops be placed? Answer: If the vessel is filled with water of water whose base is equal to the base of the vessel, of water whose base is equal to the base of the vessel,
and whose hight is equal to the hight of the vessel. The of a prism of water whose base is equal to the area of surface pressed, and whose hight is equal to the dissurfaceof the water. K nowlig the tensile strength of
the hoops to be used, their size can readlly be proportioned.
L. S. asks: How can I get rust, caused by
salt water, off fine steel instruments?
I cannot use emery, a tlie, or any thing of the sort. Answer: If there ent, you probably cannot remove the rust. We have an dea however, that you cars succeed in arranging a cloth brush so that you can polish every part; and in this case, you can clean the instruments with oll and fine
D. L. S. asks: How can I remove deep work for an expert, and we hardly advise you to attempt it. The seratches, when verydeep, are sometimes
tilled with a cement which is colored to match the woon, ad then the whole 18 re-varnished. In ordinary cases, ery file sand paper is used. The wood then requires A. T. asks: What book gives, in the most
condensed form, the relative strength of metals asd woods? I also want books on the workiggs of the dif ferent trades, as text books for a class in mechanics.
Answer: We advise you to correspond with Professor Answer: We advise you to correspond with Professor
R. H. Thurston, Professor of Mechanical Engineering in R. H. Thurston, Professor of Mechanical Engineering in
the Stevens Inst.tute of Technology, Hoboken, N. J. We Stevens Inst.tute of Technology, Hoboken, N. J information, while his experience and ability will make
P. P. H. asks: 1. What power is required be conventently compressed in a suitable recelverby the
air pump? Answers: 1. From 550 to 1,003 foot pounds air pump? Answers: 1. From 550 to 1,003 foot pounds
per minute, varying with different machines. 2. The inentor of the Giffard injector states that he has com
pressed air, by the use of a piston of his own design, to more than 1,000 atmosp beres, or thll it at ained a pressure of about 15,000 peunds per square inch.
W. L. C. says: We have occasion to use a
large number of hard rubber balls for testing casting by water pressure, and we find that the balls get doy and hard, consequently soon crack and break. How can
they be kept soft and pliable? Answer : Probably you
cannot restore their former quallities. Your best plan cannot restore their former quallties. Your best plan

