THE GREAT BRIDGE AT ST. LOUZS.
In former numbers of the ScIEntific Americans, we have given rarious interesting details pertaining to the remarkabe work involved in building the granite piers of this great example of engineering. We have also given various illus- abutments to the piers, east and west, the arches have a trations thereof, and of the superstructure. We now pre- apan of 502 feet; the central arch from pier to pier has a sent an engraving which will intelligibly illustrate the inge-
and west abutment towers to piers in the river. From the
in July, 1874. The following interesting particulars are de ived from a letter in the New York Times :
The river is spanned by three arches springing from east abutments to the piers, east and west, the arches have a
apan of 502 feet; the central arch from pier to pier has a span of 520 feet. These arches are of cast steel. Th

top and bottom row form what is technically called a chord, and theaessed united togetherby main braces in the form of the letter A. The two chords are united laterally by huge ie rods. That is the whole principle of the matter.
The modus operandi is as follows: The tubes are brought and arges underneath the place where the men are working, and are elevated by a small stationary engine. The ends of the tubes are so nicely grooved that they fit in very tightly, even without the couplings. They are grooved also on the outside, to correspond with the grooves and fillets of the couplings. When the latter have been applied, an enormous pin, with a diameter of fire inches and π weight of 100 pounds, is screwed through the couplings, going, of course, also through the united ends of the two tubes. The bridge being double, there ore tight rows of tubes, making, for the side arches 340 to the span, and 342 for the central one. The menare warking now on the eastern half of the bridge, the other being in such a forward state that it has to be neglected until the rest of the work ba lances it. In this gigantic work the utmost thought of little things is imperatively nteded. The moment that one tube is in place, the tube that b lances it on the other side of the pir must be putinto position. The strain upon the iron cables that support the tubes until they form a perfect arch is regula ted to a pound weight by mean of bydraulic rams. When the temperature rises the cables stretcb, and the whole fabric of uncompleted arching sinks a litt'e. It has to be raised up, and the 1 ams do this by taking a little gentle pull upon the cables, or, as the mariners would say, "hauling taut." This is effected by pumping e little glycerin into the rams If, on the contrary, the tem perature fails, the cables cun tract and tilt up the arching a trifle more than is required. Then the watcher over the rams has to pump out a little glyce rin and the pressure on the cables is relaxed. This little place where the rams are mas be considered the great artery of the work. The perfect con trol that Captain Eads and his assistant have over their offspring is sometimes evinced in an amusing way. The me thod of construction to pre serve the just balance is reatu rally to build the tubes half way from each side of a pier at the same time, so that one half balances the other half. The engineers commenced in this mann \in r with the pier near est the western bank, building up, at the same time, the tu bing from the western abut. ment. When the latter met the western half of the first pier, the extremely hot weather had expanded the metal, and the tubes would not unite. Baron Fladd immediately bought hundreds of bales of gunny bage, and packed the recalci trant tubes in ice. All nigh the thermometer kept rising but the ice did its work, and they came togerlis r so closely that you could not have seen daylight bctween them. The same result co..ld have bee obtained by blasts of cold air but the Keystone Bridge C'om pany, of Filtsburgh, who have the contract for the super structure, were in a hurry to close the western arch, so the
nious manner in which the plectag of the superatructure is bridge being double, the arches are double, but the principle ice was used.
being executed. This work is now proceeding at St. Louis, can be more easily shown with one part; for as it is built. it The workmen now thoroughly understand the landling of and by its novelty attracts the attention of enginears from is really two bridges joined together, and it could be made the tubes, and are putting them together on the eastern half all parts of the world. The chiof engiaer of this great indefileoly broader or narrowor acsording to requirement. at the rate of twentr-four a day. The f-ames, from which work is Captain James B. Eada, of St. Louis, to whoie fame The arch ls composed of tubes, each twalre feat in length, the long curves of tubing stand, areall insortad. Tuese are as 8 mmn of sclence the succees of the atructuse will add joined tagebler by most admirable couplings. There are called skewbacts, and are of wrought iron, fo rged in onc many laurels. It is expected that tho bridge will be finisbed four sets of tubes, arrangod two above and two below. The piece of three tung-a rery creditable specimen of the handi-
work of Pittsburgh. The first tube, which is very short and that science is debarred from studying the internal mechanstout, is screwed to this with four steel bolts, five inches in ism of a molecule which she cannot take to pieces any more diameter, which go back into the very bowels of the pier, twenty-eight feet, and are then driven through an anchor plate. This fact will give a better idea of the huge masses of masonry serving as piers than any formal statements or measurements. The men engaged in the construction belong to a class which American enterprise has called into existence. They are bridge builders, working at nothing else;
and though not scientifically educated, have a rough and and though not scientifically educated, have a rough and
ready comprehension of the work they do, which tends to ready comprehension of the work they do, which tends to
elevate their minds. They are trained to perfect exactitude in the smallest details. If a bolt does not fit perfectly, there is no thought of assisting it promptly with a sledge hammer; but there is an instant conclusion that, by some accident, the bolts have become mixed, and that this is not the special bolt for that particular hole. For down to the minutest scrap of iron, everything has been fitted at Pittsburgh, and must fit here. To nearly fit will not do ;it must absolutely fit. The consequence of such exact training is exemplied in the conduct and manner of the men who are, without exception, the most intelligent and orderly body of workmen I have ever seen. With such men rapid progress is certain, and there can be no doubt that the arches will be completed before the end of November. But the bridge will not be finished then, by any means. The roadways have to be built upon it. The upper one will be for omnibuses, foot passengers, etc., the lower for a double tracked railway. passengers, etc., the lower for a double tracked railway.
These two will be supported by struts, the longest of which These two will be supported by struts, the longest of which
near the piers, will be 56 feet, and then gradually diminnear the piers, will be 56 feet, and then gradually dimin-
ished as they approach the center of the arch. These struts will rest upon the heads of the couplings where the tubes are strongest, and, as only a direct weight comes upon them, will be able to bear five times more than the bridge company will ever permit; for the transit of trains will be entirely in the hapds of the company's officers.

Molecules.

/ Professor Clark Maxwell lately delivered an interesting lecture before the British Association upon molecules, by which is meant the subdivision of matter into the greatest possible number of portions, similar to each other. Thus, if a number of molecules of water are combined, they form a mass of water. Molecules of some compound substances
may be subdivided into their component substances. Thus the molecule of water separates into two molecules of hydrogen and one of uxygen.
The ancient atomic theory, described more than two thousand years ago by Lucretius, was that the molecules of all bodies are in motion even when the body appears to be at rest, and this is the accepted theory of today. In the case of
solids, these motions are confined within such narrow limits solids, these motions are confined within such narrow limits
that we cannot, even with the microscope, detect any alteration in their positions. But liquids and gases may be subjected to experiments which afford convincing proofs of molecular mo:ion. If the gases of ammonia and hydrochloric acid, for example, be placed in a glass tube, with a stratum
of air between, the lighter gas, ammonia, above, the gases diffuse through the air and produce a white cloud when they meat
Air confined in a vessel presses, as we say, against the wall thereof. What we term pressure is simply the impact of the moving molecules against the interior surfaces of the vessel. The amount of the pressure depends upon the number of molecules of air or gas within the vessel. By the application of heat,the movement of the molecules is increased in velocity, and such increase of course causes each molecule to strike harder against the walls of the vessel; in other words, the pressure is increased; the law of such increase of
pressure being as the square of the velocity of the molecules. Dr. Joule has calculated the velocity of hydrogen mole cules, at the temperature of melting ice, at a little over 6,000
feet per second. The molecules of ammonia move about feet per second. The molecules of ammonia move about
2,000 feet per second. The molecules of common air move with a velocity of seventeen miles per minute; and if they all moved in the same direction, nothing could stand such a wind. But molecules constantly impinge against each other;
and by this contact, their directions of motion are incessantly and by this contact, their directions of motion are incessantly changed.
${ }^{3}$ Professor Maxwell has calculated the size and weight of bydregen molecules, and finds that about two millions of
them, placed side by side in a row, would occupy a length them, placed side by side in a row, would occupy a length
of about one twenty-fifth of an inch; and that a package of them, containing a million, million, million, million of them, would weigh 62 grains, or not quite one eighth of an sunce.
Each molecule throughout the universe,says our author, tinctly as does the meter of the archives at Paris, or the double royal cubit of the Temple of Karnac.
No theory of evolution can be formed to account for the similarity of molecules, for evolution necessarily implies oontinuous change, and the molecule is incapable of growth or decay, of generation or destruction. None of the pro cesses of nature, since the time when Nature began. have
produced the slightest difference in the properties of any produced the slightest difference in the properties of any
molecule. We are therefore unable to ascribe either the existence of the molecules or the identity of their properties to the operation of any of the causes which we call natural. On the other hand, the, exact equality of each molecule to all others of the same kind gives it, as Sir John Herschel has well said, the essential character of a manuHerschel has well said, the essential character of a manu-
factured article and precludes the idea of its being eternal factured article, and
Thus we have been led, along a strictly scientific path;
than from investigating an organism which she cannot put together. But in tracing back the history of matter, science is arrested when she assures herself, on the one hand, that the molecule has been made, and on the other that it has the molecule has been made, and on the other that it
not been made by any of the processes we call natural.
Science is incompetent to reason upon the creation of matter itself out of nothing. We have reached the utmost limit of our thinking faculties when we have admitted that, because matter cannot be eternal and self-existent, it must
have been created. It is only when we matter in itself, but the form in which it actually exists, that our mind finds something on which it can lay hold. That matter, as sucb, should have certain fundamental properties, that it should exist in space and be capable of motion, that its motion should be persistent, and so on, of motion, that its motion should be persistent, and so on,
are traths which may, for anything we know, be of the kind which metaphysicians call necessary. We may use our nnowledge of such traths for purposes of deduction, but we have no data for speculating as to their origin. Buttlat
there should be exactly so much matter and no more in every molecule of hydrogen is a fact of a very different order. We have here a particular distribution of matter, collocation, to use the expression of Dr. Chalmers-of things which we have no difficulty in imagining to have been arranged otherwise. The form and dimensions of the orbits of the planets, for instance, are not determined by any law f Nature, but depend upon a particular collocation of mat er. The same is the case with respect to the size of the earth, from which the standard of what is called the metrical system has been 'derived. But these astronomical and errestrial magnitudes are far inferior in scientific impor the base of the mundamental of all standards which form know, are at work, which tend to modify, if they do not at length destroy, all the' arrangements and dimensions of the earth and the whole solar system. But though in the course of ages catastrophes have occurred and may yet occur in the systems evolved out of their ruins, the molecules out of which these systems are built-the foundation stones of tie material universe-remain unbroken aad unworn. They continue this day as they were created, perfect in number and measure and weight; and from the ineffaceable characters impressed on them we may learn that those aspirations after accuracy in measurement, trath in statement, and ustice in action, which we reckon among our noblest attri butes as men, are ours because they are essential constitu-
ents of the image of Him who in the beginning created, not only the heaven and the earth, but the materials of which heaven and earth consist.

Odd Fish

The summer's work of the American Fish Commission is of unusual interest from the fact that a large number of queer marine animals have bsen brought to the surface by the improved dredging apparatus employed; and, besides, much valuable information has been added to our knowledge regarding the habitat of various fishes and mollusks. A corespondent of Forest and Stream epitomizes, in an interesting communication,the labors of the scientists who have con
ducted the explorations, and we extract therefrom the fol owing particulars regarding the progress and discoverie made: A live calista convexa (a species of clam), brought up
in Casco Bay, has, it seems, upset the opinion that it n Casco Bay, has, it seems, upset the opinion that it
was extinct so far north. Quohogs, which once existed in plenty and the shells of which are found in the Indian shell mounds which cover Peak's Island on the coast of Maine, are now obtained only in a little cove in Casco Bay; while oyster shells, to which a saddle rock is but a pigmy, are hickly planted below the bottom of Portland Harbor, though living organisms their species is now extinct.
Down in these ocean depths, the animal kingdom takes from the fioral tribe the duty of embellishment ${ }_{3}$ but these fowers wave their graceful petals but to entrance a victim, which, wheu seized, is pressed close to its mouth and then, even if larger than its captor, is swallowed whole. Holding tightly to its prey, the sea anemone gradually protrudes its stomach from its mouth; and turning it inside out,envelopes its dinner and then lies quietly waiting the death of its food and subsequent digestion. Then such portions as are not uitable are rejected, and the stomach is again stowed away for future use. The sea cucumber (pentacta frondosa) is
another curious creature. First found, it is a small compact another curious creature. First found, it is a small compact
gherkin: but left to itself, it swells and developes into an immense cucumber. Two magnificent specimens of a star fish known as a gomaster phrygianus were found in deep water, where an almost icy temperature made for them a constant winter. They are four or five inches from point to point, and of a deep scarlet hue with a surface embossed like shagreen. Hundreds of a pale straw colored star fish (clenediscus crispatus), hitherto esteemed very rare, were brought ap from these icy depths. Three large specimens of a rare and beautiful auemone (urticina digitata), the first perfect
ones ever found, were also obtained, a discovery of interest ones ever found, were also obtained, a discovery of interest
from the fact that none of the species have been recorded as from the fact that none of the species have been recorded as
existing nearer the coast than George's Bank and at a depth of 400 fathoms.
Worms predominate in the hauls of the dredge. Many orts and sizes were fonnd, from tiny creatures, the peculiarities of which are distinguishable only under the microscope, to the grand cerianthus borealis, one of the anemone family, a foot in length. All have the same style of house, and exude from their bodies a slime, which probably has chemical af-
adhere. One specimen caught had a tube around him, an nch in diameter and a foot in length. He was thrown into a basin of water where he moved rapidly about, evidently ill at ease. The next day he was lying quiet; and about his neck was a ring of mud formed from the floating particles in neck was a ring of mud formed from the floating particles in
his prison. During the evening, he was found stretched out at full length, trying to swallow an anemone that had been imprisoned with him.
The hermit crab is a common but curious creature, resembling a little lobster, armed with powerful claws and a very thick breast plate. He is a quarrelsome customer; bat unfortunately for him, the after part of his body is soft and defenceless. Left to his own resources, he is a great coward, but gets an accession of bravery when he discovers an empty univalve shell. This he ey amines inside and out, urning it over and over until satisfied that there is no weak place in the rear, when he passes into it tail first, and then, calmly folding his strong claws across the entrance, is ready for the fray. When a larger crab finds a shell that suits him, in which a smaller one of his own species has already taken refuge, he unceremoniously inserts a claw and drags the little one out. The shell becomes the home also of a beautiful hydroid which appears like a velvet coat of waving fibers. These, seen through a nicroscope, resolve themselves into a triune creature, three bodies on one stem, each with its special function to perforn, making one little single life One body absorbs food, another reproduces the young, while a third, armed with tiny jaws, defends the little community against other creatures still smaller.
Another odd specimen found was the goose fish or lophius Americanus. It is about two and a half feet long, a flat, thick mud-colored, mis-shapen monster, whose small fins proclaim it not a rapid swimmer. Burrowing close to the mud, it elevates two little fishing rods, each about twelve nches in length, formed of a stiff elastic substance like the spine of a catfish. These spring from the upper part of the nose ; and when not in use,lie back flat upon the head. When nose ; and when not in use,lie back flat upon the head. When
the first wants his dinner, however, the rods are raised at he first wants his dinner, however, the rods are raised at
various angles and moved slowly about; on the end of each various angles and moved slowly about; on the end of each
dangles a red muscular fiber which dilates and contracts like a worm. Attracted by this bait,the unsuspicious pollak attempts to appropriate it. Slowly the goose fish lowers its ip, and then suddenly engulfs the unwary victim in its mouth, which, set with great fangs, opens like an old fashowed carpet bag.
Another curious find was the egg of a skate, seemingly dark colored case, of texture somewhat like a beetle's back, but tougher. It was shaped like a fisherman's creel, a recangle with the ends cut out, leaving a square center with four projections on which to wind the line. The egg shell is not unusual and can be found on savdy beaches, thrown up by the tide, dried and empty, looking like the husk of some nut. The specimen found was opened, and the litule creature released and placed in a basin of water, where it mained attached and appeared quite as large as the egg

Regular Eating.

Half of all ordinary diseases, says Dr. Hall in his Journal of Health, would be banished from civilized life, and dys. pepsia beco e almost unknown, if everybody would eat bat thrice a day at regular times, and not an atom between meals, the intervals being not less than five hours, that being the time required to digest a full meal and pass it out of the stomach.
If a person eats between meals, the process of digestion of the food already in the stomach is arrested, until the last which has been eaten is brought into the condition of the former meal; just as, if water is boiling and ice is put in the whole ceases to boil until the ice has been melted and whole ceases to
brought to the boiling point, and then the whole boils toother.
But it is a law of nature that all food begins to decay, after exposure to heat and meisture for a certain time. If a meal is eaten, and in two hours another, the whole remains undigested for seven hours, before which time the rottening process commences, and the man has his stomach full of carrion -the very idea of which is horribly disgusting.
As, then, all the food in the stomach is in a state of fermentive decay, it becomes unfit for the purposes of nutrition and for making good pure blood. Small wonder is it that dyspeptics have such a variety of symptoms, and aches, and complaints in every part of the system, for there is not one drop of pure blood in the whole body; hence, the nerves. which feed on this impure and imperfect blood, are not properly nourished and, as a consequence, become diseased. They '" complain"; they are hungry-and like ahungry manare peevish, fretful, restless. We call it nervousness, and no one ever knew a dyspeptic who was not restless, fretful, fidgety, and essentially disagreeable, fitful and uncertain. which are broughtinto requisition in the processof digestion. But no muscle can work always. The busy heart is in a But no muscle can work always. The busy heart is in a
state of perfect repose for one third of its time. The eye state of perfect repose for one third of its time. The eye
can work twice in a second, but this could not be continued five minutes. The hands and feet must have rest, and so with the muscles of the stomach; they only can rest when there is no work for them to do-no food in the stomach to digest. Even at five hours. interval, and eating thrice a day, they are kept constantly at work from breaifast until the last meal is disposed of, usually ton oflock at right." But multitudes eat heartily within an bour of bed time; thus, while the other portions of the body are at rest, the stomach is kept laboring until almost daylight, and made to begin again at breakfast time. No wonder is it that the stomach is worn oüt-bas lost its power of action. Many girla be-
come dyspeptic before they are out of their teens, in conse quence of being about the house and nibbling at everything they lay their eyes on that is good to eat.
In the Chronique de la Société d' Acclimatation, M. Ruime states that, by feeding silkworms on vine leaves, he has ob tained silk of a fine red color; and that by giving the worm lettuce leaves, they have produced cocoons of an emeral green color. M. Delidon de St. Gilles, of Vendée, has also by feeding silkworms-during the last twenty uays of th larva period-on vine, lettuce, and nettle leaves, obtained green, yellow, and violet cocoons.

The Ayrshire Cow.-The Ayrshire is bred, and has been bred, for milk; her inheritance is all in the line of milk pro ducing. Her form indicates it ; her records prove it. When aged and dry, the same functions which ordinarily fill the udder fill her muscles with fat; but while milking, inheritance, intensified yearly by selection, turns the energies of her system towards extracting materials from her food, and secreting the larger and richer part in the udder. As the shorthorn stands with the grazier, who has tried their qual ity, so does the Ayrshire stand with the dairyman. By seek ing improved breeds, the farmer is adding materially to th profits of his farm, for he is utilizing the great power and unerring certainty of inheritance.-Dr. Sturtevant.

Hecent 2mericar and foreigu eatents.

Improved Apparatus for Extracting Cane Juice.
ncan Moffat, New Orleans, La.-This invention consists in the arrang ment of a holding device with the delivery rolls of the mill and the rotary cutting apparatus; also of a vat containing a secondary steaming compart-
ment under the one into which the crushed and chopped cane is first recelved, containing revolving chopping and beating blades; also, stationary ones to continue the disintegrating process until the cane is reduced to
pulp. The bottom of said compartment is perforated to filter the juice from the pulp as much as possible; and has a spout leading from it to con duct the pulp to an endless carrier, by which it is delivered to pressing
ollers to expel the remaining juice. The two compartments of the steam rollers to expel the remaining juice. The two compartments of the steam.
ing vat are separated by a valve, which is turned from time to time to dellv ing vat are separated by a valve, which is turned from time to time to deliv-
er the cane to the lower compartment in batches, which have been subject ed to the steam in the upper compartment a suffcient length of time. Be low the filtering bottom of the lower compartment there is a trough, whic
the evaporator
Improved Needle Threader for Sewing Machines. needle threador is of thin sheet metal, and the instrument may be placed in an upright position. At one end of the handle is a forward projecting
guide piece which passes up and down along the side of the needle, until a gulde piece which passes up and down along the side of the needle, until a
hook strikes the eye of the needle and enters through it. The hook has a curved end of very small size, which takes up the thread and draws the same
back through the eye of the needle. The rear part of the hook is bent in U shape, and held in a groove in handle by means of a plate and screw. A small set screw regulates the distance of the hook from gulde plece, to be adjusted to needles of different thicknesses. At the other end of hanille a to the bedy of the handle, so that needles may be threaded from the sides, to the bedy of

Improved Propelling Mechanism for Vessels. Lindsay Murdoch, Marble Hill, Mo.-This invention consists in a horizon. ally siding frame and a bar carrying at its lower end paddle foats sllding
vertically therefn aña horizontally therewith. By this arrangement the paddles have parallel vertical and horizontal motlons, so that they are pre-
sented to and leave the water edgewise and move against it directly in the sented to and leave the water
line of the motion of the boat.

Improved Saw Sharpening Device.
John B. Drake, Goshen, Ind.-The fle gulde has, at one end, Jaws to hold
the flle, and is rounded at the other to slde in a hole through an adjustable gulde, by means of which it may be placed at any desired hight. This apps zulde, by means of which it may be placed at any desired hight. This appa-
satus is applicable to vertical saws as well as to cireular saws. By means of it the file is carried in a straight line acress the saw.

Improved Automatic Fire Escape for Safes. Ira Parke, Mineral Point, Mo.-It is proposed to have a safe resting on a
Iratform having wheels, and pivoted at one end. while the end next to the platform having wheels, and pivoted at one end. While the end nest to the
wall of the building is suspended by an easily com'uastible rope or other contrivance, to be destroyed by a fuse or a gun discharged against it, or
burned off to let the platform fall. The platform, which is arranged in front of a trap door in the wall opening into the street, is to unfasten the
door in its fall and force it open, and the door is to form a continuation of door in its fall and force it open, and the door is to form a continuation of
a descending track, of which the platform is the other part, on which the
safe will roll into the street, and thus be saved from the fre. Fuse may be aafe will roll into the street, and thus be saved from the fre. Fuse may be connected with the suspending rope, and arranged throughout all parts of
the bullding, to ignite the rope or discharge the gun against it when the fire the building, to ignite the rope or discharge the gun againg and
Improved Tap Holder Attachment for Beer Coolers.
Joseph Hyde Fisher, Chicago, Inl.-This invention consists of an attac ment to beer coolers for packing the hole through which the fancet projec to prevent the escape of the cold air, which is composed of metal clamping rings, and a rubber packing ring, arranged in two parts, of which one is
fastened to the box, and the other to the door, in connection with the tap fastened
hole.
Improved Boy's Sled.
Samuel D. Mott, Milford, Pa.-The rear ends of two springs are
secured to the framework of the sled, to the forward ends of which it secured to the frame work of the sled, to the forward ends of which is
attached a cross bar, in such a position that the rider, when sitting upon the sled, may rest his feet upon the said cross bar, etther upon the outer or Inner sides of the side frames of the sled, as may be desired. To the center
of the cross bar is pivoted a sminl runner, whitch is made of a much less of the cross bar is pivoted a smill runner, which is made of a much less
hight than the sled, and the springs are made of such a strength as to hold hight than the sled, and the springs are made of such a strength as to hold
the sald runner away from the ground, except when pressed down by the
rider's fet resting upon the cross bar. Ider's feet, resting upon the cross bar. To the runner is attached a cross to the ground with his feet, and pulling upon one of the cords, therider can incline
Bired.
Francis J. Coutant, New York city.-Thits invention rela
struction of stamps for certifying checks and for similar purposes, having spectal referenoe to what is known as the "ribbon stamp;", and consists in
a fountain for the ink and in a movable pad. The shafts being immersed in a fountain for the ink and in a movable pad. The shafts being immersed in
ink, the ribbon tis of course saturated with it. As the ribbon is drawn from the fountain it passes between two packing pleces, the object of which is to strit off the surplasiny from the ribbon and to keep the fountain closed.
These packing pleces are made of elastic matertal,oompressed by means of the motalic plates and screws. After leaving the packing pleces, the ribbon is drawr overthe rollers and beneath the type plate, and then apward and into the fountain. By this invention the troable and expense of frequently renewing or saturating the ribbons are avoided. The pad, by means
of a lever, is thrown upward against the ribbon and type, instead of operating the stamp, in the usual manner, by a blow on the stem. With a pad
constricted intmis manner the stainping may be done with the same hand constricoted in tuls manner the stamping may
that holds the paper, or with one hand.

Improved Metal Planing Machine
John T. Kichner and Willam H. Odenatt,Phlladelphia, Pa is spectally designed for planing the valve seats of locomotive and othe engines, it being secured to the engine by screwing its stand bolts into the
holes of the steam chest bolts when the steam chest is removed, and to oles of the steam chest bolts when the steam chest is removed, and to
dapt it for attaching it to different engines, in which the holes vary in the dapt it for attaching it to different engines, in which the holes vary in the
distance apart. The top frame or disk on which a revolving disk is arranged is provided with short radial arms for attaching the stand bolts to, whic are adjustable radially and circumferentially. The feed screw is turned by a star wheel, which is brought
each time it makes a circuit.
Improved Car Coupling.
August Schorg and Benfamin Van Valkenburgh. Cobleskill, N. Y.-A band Which slides on closes the drawhead, and is operated by aforked lever. The
drawhead is made in two parts, one of which is attached rigidly to the ruck by means of clips. The other part is hinged, and drops down by its he mouth and opening of the drawhead, and are held firmly together by the band when the latter is slipped forward. At the top and bottom of the lange is a loop, which the forks of the lever enter. The lever is held in positon by means of a forked iron attached to the timber of the truck. The well as to fasten. When the handle end of the lever is thrown up to the the coupling link confined. In this position the lever is confned by a pin in the forked fron. When the lever is thrown outward, the band is thrown back, which allows the part of the
thelink of the opposite coupling

Improved Apparatus for Graining Wood, etc.
Charles Falke, New York city.-In using the extension roller, the requi site width of the article to be grained is frst taken, and the apparatus is
then adjusted by loosening the handle frame, setting the female screws and shells to the desired width, fastening the handle frame again, Inserting ver the color board, which leaves the imprint of its grain on the peripher of the cylinder. The grain marks are thence transferred to the surfaces to e grained.
Improved Nut Lock.
Daniel Sawyer, Washington, Ind.-A washer plate is placed upon the olts before the nuts are screwed on, to which is secured one ormore plece of stee', which are made thin and fastened edgewise, and upon the upper ably upon the side next the nut to be locked. A plate is pivoted to the pleces near one end, and is slotted so that it may be turned down upon the washer or turned back. The inner edge of the slottel plate is turned up a ightangles, and the steel piece is placed at such a distance from the nut oo be locked that the turned up part of the plate may rest against the side of the nut, and thus prevent the said nut from turning. By this construc
tion, when the plate is turned down, the steel plece passes through the lot in the plate and the spring springs out over the sald plate preventing from rising.
Improved Snow Plow.
William J. Roberts, Cold Spring, N. Y.-A revolving bucket wheel is arranged in front of the locomotive on a vertical shaft, and is revolved by
meansiof a belt,or geartng maybe substituted, from a pullev on the axle of means of a belt, or gearing maybe substituted, from a pullev on the axle of
the locomotive to the pulley on the vertical wheel shaft. The wheel is the the
frustum of a solit cone. The outer edges of the bucketsare parallel with the side of the cone, the ends belng cut on the plane of the base and upper surface of the cone. A loose upper clutch revolves with the shaft, and it dropped down by mesns of a screw or otherwise, and engages with the
pulley clutch when it is deaired to run the snow plow. As the locomotive moves forward
Improved Fsucet Attachment.
James Church, St. Louns, Mo.-This Invention consist of a cup of inalarubber or other elastic material, or partly of elastic material and partly of
netal, combined with the faucet in such a manner that, when the barrel is tapped, by driving the corkintot the barrel with the end of the faucet, the
cup will prevent the escape of the liguid while the fancet is being adjusted and before it is made sumclently tight to stop t te leak.

Improved Refrigerator.

Charles Camp, Mott Haven, N.Y.-Thisinvention consists in a removable ce box, fitted into the upper part of the smaller of two compartments of the main box, so that it may be conveniently taken out and put in when
desired. The cold air from the ice chamber passes through a pipe and into a horizontal hollow shaft, and escapes through the holes in the dee of sald shaft. To the end parts of the hollow perforated shaft ar
attached two four-armed plates, to the ends of the arms of which ar pivoted the turned up ends of shelves, so that the sald shelves will always hang downward and be right side up, however the shaft may be turned This construction enables any desired shelf to be turned toward the doo
so that anything can be readily put upon and taken from it. The shelve oo that anyting secured the shelv the front of the box through the end wall of the satd box, so that its for vent tif from turning.

Improved Washing Machine
Arthur M. Campbell, Fline's Grove, Pa.-This invention consists in the
combination of the binding frame with the suds box of a washirg machine o strengthen said boxagainst the pressure of the operating mechanism In the U spring, in combination with the lever and the rigld arm attache
o the presser board, which allows the end of the lever to be readily adjuste the
upon the arm to adjust the presser board to the amount of clothes to be operated upon. By sultable construction, as the presser board moves for ward, the clothes are pressed bet ween sald presser board and a stationary
presser board, pressing out the water, which carries the dirt with it. As the presser board, pressing out the water, which carries the dirt with it. As the
presser board moves back, the back rush of the water sweeps the clothes back from the stationary board, and turns them over so that they are ope rated upon by the presser each tim
cleaned thoroughly in all their parts.

Improved Printing Press

Jacob G. Peterson, Morgantown, N. C.-The rollers are arranged in a re ciprocating carriage, which is suspended on the type bed by the upper
roller. The bearings of the lower roller are immovable in the carriage The bearings of the upper roller are capable of moving up or down in the carriage, and have an adjusting screw by which the pressure of the rollers
in the bed is regnlated. The carriage has two toothed bars, extending in the bed is regnlated. The carrlage has two toothed bars, extending
from one side, between two wheels on the crank shaft and the presser from one side, between two wheels on the crank shaft and the presser
rollers, which are mounted in stationary housings. The crank shaft being urned forward and backward by a half revolution each way will cause the makes the impression forward beyond the type and back again, whic raised, the printed sheet is removed, and an unprinted sheet is applied, and the tympan is lowered for the next operation.
Improved Quilting Attachment for Sewing Machines.
Willam H. Null, Blandinsville, Ill. -This invention relates to an improver ment in the class of machines for supporting, stretching, and moving quilt or other fabrics across the feed plate of a sewing machine; and consists in a peculiarly constructed carriage and a tilting roller frame, on whith it it
supported, and in devices for holding and adjusting the fabric.

Improved Plow Carriage

consists of independent axles for the truck wheels, having a long upright arm at right angles to
them inside of the wheels, said arm having a series of holes at short dis. tances apart, and connected by a short axle, which can be shifted higher or lower by changing it in the holes. From the center of this arm the beam the lower a crotchet hanger, and is oonnected by adjustable braces with de lower ends of the arms to matntain them in the upright position. The
depth of the furrow is governed by the position of the suspending axile in the arms, and the plow is supported entirely above the groand, for trans.
$\left.\begin{array}{c}\text { Improved Pruning Iustrument. }\end{array}\right]$
Willam H. Collings, Raytown, Mo.-A pole of any desire
Willam H. Collings, Raytown, Mo.-A pole of any desired length is made pper end of the wire is cut a thread to screw into the shank of the saw Which projects above the end of the pole, and fits into a dovetalled groove or socket in the side of a ferrule attached to the upper part of the pole,
where it is secured by a set screw. By this construction, in using the intrument,the hook is passed over the twig to be cut, and the wire pulled own through the pole. The saw is operated by the reciprocating move

Improved Selt-Closing Faucet Attachment.
redrick Mertshelmer, Omaha ebraska.-An inside collar, at the end of the faucet tube, serves as shoulith its other end againsta a shoulder of the same. Apertures at the end the valve allow the liquid to pass out through the tube when that end oojects outside. A solid extension of valve, of smaller dlameter than e same, is threaded, and holds, by nut, a soft rubber disk and a stralne the end of the tube. he spiral spring and nut, the disk is pressed firmly against the end of the ube, closing the same effectively, so that no liquid can escape. The faucet hen 1 t is desired to draw off the fuid, is turned in far enought ostrike the alve, forcing the same back, so that the disk is carried toward the inside The Hquid enters, therefore, through the strainer and apertures into the and easily allowed to escape.

Improved Boring and Drilling Machine.

New York city.-This invention has for its object to
 The machine may be adjusted by means of set screws, and its base is ysimply loosing the nuts of said bolts. Screws, which pass down throng he base and rest against the table, enable the machine to be convenientl adjusted horizontally or plumbed, and the boits secure it firmly in place
when adjusted. The upright frame of the machine is made in the hen adjusted. The upright frame of the machine is made in the ther so that the upper and lower parts may be adjusted apon each othe The tool holding shaft passes up through the hub of a bevelgearwheel, s that the sald wheel may carry the sald tool holder with it in its revolution Whlle the sald tool holder may be free to move longitudinally in said whee The latter revolves in bearings in the frame, and engagen, by a gear whee
and also by pulleys and band, with the driving shaft. The shaft is provided nd also by pulleys and bana, with the driving shaft. The shaft is provide heel with it in its revolution, according os one or the other of the clutche is thrown into gear. A three armed lever has forks upon two of its arms, Which enter groores in the clutches, so that one of them may be thrown Into and the other out of gear by a single movemert of the lever. The
third arm of the lever serves as a handle. Power is applied directly to the tird arm of the lever serves as a handle. Power is applied directly to th shaft by means of another shaftm eeting it at an angle and connected with
it by bevel gear wheels To the upper side of the gear wheel, tr rough hich the tool holder passes, and upon the opposite sides of the center, ar ttached studs, the upper ends of which are ennnected by a bar. To the ridale part of the bar is swiveled a screw, which scre of the tool holder, fo that the tool can be fed down to its work or ratse
rom its work by turnirg the said screw in one or the other direction. By sultable mechanism, each revolution of the gear wheel feeds the tool shaf down the distance of one thread of the swiveled screw. By a svitable device, when a female screw thread has been cut, the cutter may be win
drawn from eald thread, allowing the holder to be run out quickly, and without danger of injuring sald screw holder

Impraved Bee Hive.

George Miller, Battle Ground. Wash. Ter.-This invention consists in a mproved bee hive formed of a number of cells, provided wth a roof, and supported by a single shaft or post from a base. A round the foot of the
oost is placed a vessel to recolve water to prevent ants and otherinsect rom crawling up. The main frames are formed of an upper and a lowe olate within the cells, connected at their side edges by two or more bars In the top and bottom plates of the main frames, and miaway between the
side bars of sald moin frames, are formed grooves to receive the top and bottom bars of the single frames, so that the sald frames attached t t them may be drawn out conventently and without breaking or other wise injuring the comb, or the comb in the main frames. The bottom plates of the main frames are slotted. to give free passage wsys to the bees. The lower or open ends of the cells are closed with plates, which are secured in place by but
tons pivoted to the partition walls. The buttons are semicircular in form which ena
the other.
the other.
Improved Propulsion of Vessels. vessel, in improved wave motor for turning the propeller screw of a ship. vessel, or boat. A heavy platform is suspended by plvoted rods so as to
vibrate freely with the pitching of the ship. The after rods are extende each some distance upward; and to their upward ends are pivoted bar hich are also pivoted to vibratoryrods which carryreversen spring pawle. These pa wls move alternately ratchet wheels which a re rigidily attachod to spur wheel. Between these wheels and engaging with both is a small bevel pinion on the propeller shaft,which, by the motion of the two large whee is turned by either alternately in the same direction. The vibrations of the platform are thus uthized and transferred to the propeller. Patents on this continent.
Improved Inclinometer or Grading Level.
Dr. John Thomley, Charlottesville, Va. - This Diver ar to furnish a simple and liexpensive but efccent fustrument for readily ists in applying mason's level, and providingsuc b means for adjustment and clamping the same as will en
cate the grade.
John H. Stockwell, Bronson, Mich Bee Hive.
he honey frame of a bee hive in separate sections, consists in making eaves of a book, thus faciltating inspection, and in making the case in sections, locked detachably by suitable roojectio
Improved Gage Cock.
Albert A. Murray, Ealtimore, Md.-Th's invent
A. Bander in a cock Falve and seat,theformer arranged torotate ε bout the stem in combination
with a spiral spring that yields sufflecently to allow readily the rotation of

Improved Car Coupling.
William W. Haver, Schinyler, assignor to himself, Jamps Atwell, of same place, and William Gates, Frankfort, New York. - The coupling pins are passed through the bumper bead. and are made with shoulders upon their upper ends, which rest upon the upper sides of the bumper hes ds and are secured in place by pins passed through them at the lower side of the said
bumper head. Upon the upper ends of the pins are formed hooks, which point toward the car bodies. The coupling link couples the cars by being themiddle part of the couplinglink and recelves an arm which is pivoted o sald standiard by a pin passing through a longitudinal slot in the sald arm, to give the link the necessary play to accommodate itself to the varrous movements of the bumpers. The other or inner erd of the arm is arm, to the outer end of which is plvoted the lower end of the rod which double stop to hold it in place. By this construction. by raising the rod helink will be ratsed from the hook pins. uncoupling the cars; and when
俗 thig rod is lowered, the hak wal be lowered upon the hook pins, coupling

