\%usimess aud texsonad.

Protect your Billings with Patent Liquid
Slate Rooot Palnt. Frre Proof and Elastic and very

City Oin Co., 116 Maiden Lane, New York, sole Agents. $\underset{\text { Viseo to }}{\text { Fopset by hand. }}$ H. Manufacturers of Flour Machinery, send Hanted-A Supply of Superior White
 Sharps Rifles, $\$ 8$; Box 1268, Boston, Mass. Wanted-I will give 82,000 a year Salary In each state for selling the "Domestic steam Clothes
Washer." Sample Washer at wholesale, price $\$ 5.00$. . C. P ,
Patent on a new double rotary and recinro-
cating cuurning Machine, slimple and cheap. For Sale. Adaress J. L. Britt \& son, Raletgh, N. C. . dth price to the eupecrber, John Case, Frenchtown,N.J. Inventors, or Parties having small Patent
Noveltes they wish to put on the market, will fnd it to their advantage
Co., Buffalo, N. Y .
Small Tools and Gear Wheels for Models.
List free. Goodnow Wlghtman,23 Cornhnll,Boston,Ms. Wanted-Set of Patterss for a Model Loco-
motive Engine; also, set fora stationary Engine. small size. Goodnow \& Mghtman, z3 Cornhili, Boston, Mass.
 Steam Boiler and Pipe Covering- Economy,
sefety, and Durapilty. Saves from ten to twenty per
sent
 "A Combined Hand and Power Planer," for Machnints. Sen for a circular, to Jos.A. Sawyer \& Son,
Worcester, Mass.
Notice of Removal--The American Photo Notice of Removal--The American Photo
Relilef Printing Co. Wooobury Process) have removed
to No. 64 North 2th street, Phladelphla, to which No.
plese please address all orders, «ce. I. Carbutt, Manager.
Superior to all others-Limet \& Co.'s French
 गrine. list. Homer
Street, New York.
The New Elastic Truss presses uniformly
all around the body, and holds the lupture easy, night nd day, titl cured. sold cheap by the Elastic Truss co. For Sale New York.
For Sale- Second hand Planer, nearly new.
Planes $4 \mathrm{tt.x} \mathrm{ft.x19}$ Inches. Enquire at D. Frisbie \& Co.
Telegraph \& Electrical Inst's-Cheap inst's
for learners Models and light macs'y. G. W. Stockly
Sec., Oleveland, ohlo.
Brown's Coalyard Quarry \& Contractors' Ap-
paratus for hosting and conveyningmaterial by tron ca bie. W.D. Andrews \& Bro. 414 Wuterst.N. Y

English Roof Paint, all mixed in oil ready Patent Petroleum Linseed Oil works in all
pains as Bolled Lunseed oil. Price only 50cts.a gallon, Buy Gear', Improve
ing Machine, Boston, Mass.
Patent Chemical Metallic Paint-All shades
ground in oll, and all mixed ready for use. Put up in
.

 For patent Electric Watch-clocks, address
Jerome Redding \& Co. 30 Hanover Street,Boston, Mass. $\underset{\text { Irriuaing, Wrecking, Pumping, Drainage, or }}{\text { Minther }}$

For Solid Emery Wheels and Machinery,
send to the Union Stone Co., Boston, Mass,,for circular, Buy Iron Working Machinery of Gear
Boston, Mass. All Fruit-can Tools,Ferracute,Bridgeton, N.J. For best Presses, Dies and Fruit Can Tools
Bliss \& Willams, cor of Plymouth \& Jay, Brooklyn,N. X . Five different sizes of Gatling Guns are now
manufactured at coiv's Armor, Hartiond Conn. The arger sizes have a range of over two n
are indispensable in modern warfare.
Diamondes and Carbon turned and shaped
for Scientifc purposes; ; also, Glaziers' Diaimonds manu factured and reset by J. Dickinson, 64 Nassau St., N. Y Mechanical Engineer and Drafterman. - An tlon, wanted, as outside man. to sollelt orders and make
himself generally useful. Address, with references and , , New York Post Ofice, Box 2913
Hydraulic Presses and Jacks, new and sec-
ond hand.
E. Lyon, 470 Grand Street, New York. For Solid Wroughtiiron Beams, ect., see ad.
vertisement. Address Usion Iron Mills, Pittsburgh, Pa., Just Published_" Workshop Receipts", for
Manufacturers, Mechantics, and Scientific Amateurs. \$2, mall free. E.\& F. N. Spon, 446 Broome Street, N. Y.
Damper Regulators and Gage Cocks-For the best. address 9 hrryll \& $\&$ Eeizer. Batimore. Md.
Steam Fire Engines,R.J.Gould, Newark, N.J. Peck's Patent Drop Press. For circulars,
address
At American Institute and Chicano Exposi-
tion-Boult's © nrivaled Panelling, Variet Molding and non-Boult's Unrivaled Panelling, Variety Molding and
Dovetalling Machine. Manufactured by Battie Creek Dovetalling Machine. Manuracured
Machninery Company, Battile Creek, Mich.
Workman's Hand Book-Indispensable to
ail eagaged in Manufacturlng pursuits. For Cabtnet Makers, Upholsterers, Undertakers, Plcture Frame

Mad

R. W. S. asks: How are toy balloons made P. W. asks: What two metals cause fric W. J. asks: Where can the photometricat fullength?
C. S. says: In building the dome for a new may revolve more easily. Over a light ash frame, 1 sue thin pine boarde, and, on the boards, can vas. The
lome will be very rigld. I I want some reasonably chea
 comeoff. Thedome 1s to be of 22 feetdiameter and feet high.

Yaver thmix

P. W. should read Noad's " Student's Man-
ual of Electricty." see our advertisting columns for ual of Electrictity." See our advertising colimns for
books on mechanism. A. D. W. Wwil find a recipe for paste on p. 170, vol. 24. - B. J. will find directions for re.
pairingrubber garments or boots on p. 155 , vol. $66 .-1$ C. s. will fnd a recipe for glue impervious to motsture
n p . 202 , vol $28 .-\mathrm{O}$. A. D . can mold india rubber by the

 ol 29, for instruction as to a substance that will igntio In contact with the water.--S. Will ind an arecipe for jet
plack drawing tink on p. 10, vol. 25.- W. B. willin id direc. Hons for makling plastic (not 1mitation) rubber on p.
B3, vol. 29.-J. . . should try the recipe for cement for neerschaum on p. 202, vol.27, on hisbroken 1vory. Read
sall's "Manual of Geology."-C. H. s. should consult an
C. A. T. asks: Which do you consider the
notest eficient wheel to be used for a fatat bottomed boat

 not use a screw to any advantage with such light draft.
 made with feathering foats, it might be quite small.
F. H. J. Says: I am about to construct an
gine with 4 inches stroke x 2 tnches bore. Would steam pipe of $\%$ Inch internal dameter and exhaust
ipe $\%$ inch internal dameter be large enough? Woulda boiler r 20 nches long $x 12$ inches diameter $x 3 / 8$ ngine 150 revolutions a minute? How many pound steam would a boiler of the above descriptlon stand, and how many pounds would it take to run the engine
150 revolutions a minute? Answers: 1 . The following
 o many of our readers:

Deed of piston. in feet perminute. $\begin{gathered}\text { Area of steam } \\ \text { pipe. }\end{gathered}$

Area of
exhaust plpe.

The engine of our correspondent is to have a piston peed of150 $\times 4 \times \underset{\text { he }}{+12=100 \text { feet per minute, so that }}$
he areas glven in first line of the table will be more
 over five sixteenths of an inch in diameter, and an ex.
paust pipe nearly seven sixteenths. 2 . This question caust pipe nearly seven iixteenths. 2. This question
canot te answered defintely, as our correspondent
does not state how much power he wishe sto oes not state how much power he wishes to produce
If the engline 18 well constructed, $1 t$ should give 150 rev. olutions per minute, running illith, with a very low
pressure of steam. Probably it would be well to proortion the boller with about 20 square feet of heatin
W. Y. C. asks: 1. Are the yearly differensame for New York city? ${ }^{\text {2. Are the differences from }}$ year to year always the same for any place? 3 . If year to year aiways the same for any place? ${ }^{3}$. If ference, and what 1 sit? 4. If the answers to 1 and 2 are affirmative, then are the yearly differences of any two
or all places alike? 5. What is the relation between the differenceso of places, if any? 6. Is there any rule for
finding the variation of the needle for any year, at any place? If not, what are the variations for January 1 ,
1873 to 1877 ? 7 . If the vearly y dfference varles wat the rate of variation? 8. What are the extremes of the
 tween them, and when will the next extreme be reached?
Does the line of no varlation extend around the earth If Do, oloes it all ill in in alpane? In this plane the plane
of a great circle, and does the Ine jolning the extreme northern and southern points of this great clrcle make an fixena angle ewith the axiso of the eerarth, , and if soo what
is that angle? If the angle is varlable, what is the rate of variation, and what is the angle at present? 10 . Where doest the line of no variation run on the esfrface
of the earthat present, and what is tit rate of progres.
 trate of copper, or do they fuse before they decompose Answers: 1. No. 2. No. 3. Extended observation
worlld seem to indicate that there is no such place The yearly yifferences of many places, sttuated on lines of equal variation, are nearly the same. 5. If you mean
by this the general la law, probably there 18
 le have been establisheded for varlous stations, based on an number of observatisions, bur varitious not otations, based on that they
are correct. In New York the annual variation seems
and to Increase or diminish at the rate of one minute in te years. 8. This is by no means accurately determined.
and 10 . There appear to be two agones, or llines of no

J. P. asks: 1. Can one or two spining jen-
netes or mules be proftabaly operated by gin gearing, so that any farmer who has the means may spin his own
cotton before it leaves the gln house? In other words Can one or two such machlnes be workere econonicallys 2. How many splndles are run by one frame, and what is
the cost per spindle, or what is the cost of all the appa. ratus necessary to convert the lint tnto thread? An wers: 1. Probably not as economically as they are used
n a large manufactory. 2 . You had better address a
P. F. D. asks: If a model bridge 10 feet
feet
 reased) bear 100 times its welght, supposing both to be qually well constructed? Ynu say that models are gen
 bridge of ten times the length and ten times the size In Its parts will support ten times that load. Model
of bridges are generally stronger in proportion thai Iarge structures because the materials are subjected to
Ress proportlonal straln. The load that a bridge can sus lass proportional sinal.
A. L. R. asks. 1. Are not inside cylinder
passenger locomotives more expensive than outside cyllider engines, or why is it that so many more out nside cyllinders? 2. What is the chief objectiton to in side cclildier engines? Answer: Outs idide cclilinder en.
gines are better adapted to sinuosities and Irregulari. Sines are better adapted to sinuostles and irregulari-
tes of the track, which is probably the reason why they ty used in this country
A. F. H. says: I have lately constructed an
electric or telegraphic clock, and find diflectult in ersing the current. I employ platinum cups flled with nercury and platinum points for immersion. The pla-
inumpolnts will oxdidze and, In course of time, , tor connection. Is there anything to prevent this? Hard friction I cannot well employ. Answer: We know of polnts by the contrinual succession of electrical sparks.
You might use a break in the form of a sllder, as in Sann's electric clock. This silder is worked by the pen
R. K. asks. Why does a locomotive engine
cut her guides in running backwards, and not in ruinng ahead, even in wet weather, go that it cannot be from
dust arsising from the ground? I It i not from lack of oll We have two eng ines that will do it nearly every time Answer: We ese no reason why this should occur in
general. We infer from Eneral. We nier from your remarks that such action
only takes place in two of your englines ; from which 1 would seem as if the trouble might arise from imperfect
J. W. asks: 1. When, where, and by whom
was lead ore first discovered?
2. Has volcantc action was lead ore frrst discovered? 2. Hes volcanic action
snything to do with the formation of true fissure velns? Answers: Lead is one of the metals most anclently nown, being mentioned in the books of Moses in the
Bible. 2 . Geologists do not agree in regard to fissure Which now constitute velns. Some attribute them to
unequal support in different parts of the same mounain, in consequence of which the unsupported par sinks, others ascribe them to drying and cracking of
he strata; while others, and pernapsmost at the present day, declare their orlign to be due to earthquakes and
subterraneous fre or volcantc action G. H. W. asks: Are the very small wax

tapers | tapers |
| :--- |
| cast in molds. |

G. W. H. asks: What acid will cover new
cast iron with a thick coat of rust, in from 10 to 12 hours so as to destroy its porosity? How strong should it be be
used ? 2 .
ont posisible to force water from a boller up and into radiating pipes, if the pipes do not containn a vacuum? Answers :1. Probably a solutlon of sal ammo.
nac will be the best thing to use. 2. We should suppose
ne not, under ordinary circumstances.
C. asks: Is there any thing that will give
 oftensive? Could anythlng be made to give them the
aavor of white wax? Answer: We would recommend packing your skins, fresh or immediately after plckiling, gar. Coating them with a thin fllm of wax might an
swer as regards the fiavor, but would probably be too
M. J. F. asks: How can I color wax ? I wan produce green. red and yeliow, and also the interme diate shades, such as are used In themanufacture of wax
flowers. The colors used must stand heat sufficlent to melt the wax, In Which IIp the molas to secure prope
hape for leaves, etc. Answe stri thto the melted wax the following plgments, in quantity unt11 properly
colored, thoroughly incorporating the ingredients. For green, schwelnfurt green, the aceto-arsenite of copper. For rea, vermilion. For yellow, chrome yellow. Use
more or less colloringmatter according to the shade re quired.
C. R. asks: How can I prepare the best and glass, sometimes called water glass, makes a good fre togive body. To make solluble छlass: fuse together 1 part sllica (fine white sand) and 2 pa
Use bollug water as a solvent.
A. B. says: I claim that the Monitor was frst one wasbullt tin Engiand. A Asprer: We the thank you are right, although $1 t$ ts claimed that beveral mo
this class of vessels had previously been made.
N. W. asks: 1. II there any way in which
water can be Intermixed with coal oll, and stay mixed? 2. Can you tell me how to make lemon extract? An-
swers: 1. It 1 p possible to make an emulsion or mechan. swers: 1. It 1s possible to make an emulston or mechan-
tcal mixture of coal oll and water. Take any conventent quantity of coal oll, and add from 10 to 20 per cent at water, according to the spectich gravity of the oir
the greater the specific gravity, the more water. Churn the two together thoroughly, by bstirrers or heaters, add.
ing during the operation from 2 to 5 per cent, of the Ing durng the operation from 2 to 5 per cent, of the
water used, of caustic llme. 2. Steep dried lemon peel in hot water; then filter the llquild and evaporate to dry
W. J. S. asks: 1. How can I tin a soldering
bolt 2 . How can I make Selaltzz powders? Answers: Clean the bolt, heat it, apply nitric acta, and rub 1 to on
he solder. different colored papers, white and blue. The blue and soda, and 2 scruples of blcarbonate of soda; and
H...S. asks: 1 . How are brass castings
ronzed? 2. How is brass purtifed in the crucible? ${ }^{3}$.
metal will wear the best in fresh water on a screw whee
steamer outadde bearing 1 to 6 copper and tin or 1 to
 ammonac and 3 dram of binoxalate of potash, in 114
ounces of clear vinegar; apply the mixture to the brass first heating the latter sllghtly. 2. The impurities gen erally rise to the surface. 3. Yes, the zinc may be volatillzed. 4.
anything.
T. C. E. asks: 1 . How is shellac dissolved
borax to make the cement for amber? What will dis. solve the gum of the peach tree? Alcohol will not.
 3. Can you glve me the e algebraic formula for finding the area of a plpe to convey the steam necessary for any
horse power? 4. Please give me a formula for finding given depth, on a ter. 5. To ralse any given amount of water to a given
hight, what proportion of applied power does a centrlfugal pump require, as compared with any other pump? lac and boraxare both solids. Probably either solve the gum you speak of. 2. Indan ink is mostly, if not entirely, manufactured in China. It has been ana-
lyzed, and appears to be composed of lampblack and anlyzed, and appears to be composed of lampblack and an
lmal glue. 3. See article on efllux ot steam, page 113 current volume. 4. We do not understand what yo mean. 5. It depends on the hight to which the water is
to be raised. Within certain limits, the centrifugal pump is more economical than a direct acting steam
S. W. asks: 1. How many square feet of
canvas willgive a horse power on salling vessels? In using windmills on land, does it require a much larger number of square feet of surface to average a horse
power than on the water? When the windmillis placed in a favorable position, howmany feet of surface arer the $a l l$ a g o windmill be set to give the bestresults? Why donot the mechanics ofteneruse wind power? Wheredoes the common house fiyhave its nestor breed
ing place? 5. In Georgla there is a small fiy which gets Ing place? 5. In Georgla there is a small fiy which gets
into a person's eyes and ears, andis, in this wetseason, a Into a person's eyes and ears, andis, in this wetseason, a
great annoyance. It 1 s very small, has a yellowish body, and does not bite, but it will go right into the eyes
or ears; a very litte wind will drive it away. Wher does it multiply? Answers: 1. The force of the wind in pounds per square foo

This depends on the relative velocities of the whee and wind. 3. They could, it the wind would accommo-
date itself to their wants. 4. In cracks or crevices. There are so many varitities of fles that we could not J. A. M. asks : How do electricians calculate ermine where a rupture has taken place? Who ts the best author on the subject? Answer: To ascertan where a break has occurred in a telegraph wire, the charge of electricity which the wire from elther station
will contaln is first measured; and if the charge per will contaln is first measured; and if the charge per
mile is known, the amount actually observed will give mille is known, the amount actually observed will give
the distance of the break. A galvanometer is used for
W. R. H. says: I wish to build a small should be the size of her engine and boller? 2. What What we held dametr the pith of screw wheel? What would be about the cost of her machinery, com plete? 4. How when loded with as many as she can hold
ently? 5ould be her speed on still water? 6. Are there
what woul what would be her speed on still water? 6. Are there any regular builders of such small steamers; and if so
who are they? Answers: 1 . Cylinder 6×9. boller with 125 square feet heating surface 2 Diameter 2 fee From fifteen to twenty. 5. Seven or elght milles a bour. 6. Yes. Inserta notice in our Business and Per
N. asks: Can you give me a delicate test
orthe pressure of citric and tartaric aclds? 2. Also the composition of the onlon, and tests for the same? tartaric acid. To detect this, dissolve the acid in a lit tle cold water and add to the solution a little acetate of
potash. If tartaric acid be present, a white, crystaline precipitate of cream of tartar will be produced on agita-
tion. Citric acle ts onluble precipitate fromits aqueous solution, by acetate of (citrate of lead), is dissolved by nitric actd. Tartaric actd is slightly soluble in a acohol, and a solution of pot-
ash causes a white granular precipitate of cream of tartar, soluble by agitation in excess of the prectpitant. 2
Onlons contain gum,
M. B. asks: What are the ingredients of
vulcanized rubber, and their proportion? Answer: Vul. canization of rubber is effected by combining it with
sulphur or the mineral sulphurets. The process is dif ferently conducted in different manufactories. Caout chouc combineswith from 12 to 15 per cent of sulphur, ber In naphtha, charged with a sufficlent quantity of sul 12 per cent of its welght of sulphur is then added to to naphtha paste and thoroughly incorporated. The arti-
cle is then molded into any form required. The temper atures for vulcanization by the common method range rom 320° to 330° Fah.
J. C. G. asks: Can you tell me of a good and.sclentific work on telegraphy? Answer: Apply to any good bookseller for Noad's book on el
for Pope or Culley on electric telegraphy.
G. F. asks: Is there an instrument for find-
F. S. asks: How can I galvanize, or tin, or
otherwise make brilliant and rust proof, a fat polished urface of cast iron? Answer: Dip the plate first into murlate of zinc, and afterwards into a tin bath
P. S. A. asks: How do lapidaries drill use? Is any kind of gritor quartz required? Answer
They ordinarily employ ateel drills, with either diamon They ordinarily employ ateel drills, with elther di
P. C. C. says: 1. By what rule (if any) can
determine the power per square foot of a river current? 2. How large a paddle wheel do I need to place in a cur rent running three miles per hour, to obtan 10 horse
power? 3. Is there a better than the paddle wheel for power? . Is there a better than the padde wheel for
use in a current? Answers: 1 . The theoretical power
persquarefoot of a rive. current is found by multiply persquarefoot of a river current is found by multiply-
ing the discharge in pounds per square foot per minute ing the discharge in pounds per square foot per minute
by the velocity in feet per minute, and dividing by 33,000 . in the wate wheel so that it will have at least to foa in the water at a time, exposing about
H. B. B. asks : 1. In driving electro-magnetic
engines, is intensity of current, or quantity, required 2. What is the most powerful electro-magnettc engine known, and on what principle isit constructed? 3. Ha any electro- magnetic englie been constrated the man mos constan t cheap battery manufactured? 5 . What is the
chief difficulty in the general use of electro-magnetic chief dificulty in the general use of electro-magnetic
engines? Answers: 1 . Both intensity and quantity are engines? Answers: 1. Both intensity and quantiry are
required. 2 and 3 . Professor Page, in 1850, constructed power, which was exhblited at the Smithsontan Inst1tute. It worked upon the principle of the attraction of
a helix upon a plece of soft iron suspended vertically in a helix upon a plece of soft fron suspended vertically in
it. Othermaehines have been made upon the princlple 1t. Othermachines have beefi made upon the princlple
of the attraction and repulsion of electro- magnets upon armatures of soft iron, made to revolve in front of them. Such machines are made to drive sewing machines. are the limited distance within which the magnetic at traction is practically exerted and the cost of maintain
S. A. W. asks: 1. When were the first tion? 2. A few months back you told of a sure cure for
rats made by mixing plaster of Paris and some other substance together. I want to find what the other sub
stance is. 3. If a rat should be killed by that metho stance is. 3. If a rat should be killed by that method,
and getin between the walls, what would remove the and getin between the walis, what would remove the
smell? Answers: 1 . In the early part of May, 1873 . 2 . Wheatiour. A very good rat polson is made by putting some phosphorus into filour paste, adding some lard and
spreading on bread. 3. Probably nothing, except respreading on bread
moval of the rat.
A. K. Says: Beavers are bxilding a dam in
atream which we have to ford, and thedam hasbacked the waterup until the ford is three feet deeper thanit
was before the dam was bullt. Now A contends that When the stream rises two feet, the stream at the ford
will still be three feet deeper than it would if the dam was not there; I don't think it will. Which is right? 2. What will cure the effects of pooson ivy? It is very
plentiful here, and some persons are aftected so that plentiful here, and some persons are affected so the several days. 3. Is there any difference between poison
fy and poison oak? The kind that grows here is not a ine, but grows in dwarish bushes six or eight inche
high. 4. Is there $\begin{gathered}\text { ny } \\ \text { nk }\end{gathered}$ which will write jet black o bright blue, and, after a few days or weeks, disappear
entirelg? How can Imake it? Answers: 1 . As we unof bismuth is said to effect a cure. 3. We think not. 4. We do not know of any
J. B. says : 1. Suppose I have a vertical cyltop and fitted withan airtight piston of one square inch area. Let the piston be supposed to be without welght
and capable of moving in the cylluder without friction, and let the cylinder be impervious to and destitute of capacity forheat. Further, suppose the plston placed
one foot from the bottom of the cylinder, and the air at oothsides of the piston to be of the same temperature and pressure, now if the air underneath the piston has
Its temperature ralsed $273^{\circ} \mathrm{C}$., the volume will be doubled and the piston will be raised one foot. Again, let the prevented from rising; on heating the enclosed air 273°
C., its elastic force will be doubled. Let any further made free to rise with merely the welght of the atmo phere to keep it down; it is evident the elastic force of the enclosed air will cause the piston to rise, so long as
thereis an excess of pressure underneath it; heat will be consumed in this operation, and the temperature of
the air will fall, no heat belng supplied from without. To what hight will the plston rise, and what will be the emperature of the enclosed air? 2. Suppose I compress quantity of air to a pressure of ten atmospheres, wha would be its temperature? And after compression, if
the air be cooled down to $183^{\circ} \mathrm{C}$. and be then allowed to expand and perform work, what will be its temperature or us to know the original temperature of the air. You will find the whole question thoroughly treated in the and other Prime Movers." 2 . You do not say how much S. M. S. asks: What will till roaches im-
mediately
I have been feedingethem with strychnia for a week, and thetr sanitary condition is greatly im-
proving. Answer: If the poison alone is not suffclent or their extermination, you should try something more
S. J. J. says: There is a leak, under heavy mining pump. Suppose the leaking to be x gallons per minute; is the loss of power asgreat as though the same quantity escaped from the upper end of the column and
fell back into the main? Answer: Yes, if the pressure fell back into the main? Answer: Yes, if the pressure
under which the water escapes is the same as that of the water that is elevated.
C. M. N. says: The dates on worn coins can
read by heating to a dull red and dropping into cold be read by heating to a dull red and dropping into cold
water. The letters and figures will appear black, and the plain parts white. If they do not show brightly, try
at a different redness. A plece of coln, hammered perfectly fat and smooth, will show plainly. I think the reason that a worn coln will show is that the coln is
pressed, and of course the raised parts are softer; and the heating and sudden cooling has a different effect on the parts. Another reason is that colns do not wear
perfectly fiat; the ralsed partsare still slightly elevated, although they do not show.
Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined with the results stated:
J.H. M., of L. I., describes certain growths, asking
what they are. Answer: Nambers 1, a, 3, represent a very common fungus called mucor mucedo. It it elongs ot the same family of parasitic plants as penicillium ola
sum, pucoina graminis, cephalosporium and others. The fact that the rain water was filtered and placed in a
tightly corked bottle does not prevent their growth; tightly corked bottle does not prevent their growth
because the germs from which they originate are pres
int in the air enclosed in the bottle and in the water
thelf. If the water were frst bolled and then sealed up free from air, no fungus would grow. From the dewhich frequents fresh water pools, by name macrura, elonging to the generalorder decapoda. No. 4 is a bud of the sweet pepperbush or white alder, the clethra eet high, growing in wet copses, from Maine to Virginia near the coast. In July and August, it is covered with handsome fragrant blossoms.
A. S.-Potter's clay, but not perfectly free from un

COMMUNICATIONS RECEIVED

The Editor of the Scientific American acknowledges, with much pleasure, the re eipt of original papers and contribution pon the following subjects
On Butter. By J. A. V.
On Railway Religion. By J. P.
On Tracks in Sandstone. By A. M. B.
also enquiries from the following
E. B. T.-R.-J.P. L.-A. G. R.-S.-T. B. H.-F. C.-
D. P.-C. F. C.-G. L. S.-W. M. R.-A.S.-W.C.D.-
н. Н. -B. Б. -J. S. M.

Correspondents whe write to ask the address of certain also those having goods for sale, or who want to fin partners, shoula send witi their communications a amountsuffcient to cover the cost of publication undel
the head of "Business and Personal" which is spectall devoted to such enquirles.
Correspondents in different parts of the country ask Where can I obtain a lead-burnng apparatus? Whic makes heavy spiral springs? Where can I get head stocks for lathes? Makers of the above artucles wil reply, in the Sorentific American.
[OFFICIAL.]

Index of Inventions

 FOR WHICELetters Patent of the United States GRANTED FOR THE WEEE ENDING October 21, 1873,
and each bearing that date, [Those marked (r) are relssued patents.]

Auger bits, making, J. Swai
Bag, grain, W. B. Carlock...
Bag holder, N. A. Gelsinger
Bale tie, D. McComb (r)......
Bale tie, cotton, B. Kimball
Bale tie, cotton, J. McMurtry (r)
Band, endless, L. Binns.
Barrels, with glue, lining, E. W. Leggett
Bed, spring Smith \& Glll
Bed, spring, Smith \& G111
Bee hive, J. H. Stockw
Bee hillard chalk holder, H. W. Collender
Boat for trains of cass, ferry. F. Cas
Boller, wash, Truesdell \& Curtis...
Boots, molding toes for, D. H. Packard. Boots, burnishing the heels of, G. W. G1
Boots, Jack tor nalling, etc., J. G. Ross. Boots, ack for nalling, etc. ,
Bosom pad, H. M. Miller....
Botle
Bottle, pample, S. H. G11man
Brick machine, J. D. Bush..
Bridge, suspension, E. W. \& E. W.
Bronzing pad, L. G. Chaput
Bullding block, F. W. Colby
Burner, vapor, J. C. Love.
Buttonfastening, I. F. Eaton..............
Buttons, mode of fastening, I. F. Eaton
Buttons, moldfor fancy, F. Maas
Can, oll, W. G. Cowell..
Car axle box, W. B. Howe
Car coupling, J. Enos......
Car coupling, F. A. Flemin
Car coupling, J. Gum.
Car coupling, R. Lloyd..............
Car coupling, T. W. \& T. D. Ryan
Car coupling, P. Swineford
Car starter, B. F. Oakes....
Car starter, A. Whittemore.........
Car brake and starter, C. L. Irving
Carbonates, alkaline, H. D. Grousillier
Cardmount, J. H. Caterson..
Carpet fastener, B. D. Kested
Carriage, child's, A. F. R. Arn Carriage, child's,
Churn, J. Masten
Churn, reciprocating, A. D. Huntley
Churn, reclprocating, E. T. Wheeler
Clock, alarm, D. M. Charters.
Clothes pounder, s. F. Hawle
Cock, gage, A. A. Murray
Coffee substitute, E. Dugdale
Coffee substitute, E. Dugdale
Cofin fastening, W. S. Crane............
Cooler, milk, J. Pearl
Corn husker,J. Ure................................ Cows' talls, fetter for, C. F. Tolles...
Cylinders, etc., boring, J. MacDonald
Cylinders, etc., borlng, J. MacDonal
Dental instrument, I. A. Salmon (r)
Desk, school, C. J. Higgins.
Ejector, water, H. Coll.....
Electric slgnal, F. L. Pope
Elevator, o. Tufts
Embroidery patter
Engine rect patterns, transferring, C. Bordas
Engine rellef valve, fire, A. Mayer
Engine, rotary, J. C. Spencer.
Engine, steam Are, W. C. Davol, Jr..
Engine, steam pumping, W. C. Hicks
Engine valve, steam, A. Carr...
Evaporating pan, G. A. Nobe
Eyplosive compound, A. Nobel, (r)...........
Faucet, measuring
Filter for olls, acids, etc., J. Jowitt
Fire arm, revolving, w. s. Smoot
Fre extingulsher, w.c. Bruson
Fire extingulsher, automatic, I. P. Tice

Flour bolt, J. G. Kaufman.. Food from ctder, articles of

Fork, horse hay, A. J. Nellis W. Mahan
Frult drier, J. Williams
Furnace, D. Harger, (r)
Furnace, hot air, C, (r)..
Game apparatus, West \& Lee
Gaselier extension, L. Hull.....
Gate, automatic, olbert \& Youn
Generators, steam, D. Renshaw
Glass, etc, forming necks on, J.
Wi.....
ng.
ng.
Glassware, stemmed, J. Oesterling.
Grate, S. Smyth.........................
Grate, S. Smyth.
Harness mounting, T. Fawcett..........
Harrow, C. Svenzen
Hat frames, forming, Ertola \& Casell1 Heating drum, I. P.Tice............................
Heel blanks, etc., compressing, R. C. Lambart. Hinge, gate, W. Hull....
Horseshoe machine, c. H. Perkins.
Houses, construction of, W. Ward..
Hubs to shafts, securing, E. San ford..
Ice cream freezer, M. F. Graves.......
Iron for wheels, etc., cast, C. Burgess
Iron for wheels, etc., cast, C. Burg
Kiln, umber drying, s. R. Kirby...
Knife polisher, etc., T. Bootsman.
Knife polisher, etc., T. Bootsman...........
Lamp fountains, mold for glass, J. Wing
Lathe, screw cutting, W. Gleason..................
Leather crimping and folding, Platts \& Walden
Leather, etc., scourlng, F. A. Lockwood.
Level, grading. J. Thornley.
Lightning rod, J. J. White.
Lock, seal, D. K. Miller........
Lumber marker, W. Merritt.
Malt steep, W. W. Stoll.
Mill, grinding, J. G. Baker
Mill, grinding, P. Evans.
Mower, lawn, W. Sellers.
Navigation, etc., keeping open, J. Mullaly
Nitro-gly cerin, exploding, A. Nobel, (r)..
Nitro-glycerin, exploding, A. Nobel, (r)..
Offal, etc., drying, Adamson \& Simonin, (r)..
offal, etc., treating, Adamson \& Simonin, (r)

Pantaloons, E. T. Taylor..............
Paper bag machine, J. S. Ostrander.
Paper bag machine, J. S. Ostrander........
Paper feeding machine, J. T. \& F. Ashley
Paperfee machine dandy, J. Whiteh
Paper stock, A. T. Sturdevant........
Pen and pencll case, C. H. Stretghtoft
Petroleum, treating, S. Van Syckel.
Photograph negative varnish, J. W. Morgeneler (r)
Picture frame, Warren \& Adderly
Pipe, earthenware, J. Bingham
Pipe, asphalt, A. Muller..
Planter, corn, W. House.
Planter, corn, c. Hutchins.
Plumb and level, S. San
Press, R. Esmond, (r)...
Printing press, card and ticket, G. E. Pec
Printing press register, A. Hilgenr
Propeller, endless chain, T. Teed..
Propeler, endess chaln, Feed...
Polleler, stering, F. G. Fowler.
Pulley,
Pulley,lubricating,
Pump, A. L. Hatfeld
Purifier feed device, R. Craik
Rail joint fastening, G. A. Sturges.....
Rallroad signal, automatic, H. S. Eva
Railroad signal circuit closer, G. H. Snow Railroad signal circult, S. C. Hendrickson. Rallroad, electric signal, F. L. Pope (r) Range, cooking, W. Hopkins,
Rein, check.G.J. Townley...
Rein, check.G.J. Townley.......
Sawing machine, scroll, M. Fole
Sewingmachine, G. W. Hunter.
Sewing machine creaser, S. P. Bab Shaft coupling, R. S. Cathcar
Shelf, revolving, J. Danner
Shelf, revolving, J. Danner...................
Shingles, machine for shaving,. H. Carter. Shutter fastening, J. P. Bush.
Shutter fastening, B. D. Washburn (r).
Sink valve, J. Chilcott.
Slate, office, c. Boyle..
Slate,office, C. Boyle......
Snow, melting, J. Mullaly.
Soda water cock, J. D. O'Donnell Soark arrester, Richards \& Meeh1 Spindie boister, G. Richardson..
Staves, etc., crozing, H. Wilde (r) Strames, trap., J. W. Hodges.. Stick, compostng, L. Buschmann........... Stove pipe thimble, T. D. Slauson.
Stoves, name plate for, P. Klotz... Stoves, name plate for, P. Llotz............
Street sweeping machine, L. J. O'Connor uperheater, D Rens. Teaching geography, J. Schedler Thoning machine, W. M. Sa . imber, etc., ralsing floating, A. Bulman Toy block for object teaching, N. Muller. Trap. sewer inlet, G. R. M
Trap, stench, J. P. Hyse..
Treadle, L. Helns.
Turning tool, J. W. Ellis.
Valve, alarm, safety, F. ste....e.
valve, sa fety, J. Hofflmana...
Valve mechanism, sllde, E. E. Gilbert
Vehicle wheel, D. Dimmick.
Vehicle wheel, J. O'Conno
Ventilator for bulldings, G. R. Barker
Wagon brake, W. P. Buckner
Wagon jack, A.G. Cooley....
Wagon Jack, A.G. Cooley.
Wagon spring, E. P. McCarthy (r)
Washing machine, J. Bennett...
Washing machine, G. G. Curtiss.
Washing machine, N. J. Parsons.......
Watchmaker's staking tool, J. Stark.
Water, apparatus for raising, Chas
Wax package, sealing, w. J.Lumb.
4.44, 42:
143,910

143,910
143,981
143775
143,949
,

$\left.\begin{array}{r}143,949 \\ 5,614 \\ 143,851\end{array} \right\rvert\, \quad$

143,765
143,839

$\begin{array}{r}143, \text { 14345 } \\ \text {... } 143,863 \\ \hline 14378\end{array}$
26,914--Citoress.-A. F. Johnson. January 7.
26,914--Clothes Wrinaer.-R.O. Meldrum et al. Jan. 7.
26,919.-Repating Firearm.-W.H.Morris et al. Jan.7.
26,942.-Car Seat.-T. T. Woodruff. January 7 .
26,948.-SEwing Machine.-A. F. Johnson. January 7.
26,948.-SEwing Machine.-A.F. Johnson. January 7.
27,008.-Finisicina Boot Hexis.-H. Saloshinsky. Jan.14,
EXTENSIONS GRANTED.
25,874.-Bronzing Madines.-G. H. Babcock.
DESIGNS PATENTED.

TRADE MARKS REGISTERED.
1,503.-SALOEss.-A. P. Agresta et al., New York city
$1,504 .-$ RAzors.-H. Boker \& Co., New York city.
1,505.-REBBER Goods.-M. A. Catelv, New York city.
1.506.-Crampagne.-Chilling worth\& Son, London,Eng

1, $1,509 .-$ OATMEAL.-J. McCann, Beamond Mills, Ireland.
1,510.-SNAP Hooks.-New York Wire Snap Co.,N. Y.
sCHEDULE OF PATENT FEES:
On each Caveat.. $\$ 25$
On fling each application fora Patent (17 years). On issuing each original Patent...
On appeal to Examiners-In-Chef.......
On appeal to Commissioner of Paten
On application for Reissue
On application for Extension of Patent..................... $\$ 50$
On granting the Extension
On fling a Disclalmer.
On an application for Design (31/2 years).................. $\$ 10$
On an application for Design 7 years 14 years)................. $\$ 315$

Adrertisments.

rates of advertising.
Back Page- $\$ 1.00$ a line.
Inside Page.
Engravings may head advertisements at the same rate per line, by measurement, as the letter-press.
The value of the ScIentific American as an advertising medium cannot be over--stimated. Itscirculation is ten
times greater than that of any similar journalnowo pub. lished. It goes into all the States and Territories, andis read in all the principal lubraries and reading-rooms os the world. We invite the attention of those who wish to ness man wants something more than to see his adver tisement in a priñted newspa per. He wants circulation. lf it is worth 25 cents per line to advertise in a paper of
three thousand circulation, it is woorth $\$ 3.75$ per line to

To Electro-Platers.

B ATteries chenchis, and mate

PNCHING
Gid ILLIVEWORTH, Nevill st. Foun.

 CYLINDRRS, AXD DANIELS PLANERS,

A sebcimen copy of the american

