Cbutregipdudeute.

The Physical Substratum or Mechanical Power in

 NatureTo the Editor of the Scientific American:
If your correspondent in regard to the subject of planetary motion, on page 275, would turn to a communication on page 228 , I think he would find a physical explanation, without either accepting or casting aside the nebular hypothesis. As the subject is theoretically of the greatest importance, I would request the favor of a further illustration of the prin. ciple there advanced.
In my former communication I intimated that every particle of matter was the nucleus of a ubiquitous substratum of mechanical power, constantly exercised in attaining and maintaining equilibrium with all others. This is fairly worthy of being rigorously tested, when we consider that Newton exercised his vast mathematical powers in endeavoring to demonstrate that every particle of matter attracted every other, and that the non-mathematical Faraday, from physical considerations only, in his electrical researches, was induced to utter the singular expression: "The atom is everywhere."
The only attempt to explain gravitation by a mechanical theory which has met with any favor, and that but little, is the one of Le Sage. This supposes space to be filled with self repelling corpuscles, which impel bodies together through acting as screens to their motion. Herschel considered this theory as too grotesque for serious consideration, while Sir W. Thomson has shown it to be inconsistent with the principle of the conservation of energy, unless the vis viva lost by the resistance of matter be exactly compensated by a fresh force of impulsion continually coming from beyond the limits of the stellar universe. The same objection applies to Professor Challis' theory of impulsion by etherial wave motion. Other objections there are which we will not wwell upon, such as the non-accumulation of the corpuscles on the together impelled bodies; but we may safely say with Herbert Spencer that astronomers have as good as given up the mechanical explanation. Professor Maxwell, in his splendid attempt to generalize the radiant forces, acknowledges that he cannot conceive an etherial medium possessing the property of causing matter to gravitate, combined with that of manifested radiant motion. But now conceive the equilibrating power of all matter to be ubiquitous, and a universal consistency results. All bodies, by the equilibrating energies of all others, are continually in a state of stress; submitting when unbalanced to the predominating tensions or pressures. The tensional power exercised by any body in pressures. The tensional power exercised by any body in
drawing others to a balancing condition with itself will of drawing others to a balancing condition with itself will of
course be directly as its mass; that of all bodies inversely as the square of the distance. The static or attained position of balance will be stable when the pressures, perpendicular to the lines of tension, are in power inversely as the distance from the center of combination (gravity) or, we might call it, fulcrum. In cosmic systems, the energy of motion in revolving bodies must correspond to the force of pressure in a balance. I hazard nothing in saying that, if ever we have optical instruments powerful enough to examine minutely the rings of Saturn, we will find that the bodies at the interior of the dark ring, being rather more than half the distance of those on the exterior of the outer, will have rather less than double the energy of motion, the particles between being of intermediate velocities, according to their respective positions, or distances from the planet.
So palpable is this physical connection, by the native energies of distant bodies, that Professor Nichol pictured Jupiter and Saturn as nicely balancing on a lever of varying length throughout the great inequalities, the mean length, during the ever recurring cycles, the same. Herschel also, for greater definiteness, figured the planetary orbits during the varying inclinations as rigid rings (on which the planets were sliding like beads), tilting each other during their mo-
tion, while preserving the general plane or fulcrum unaltered. tion, while preserving the general plane or fulcrum unaltered. This plainly shows an unalterable amount of motive power centralized in the system by the individual tensions being there balanced by the pressures, or motions of the bodies perpendicular to their lines of traction. Even tidal phenomena are less the results of pure attraction than equilibrating oscillations during terrestrial and celestial motions. Now no universal plenum of self-repelling corpuscles could produce and sustain (of course as a secondary cause) the conservative harmony of cosmic systems, for their extraneous action could have nothing to do with masses balancing each other at a distance. Nor is an infinitude of attractions contending with an infinitude of tendencies to fly off at tangents (the results of primitive impulses) at all satisfactory as a theory.
S. E. Cowes, an American, published, in 1851, a treatise on "Mechanical Philosophy," in which herepudiated the physics of the schools, basing his own system on the principle of the indestructibility and identity of force, apparently ignorant of the agitation of this question by a few in Europe. His boldness in the application of the principle carried him out of the pale of scientific recognition. His application of it, however, to terrestrial gravitation will not be out of place here. A body involved in the earth's motion shares, according to its position, the diffused force of revolution and rota-
tion. Projected upwards, it describes a wider area from the earth's center, which is equivalent to an increased force of motion. Consequently the force of projection decreases, with the increase of gravitation-potential. Being, by differwith the increase of gravitation-potential. Being, by differ-
ence of density, not in equilibrium with the surrounding atence of density, not in equilibrium with the surrounding at-
mosphere, it takes the nearest path to equilibration, back mosphere, it takes the nearest path to equilibration, back
again; the falling force by its acceleration being exactly again; the falling force by its acceleration being exactly
equal to the force necessary to make it describe a wider orbit.

The desire of not encroaching too much upon your valuable space hinders me from a more thorough treatment of this subject,and also from showing how the radiant forces become, by the principle, consistently generalized. Like Faraday I would "dispense with the ether but not the vibrations." And I must record my conviction that Science never can ad Annce to a generalization of all the forces of Nature until it vance to a generalization of all the forces of Nature until it
recognizes thefact that the substratum of mechanizal power, appertaining to every unit, is as infinite and eternal as space and time in the will of God-that the Great Mechanic presides over a universe, and not merely a cohering multiverse
Philadelphia, Pa.
Wm. Denovan.

The Projection of Diffraction Phenomena.

To the Editor of the Scientific American:
As usually presented, the phenomenon of the diffraction of light is so obscure in effect that but a few can see it at a time, even when a powerful light is used. This answers well enowgh for one who is investigating the matter; but for presenting the phenomenon to a class or to a popular audience, there is no method that I know of to be found in any treatise. Therefore I hope the following description will meet the demand, as the spectacular effect is certainly very beautiful and striking:
For most of my projections, I use a porte lumierre, and wait for the sun, if it is not shining at the time. The bril liancy and magnitude of the effects, and the trifing cost, render this method desirable in those institutions that are not well supplied with physical appliances; so I will describe he fixtures for that instrument:
The two large lenses, such as are usually combined for a condenser in the magic lantern, are used. The light is reflected from the mirror, R , through one of these lenses, C , used as a condenser. The other lens, 0 , is placed a little outside the focus of the condenser, at such a distance that the light is again converged and crosses between the line, $\mathbf{0}$ and the screen ; the size of the disk of light upon the screen will evidently depend upon the distance of this focus from
it. I have found that, at the distance of twenty-five feet
 cars, if used with horses, will cost $\$ 40$ to $\$ 50$, or about third the price of a farm wagon. They will carry three tuns, and can be made by any rough hand who can use carpenter's tools. If designed for use with locomotives in trains, drawbarsand springs must be used, and the costper carincreased

motive power.

Horse or mule power can be used; but if the tunnage is considerable, it will be preferable to adopt a light engine of six or seven tuns, with wide driving wheels, covered with vulcanized rubber tyres. Such engines can be manufac tured at the Baldwin Locomotive Works for about $\$ 4,000$. Passengers could be carried on the proposed roads with such engines at a speed of ten or twelve miles an hour, which would make a great improvement on the stage coach. Such roads would rot out long before they would wear out, and the answer to the objection that they arenot durable is simply that they will last just as long as the cross ties on an ordinary railroad,and it will cost less to renew them. Post oak ties in the South last from ten to fourteen years. The cost o transportation by wagons, for a distance of twenty-five miles, without return load, is fifty cents per 100 lbs ., or ten dollars per tun of $2,000 \mathrm{lbs}$.
Assuming the tractive power on such a wooden road, for the purpose of an approximation, to be double that of an ordinary railroad, or 20 pounds per tun, the angle of friction would be forty-eight feet to the mile. And a horse exerting a power of 150 lbs. at $2 \ddagger$ miles per hour, or 4 horses doing 600 a power of l50 lbs. at $2 \frac{1}{y}$ miles per hour, or 4 horses doing 600 lbs., would hall, on a grade of 144 feet to the mile, one fourth
of the gross load on a level, or 74 tuns, giving 6 tuns of net load. As a trip of twenty-five miles, returning empty, could be made in two days, assuming a team to be worth $\$ 5$ a day, the cost of the round trip would be $\$ 10$, or $\$ 1.66$ per tun, as against $\$ 10$ per tun by wagon transportation; and this, too, on grades of 150 to the mile, nearly一tolls for use of road not being included in either case.
This illustration will show the great economy of such roads over wagon transportation, even when operated by horse power; but where the business will warrant it, the rubber power; but where the business will warrant it, the rubber-
tyred locomotive should be used. If, after a few years, a tyred locomotive should be used. If, after a few years, a
business should be developed sufficiently to justify the expense, an iron railroad could be substituted, in which the or iginal grading, as it would form apart, or the expenditure for t would not be lost. It is also to be observed that, the rails of the proposed wooden railroad, being even with the surface of the road bed, or nearly so, would permit the same road bed to be used for the ordinary vehicles.-General Haupt, in Journal of the Farm.
M. Vignon has prepared mannitan by mixing mannit with half its weight of concentrated sulphuric acid, and keeping the mixture at 125° for two hours. Mannitan turns th plane of polarization to the right, and does not yield mannit ven on boiling with baryta water for an hour. If mannit is heated to 280°, with a little water, a body is obtained which appears to be mannitan, but which turns the plane of polarization to the left, and yields mannit on boiling with water.

Several geese died in Mormon Island, Cal., a few days ago, and, upon dissection, gold dust was discovered "in fat al quantities" in their gizzards. And yet there was no suspicion that either of these was the golden goose we hear so much about.

Dr. Gatling fired a quantity of the Mead-Meigs one inch $^{\text {a }}$ caliber explosive bullets at the Gatling gun trial, at Fort Munroe, 'October 6, and reports the practice as very good.

