Letters

C

WERI

J. S. H. P. asks: 1. How is carbolic soap ade? What proportion of the (pure) acid is used? 2. made? In midwinter, when the thermometer in the room stands at 80° or 85°, though clad in thick under and outer gar ments, we call it only comfortably warm. But in sum mer at the same temperature, though clad in the thin-nest possible garments, we loll in the shade and call it intolerably hot. Why is this? Answers: 1. Carbolic acid soap is made by adding from 5 to 20 per cent of car bolic acid, according to the use to which it is to be ap plied. 2. We do not always feel the same degree of tem-perature, for example, 85° Fah., to be invariably oppressive or hot. This is owing to the fact that the at mosphere at this temperature sometimes contains more moisture than at others. The drier the warm or hot at mosphere, the less the heat is felt, owing to the rapid evaporation of perspiration from the surface of the body. During a cold clear winter's day the air contain much less moisture than in summer, so that, although we may be in a room artificially heated to 80° Fah. or above, it may not feel uncomfortable, the insensible perspiration rapidly passing off and cooling the body.

C. W. E. asks: How can I make an electro magnet to be operated by an earth battery? Answer You can make an earth battery by sinking two large plates of copper and zinc in moist earth, and connecting them by conducting insulated wires attached to each Such a battery was constructed by Bain in 1841. You can make an electro-magnet by winding stout copper wire, covered with silk, around a piece of soft iron bent in the form of a horse shoe, care being taken that the coils are wound in the same direction around each bobbin, either from or towards the axis of the magnet. The more numerous the coils, and the greater the power of the electric current, the stronger the magnet.

W. S. B. asks: How can I anneal gold after it has been cast? Answer: We think you can do it by heating the gold, and allowing it to cool slowly.

C. R. asks: 1. What is the best and most aconomical constant battery? 2. I have heard of a thermo-electric battery. Is there one of practical utility? Answers: 1. Daniell's battery is recommended for constant action. It is not expensive, and no gases es-cape from it. It consists of a cylinder of copper, in which is placed a cylindrical vessel made of unglazed biscuit ware, or porous earthenware. Into this porous vessel a rod of amalgamated zinc is placed. The copper vessel is filled with a saturated solution of sulphate copper with a little sulphuric acid. The porous cell is filled with dilute sulphuric acid, and on a perforated shelf fixed to the upper part of the copper cylinder, are placed crystals of sulphate of copper (blue vitriol) to keep up the strength of the solution. 2. Thermo-electric batteries have been made of considerable power, but we know of none that have ever come into practical use.

D. H. M. asks: How can I separate iron from copper and brass? Answer: If you heat the metals in a crucible, the brass will be melted first, and can bapoured off.

S. asks: 1. How is aniline made from coal tar? What apparatus is necessary? 2. How are bronze powders made? 3. How are the various colors produced from aniline? 4. Can you give me a good recipe for Worcestershire sauce? Answers: 1 and 3. The basic portion of coal tar or coal tar naphths, that is, the least volatile products of the distilation of these substances is strongly agitated with hydrochloric acid in excess This is done on the large scale in vessels lined with lead The clear portion of the liquid is then decanted and evaporated until acid fumes appear. It is againfiltered and neutralized with potash ormilk of lime and distilled. The portion that passes over at 360° Fah. is crude ani-line. By the action of bichromate of potash on sulphate of aniline, rich shades of purple and violet are produced 2. To make a bronze powder, mix peroxide of tin an sulphur, of each 2 parts, sal ammoniac 1 part. Expose to a low red heat in an earthen ware retort until sul phurous fumes cease to be given off. 4. The following recipe gives a fine sauce: Port wine and musbroom ketchup, of each 1 quart; walnut pickle 1 pint; soy 3 pint; pounded anchovies ½ lb. : fresh lemon peel minced shallots and scraped horseradish of each 2 ozs. allspice and black pepper (bruised) of each 1 oz.; cay pepper and bruised celery seed of each 16 or curry powder ¾ oz.); digest for 14 days, strain and bottle

W. W. B. says: In making gas from petro-leum, there are several difficulties of which the most serious is the deposit of carbon in the shape of dry pow der in the retoris, and other troubles between the retort and the gas holder. Petroleum is the finest gas-making we have, taking into consideration its price; it material will yield from 6,000 to 8,000 feet per barrel, and the sup ply seems to be inexhaustible. It is a question of great importance to the oil producer to get a steady market for his oil, and to the people to get a cheap and good light. Both of these objects would be attained by a practical solution of this question : Can gas of good quality, and cheap, he manufactured from crude petro-leum on a large scale? I say that it can, and it can be done by any mechanical arrangement to inject air and petroleum in graduated quantities into the retorts; and I also say that it will convert all the petroleum into gas of high illuminating quality and leave no carbon in any shape, either in retort or pipes. I have proposed the question to many gas men, but nobody seems to know anything about it, except that petroleum is a dif-ficult thing to handle in gas making. I write to you to ask: 1. Will not the injection of air and petroleum into the retort convert all the petroleuminto gas? 2. Would there be any deposit of carbon on the retorts or pipes? 3. Would it be a permanent gas or a mechanical mixture i 4. Would there be danger of explosion from injecting a graduated quantity of air into the retort? Answer: Petroleum being a mixture of various hydrocarbons, that is, various chemical combinations of hydrogenand carbon that are for the most part liquid at ordinary temperatures, it is obvious that it cannot be changed into permanent gas without decomposition, or a new inter change of its elements, forming new chemical compounds. It is found that, when petroleum is submitted to a high temperature without access of oxygen, de composition takes place, a quantity of uncombined car-bon being deposited. It is evident, then, that the permanent gas formed is a hydrocarbon with a less proportion of carbon than the liquid petroleum. To convert all the petroleum submitted to heat into a gaseous body, some-thing must be supplied that will combine with the extra carbon and form either another illuminating compound or one that can be removed by subsequent purification. When petroleum burns in the air, its elements combine with oxygen, forming carbonic acid gas and vapor of water. The injection of air or oxygen into the decomposing retorts would therefore defeat the object in view

that of making a permanent illuminating gas. It would simply cause a combustion of the petroleum more rapid than that which takes place in the open air, besides th risk of explosion. It would be farmore philosophical to inject hydrogen with the petroleum into the retort or to decompose the petroleum in an atmosphere of hydrogen. Thishydrogen could be readily formed by decomposing superheated steam by means of red hot anthracite coal. Indeed, superheated steam alone in contact with the decomposing petroleum might yield a portion of its oxygen to the extra carbon, thus obviating its deposition on the retort, forming carbonic acid gas which could be removed by water. If free hydrogen were liberated, it would increase the heating properties of the flame. We simply mean here to indicate the phil-osophical method of experiment, bearing in mind the constitution and affinities of chemical bodies. Nothing but practical trial in this way can solve the problem of the utilization of petroleum in the manufacture of illuminating gas.

J. M. asks: How can I make an induction coil to use with two large Grove's cups? With this ar-rangement, can I make an electric light? Answer: You can make an induction coil as follows: In the figure, the primary heavy wire coil is about 35 feet long, and wound

round a glass tube. Outside of this is wound the second ary fine wire coil of about 1,400 feet. Battery contact is broken and renewed by the rotation of a soft iron bar h, which, mounted between two brass pillars, is placed immediately over the axis of the coil, in which is placed a bundle of soft iron wire. The current of the battery passes through the pillar d and the axis carrying the iron bar, and contact is broken and renewed by the point i dipping as h revolves into and out of mercury in the brass cup g, on the pillar a, through which the cir cuit is completed. The binding screws in front connect with the ends of the coarse interior coil, and for con meetion with the battery. Two screws behind connect with the ends of the fine wire coil, from which the secondary current is derived, and from which shocks may be taken, water decomposed, etc. You cannot make the electric light with this arrangement. That requires that the fine wire coil should be wound round a soft iror horseshoe magnet, which is made to revolve rapidly in front of a permanent or temporary electromagnet.

J. K. asks: Is there in existence a means or contrivance to start, and keep in motion for one minute only, a machine which uses 5 horse power? The power which runs the machine is unable to set it in motion, and cannot even assist in it. What may I employ to start the machine? Answer: We hardly get youridea; but as the question is stated, it would seem possible to apply some other power, say that of a steam engine, to start the machine.

A. L. B. says: In your answer to I. E. E., themethod by which the Lexington Avenue Synggogue is lighted by electricity is incorrectly stated. The burners in the Synagogue are not lighted by the galvanic current heating a platinum wire, but by induced elec-tricity, produced by a new frictional apparatus and condenser, contained in one small case. The electricity, generated by turning a crank, is stored up in the condenser, which, when a sufficient quantity and intensity is arrived at (depending upon the number of burners to be lighted), is discharged, producing a spark at each burner-the circuit being there broken-and ignites the gas which has been turned on immediately before the discharge

MINERALS, ETC.-Specimens have been received from the following correspondents, and examined with the results stated :

J. E. H.-Siliceous earth, apparently infusorial. Infusorial earth is used as a polishing material, under the name of electro-silicon. J. R. E.-Blue clay, a silicate of alumina.

P. S.-Hypersthene (or Labrador hornblende) with iron.

W. W. BGalena (sulphide of lead).
T. F. HGalena (sulphide of lead).
J. W. CMicaceous iron ore.

COMMUNICATIONS RECEIVED.

The Editor of the SCIENTIFIC AMERICAN acknowledges, with much pleasure, the receipt of original papers and contributions upon the following subjects : On Crucibles. By L. T. C. On Silicon Steel. By C. W. H. On Heat. By H. C. F. Gn Perfect Combustion. By C. R. On a White Blackbird. By J. S. B. On Using Heat Twice. J. A. H. E. On Transit on the Canals. By R. D. R. On the Art of Inventing. By K. On Lunar Acceleration. By J. H. Also enquiries from the following : C. K. C.-P. W.-W. H.-W. H. S.-E. J.-E. H. K.-S. E. J. Correspondents who write to ask the address of certain manufacturers, or where specified articles are to be had also those having goods for sale, or who want to find partners, should send with their communications an amountsufficient to cover the cost of publication under the head of "Business and Personal," which is specially devoted to such enquiries.

[OFFICIAL.]							
Ind	lex	of	In	ventio	ns		
	1	FOR	WHICE	I			
tters	Patent	of	the	United	State		
WERE	GRANTE	d fo	r the	. WEEK EA	DING		
	Octob	er	14,	1873,			

AND EACH BEARING THAT DATE [Those marked (r) are reissued patents.]

[Those marked (r) are reissued patents.]	
Air compressing apparatus, R. S. Pardee	
Alarm and circuit, electrical, J. H. Guest Annunciator, electric vote, T. B. Doolittle	
Baking powder, bread, Kopping & Weideman	143,580
Barrel head, A. Hanvey Baton, policeman's, Beery & McDonald	143,571 143 610
Bed bottom, S. Pearson (r)	
Bedstead fastening, T. W. Moore (r) Bee hive, J. H. Shook	143,643
Belt clamp, E. Ainsworth	148,604
Belt shifting apparatus, O. H. Wade Boiler, culinary, J. H. Corey	
Boilers, dead light for steam, J. C. Hoadley	148,574
Bolt and rod cutter, L. H. Smith Boot channeling machine, C. S. Dunbrack	
Boot edge welt, J. Green	
300t heel plate, G. Rohn	
Boot soles, finishing, Fairfield & Messer, Jr	
Boots, manufacture of, W.H. Ferguson Boots, etc., heel for, Gebhard & Schwarz	
Bottle corking machine, J. Armstrong	
Bottle, cosmetic, M. H. HuntingtonBrick machine, D. W. Glendinning	
Brush, rotary, G. Carlisle Brush, scrubbing, C. Herold	148,666
Bung, H. K. Hazlett	148,578
Burner, oxyhydrocarbon, J.D. Averell Caliper, W. H. Miner	
Can, oil, J. G. Evenden (r)	5,597
Can, oil, W. A. Foster	
Can for oils, etc., J. G. Evenden (r) Can, sheet metal, J. G. Evenden (r)	5,598 5,599
Cans, forming seamless, M. Von Culin	
Candy cutter, F. Quinn	
Car axle box, L. Schulze	
Car coupling, G. Edmonds Car coupling, J. H. Payne	143,686
Car coupling, W. D. Pope Car coupling, G.W. Putnam	143,638
Car coupling, E. R. Scott	
Car coupling, J. Seislove	148,598
Car coupling, E. D. Smith Car coupling, O. Taylor	
Car wheel, A. F. Cooper	148,560
Carriage, child's, L. Havasy Carriage, child's, J. G. Kamphaus	148,624 143,628
Carriage shaft holder, A. C. Maxfield	
Carriage spring, G. Hopson Carriage top joint, J. H. Combs	
Chair folding, D. N. Selleg Churn, J. L. & T. K. Britt	148,721
Churn dasher, I. B. Compton	
Clock calendar, A. Frankfeld Coek, J. W. Faxon	148,618
Copy holder, W. R. Carter	143,616
Corn husker, G. W. Carr	
Cracker machine, J. Fox Cracker machine, G. J. Kingsbury	
Cultivator, C. M. & D. E. Hall (r)	5,601
Cultivator, wheel, Matchet & Smith Cutter head, H. Fletcher	143,631
Cutter and planter, potaco, L. J. Mewborn	148,707
Dice box, J. Twamly Distilling pure alcoholic spirits, C. Andersen	
Domino, B. Louineau	148,708
Door hanger, S. L. Bignall Electric signaling, R. K. Boyle	
Electric railway signal, S. C. Hendrickson	143,694
Engine governor, steam, C. R. Rungvist Engine, rotary steam, Shaw & Baker	
Equalizer, draft, W. W. Hinman	143,696
Fare box, T. L. Johnson Fence. picket, R. H. McGinty	143,698 143,682
Fire arm, revolving, Forehand & Wadsworth	
Fire escape, C. Dietrich Fire extinguisher, portable, I. C. Andrews	
Forceps for snouting hogs, G. Stephenson	148,780
Fumigator forhospital use, T. J. Mayall Furnace, chimney, L. White	148,588 148,739
age, cloth marking, E. E. Emery	143,681
age, registering steam, P. Maltby as retort, T. Davison	148,675
lass ware, mold for, G. H. Lomax	143,629
Hobe holder, C. H. Barney Hun, breech loading, etc., B. & W. G. Burton	143,000 148,614
Jun, machine. C. Stensland Iarness attachment, hitching, T. J. Dobbs	148,729
farness attachment, hitching, T. J. Dobbs farrow tooth, W. H. Platt	
Iarvester, T. N. Foster (r)	5,696
Iarvester, T. N. Foster (r)	
Ieel burnishing machine, C. W. Glidden	143,690
Heel hand tool. S. L. Riker	148,704
Hoisting apparatus, N. S. McFarland	143,706
indicator and safety valve, J. Smith	143,644
ron and steel, E. Peckham	143,637

_	
-	Piano action, F. L. Trayser 148,647
Q	Pinchers, shoemaker's, T. B. Shelly 143,594 Pipe for buildings, fire, H. Palmieri (r) 5,608
IS	Pipe for water works, stand, G. W. Pearsons 143,711 Fipe machine, curved, R. Connable 143,670
	Pipe, curved, R. Connable 143,671
States	Pitman, F. R. Glascock (r)
ING	Plane, splint, H. L. Weagant 143,787
	Plowing machine, J. Utter
E.	Plow, L. C. Frost
	Power, transmitting, J. Rankin 143,640
. 143,634	Press, cotton and hay, D. Reynolds 143,641 Press, hay and cotton, J. Muller 143,586
. 143,691	Printing press feed gage, G. Wilcox 143,652
143,679 . 143,580	Pruning implement, A. P. Bettersworth 143,659 Pump for mines, portable, W. E. Sidney 143,724
. 143,571 . 143 610	Pump, steam and vacuum, A. J. Simmons 143,725 Railway rail, B. Myers
. 143 010 . 5,6C4	Railway signal, electric, S. C. Hendrickson 143,694
. 5,603 . 143,643	Rake, J. O. Jones. 143,578 Rake, horse hay, W. H. Hartley. 143,572
143,604	Rake, revolving horse, M. K. Flory
. 14 3,73 6	Refrigerator, J. Rohrer 143.591
. 143,574	Refrigerator and cooler, C. D. Hicks
. 143,645 . 143,561	Rein holder, J. W. Clark 143,668
143,623 143,719	Roof, fire and waterproof, J. Long 143,581 Roofing, composite, R. S. Jennings 143,697
143,699	Saddle tree, side, J. Straus, (r) 5,609
. 143,682 . 143,687	Sash holder, Anderson, Walden & More
143,688	Saw set, M. E. True
143,606 143,627	Scales, bag holder weighing, A. H. Bell 143,658
143,569 143,666	Screw cutting machine, M. B. Flynn 143,685 Sewing machine corder, J. G. Powell 143,589
148,695	Sewing machine table, W. H. Boyer 148,6.1
143,573 143,555	Sewing machine treadle, S. B. Bushfield, (r) 5,595 Sheet metal bending machine, C. F. Brand 143,558
148,584	Shovel handle, Pomeroy & Owen
5,597 143,567	Shutter fastening, J. A. Morris 143,585
5,598 5,599	Skins, removing dirt from, C. Turner 148,733 Soap, Surface to hard, W. V. Wallace 148,601
143,785	Spark arrester, locomotive, M. Brassill 143,664
143,613 143,590	Spirits, distilling alcoholic, C. Andersen 143,654 Square, protractor, rule, etc., C. J. Shoff 143,595
143,592 143.680	Stirrup, N. C. Thompson 143,732 Stone, artificial, W. E. Ferslew
143,636	Stove, J. G. Widman, (r) 5,605
143,638 113,716	Stove, base burning, A. Hathaway
143,720	Tag fastener, J. M. Goodridge
143,593 143,728	Telegraph, printing, L. T. Lindsey 143,702
143,646 143,560	Telegraph circuit, L. T. Lindsey
148,624	Thill coupling, J. C. Thompson 148,596 Thrashing machines, separator for, S. R. Perkins 143,588
143,628 143,582	Trap, animal, B. F. Smith 143,727
143,576 143,669	Uterine supporter, A. C. Byam
. 148,721	Wagon, dumping, Greer & Thomason 143,570
. 143,612 . 148,559	Wagon seat, I. Powers
143,618	Washer cutter, H. E. Whipple 143,788 Washing machine, Nixon & Babcock 143,709
143,683 143,616	Watch key, Allen & Hall 148,653
143,667 143,6 8 6	Watch, double stop, A. Frankfeld 143,619 Water, purifying, G. Demailly 143,676
143,579	Water traps, forming, W. A. Butler 143,665 Wool, etc., cleansing dyed, J. E. Ackroyd 143,603
5,601 143,631	
143,565 143,707	APPLICATIONS FOR EXTENSIONS. Applications have been duly filed, and are now pending
143,599	for the extension of the following Letters Patent. Hear-
148,654 148,708	'ngs upon the respective applications are appointed for the days hereinafter mentioned:
158,557	26,860MAKING TINWARES. J. Olmsted. Dec. 31.
143,663 143,694	26,952.—LAMP.—G. Neilson. Jan. 7. 30,467.—SINGEING PIGS.—A. Denny et al. Jan. 14.
143,642	EXTENSIONS GRANTED,
. 143,723 . 143,696	25,796JACQUARD MACHINEA. Babbett.
143,698 143,632	25,797.—HARVESTER.—E. Ball. 25,807.—HEM FOLDER.—L. Clark.
143,566	25,814SLEEPING CARJ. Danner.
148,677 148,605	25,848.—CULTIVATOR.—T. McQuiston. 25,862.—WEEDING Hok.—J. M. Adams.
148,78 ₀	25,867COVERING SADDLE TREESJ. Maclure.
143,583 143,739	DISCLAIMER.
143,681 148,680	25,796.—JACQUARD MACHINE.—A. Babbett.
148,675	DESIGNS PATENTED.
143,629 143,656	6,956.—DOOR KNOB.—J. O. Hollis, Boston, Mass. 6,957.—RUBBER BOOT.—L.L. Hyatt, New Brunswick, N. J
148,614 148,729	6,958.—STOVE.—J. Martino, Philadelphia, Pa.
143,678	6,959.—PICTURE FRAME, ETC.—J.Nonnenbacher, N.Y.City 6,960.—STATUE.—J. Rogers, New York city.
148,713	6,961KITES. M. Simonds, Philadelphia, Pa.

6,961.-KITE.-S. M. Simonds, Philadelphia, Pa. TRADE MARKS REGISTERED.

1.488.-BLACKING.-L. Amson & Co., New York city. 1,489.-BLACKING OR GREASE.-L. Amson & Co., N.Y. city. 1,490.-BARRELS OF WHISKY .- Derby et al., St. Louis, Mo. 1,491.-CORSET SPRINGS.-F. L. Egbert, New Yo 1.492.-SHIRTS.-Kohn & Co., Philadelphia, Pa. York city. 561 1,493.-BRUSHES.-J. M. C. Martin, New York city

Mail pouch holder and catcher, B. F. Bean. 143,657 Mail dryer, W. W. Hughes (r). 5,602 May exhibitor and cabinet, W. A. & G. Rice. 143,657 Matter, composition of, G. T. J. Colburn (r). 5,596 Measure, tailor's, J. Beaudry. 143,556 Metal working machine, H. B. Sevey. 143,556 Moth der, E. M. Naramore. 143,657 Nut device, divided, F. A Huntington. 143,662 Ores, reducing, J. H. Boyd. 143,662 Organs, pneumatic action for, T. Winans. 143,662 Or appel to Examiners. 143,662 On appleat to for Estension of Patent. 143,662 On appleat to Examiners. 143,662 On application for Estension of Patent. 143,662 On application for Estension of Patent. 143,662 On application for Estension of Patent. 143,662 On application for Design (3/ years). <t< th=""><th></th></t<>	
--	--

E