IMPROVED FROST LOG DOG.

The engraving shown herewith is a side view of Brown's frost dog, a new and useful device for holding frozen, knotty, or crooked logs while the same are being sawn. The ob. ject is to clutch the log instantaneously and hold it firmly while sawing the first half, or until the \log is cut through and throngl. It is the invention of a practical mechanic and sawyer, who, finding it impossible to hold frozen logs as firmly as desired, with any available means, went to work and, with his jack knife, whittled out the patterns for his device. It has now been in use in circular saw mills in nearly all sections of the country for over tbree years.
The apparatus is bolted down from three tosix feet from the head end of the set beam, where the sawyer has it under his immediate control, and the \log is rolled on the set works in the ordi nary way and left or held in the position desired. By means of the handle, A, on the backside, the whole dog is drawn to ward the log until it comes to a bearing, working in long slides, B, bolted to the set beam. As the operator lets go this handle, it drops down, and is held firmly whereever left by the half circle gear; C. The bottom $\operatorname{dog}, \mathrm{D}$, is next drawn up by the handle, E , at the lift until it touches the log and is held up by the little crank, F, which works in a movable nut. By pressing together, with the thumb and fore finger, the two catches, G, the other dog is instantly placed in position on the top of the log. These catches work in the notched slide, to which they are attached, and to which is secured another movable nut, so that it is impossible for the cog to slip up or down while the catches are in action. The sawyer now turns the top crank, H, on the shaft of which there is a right and left hand thread; thus imbedding both dogs in the log and holding the same immovable until it is entirely sawn, leaving only a thin slab in the clutch of the dogs. If it be desirable to turn the \log when partly sawn, the crank is simply revolved back a half turn, loosening both dogs; then the knee is thrown clear back in the slides by the handle at the back of it, letting the log have a bearing against the knre at the right, as it is turned over with the sawn side against $!$. The op-ration, as before described, is repeated, and the dogs will hold up the last looard firm and solid. It is claimed that the deviceis so arranged that it is simply impossible to run the saw on the ends of the dogs, as the latter are always half an inch inside and clear of the blade.
It is stated that the apparatus can be readily attached by the sawyer to any set works in the country having a beam ruu length wise, and it is now in use in at least one hundred and fifty of the principal mills in New England. The operation of dogging a log, as described, is very rapid, and we learn that the whole sime it takes for the sawyer to fasten serurely a knotty, frozen, hemlock log does not exceed a few seconds.
Patented August 23, 1870, by John S. Brown, of Windham, N. H. For further infornation address the sole manufacturors, S. C. Forraith \& Co., Manoliaster, N. H.

COMBINATION CORN SHELLER, BOOTJACK, ETC.
A hand corn sheller, a bootjack, a hammer, a hook claw
2 tack drawer, a pot lifter, and a wrench, are all combined

in the single instrument represented in our engraving, the oonstruction of which amounts to simply three pieces of metal fastened together by a single rivet. Mr. Anthony Iske, of Lancaster, Pa . is the inventor, and le clearly deserve» credit for no small amount of mechanical ingenuity.
The portion, A, is provided with a hamraer at one end, a falcrum or rest near the middle, and a curved stem, having falcrum or rest near the middle, and a curved stem, having
teeth on one side. The part, B, is S shaped, and its upper
curve is provided with teeth facing those on portion, A. Its lower extremity, C, is formed for drawing gut tacks or lifting off stove lids. The third section, D, is terminated with a hook which adapts it to various purposes. The position of the pivot is clearly indicated. Fig. 1 shows how the implement is used for shelling corn, the ear being introduced vel. tically between the toothed portions and the hammer edge placed upon the table. The shelling is accomplished by a downward motion aud a quick turn of the wrist. When laid upon the floor, as in Fig. 2, on the hammer end being

BROWN'S FROST LOG DOG.

pressed down by the foot of ihe operator, the leg or fulcrum raises
jack.

Not content with all the applications of his device, as above noted, the inventor also suggests that a recess might be arranged in some portion so as to adapt if to cracking nuts.
Patents on combined implements of this kind and simple household contrivances of easy manufacture, without involv og large capital, are the class of inventions most in demand and meet with ready sale.

Hydraulic Mining in California.

Five years ago,fifty inches of water was considered an un usually large quantity for a compeny to purchase, says the Calaveras Chronicle. It was conducted to the claim through a small canvas hose, with necessarily little pressure, and precipitated against the bank from an inch nozzle. The been had no more effect upon the gravel than would were forced to "coyote" under the bank and "cave it down" to get gravel to wash-a slow, laborious and expensive method of procedure. The sluices attached to these primi method of procedure. The sluices attached to these primi. or high, and yet the capacity was ample for the requivements of mining as then conducted. That whole system of operations has been revolationized. At present three hundred inches of water is the minimum employed in any claim that aspires to the dignity of a hydraulic. Iron has taken the place of canvas for hose, and the greater the pressure to be obtained the better. Patent nozzles direct the streams that cut down the bank like grass before the scythe, and the mingled gravel and water find passage from tho mine through a three foot flume. Really, more dirt is put through the sluices of a modern hydraulic in a week that was form erly washed during an entire season. And yet the cost of running cne of the mammoth hydraulics of today is but a trifle, if any, more than the expense of conductiag one of the piddling con. cerns that disgraced the name ten years ago. Water wolks cheaper than hands, and the employment of that element, to the almost entire seclusion of manual labor, is the principal reason why it costs no more to wash a tun of gravel now than it formerly cid to move a single pound.
Hydraulic mining in this country, notwithstanding the progress made during the past two years, is yet in its infancy. A beginning bas scarcely been made. Two thirds of the abandoned ground, from one end of the country to the other, will pay for re-working, and new mines are constantly be ng discovered and opened. As an illustration we will cite one instance: Near Murphys in this connty a gravel mine, one huodred and sixty acres in estent, has tained.
lataly been located and patented. Beyond a little superfcial prospecting no work has befn done upon it, aud yet a tenth interest in the ground was sold for $\$ 10,000$, the other day. Some curious individual has made an estimate of the probable yield of the entire mine, basing his calculations upon the " prospects" obtained. The result of his figaring is that the whole one hundred and sixty acres will sield an average of ninety cents per ε quare yard.

New Mode of Liquefyior Gases

By the application of cold and pressure i suitably contrived machines, all of the gases with the exception of six, nitrogen, hydrogen oxygen, marsh gas, carbonic oxide and nitric ox ide: have been reduced to a linuid condition This liquefaction was first performed by Faraday and served to prove the fact that gases and vapors are not distinct in their nature. It may be re membered that the simple apparatus used during these initial experiments consisted of a bent glass tube, having a long and a short leg at right an gles. Into the open end of the longer portion was placed a substance from which gas could be obtained by heat, after which the tube was her metically sealed. The shorter linb was then plunged into a freezing mixture, and heat applied to the larger portion, ge erating large quan tities of gas, upon which, being confined in a emall compars, the pressure gradually increased, finally condensing the same into liquid form in the smaller receptacle. The facts thus resalled will indicate the importance of a recent experiment made by M. Melsens, a celebrated chemist of Brussels, who, it is stated, has lately qucceded in obtaining wood charcoal in an absolutely pure state. So great is the absorbent power of this substance that it will concentrate in its pores a quantity of gas equal to its own weight. This has been used by Melsens in an apoaratus similar to that of Faraday above described ; and through its agency, ho has succerded in 1 quefying gases with great readiness. The cliarcoal, it seems, is placed in the long leg and allowed to absorb as much gas as possible. The tube is the sealed and enclosed in a tin pipe heated to 212° by a curren of steam. The gas in the charcoal is thus disengaged and caused to compress itself into the short limb, passing almost immiediutely into a liquid state. It is stated that from one to one and a half cubic inches of liqucfied gas can be quielily ob

Taxes on Knowledue

O. M. says: Please ask our next Congress to remove ail axes on means of education, such as tha impot duty of 40 per cent on philosophical apparatus. "I know of severa parties who propose to import telescopes and other scientific mplements for their own use; but on ascertaining the fact f that enormous duty, they at once gave it up. I cannot see that it would lessen the profits of those in this country who sell such instruments if the duty were removad, as the goods are mostly imported; nor wonld it materially inter fere with such men as Alvan Clark, Ritchie, Zoutmayer Spencer, and others, whose business depends mostly on thei well known skill and iutegrity. Please lend your influrnce to assist those whose purses are scant, yet who are trying to ducate themselves and others."

Fast Trains in England

There has been a dispute as to which is the fastest train in England. Precedence has been claimed for the $10 \mathrm{~A} . \mathrm{M}$. ex press from King's Cross. It also asserted that the Grea Western express between Paddington and Exeter is faster Between Padidington and Swindon the distance is $77 \frac{8}{4}$ miles, and both the up and down trains travel it in 87 minutes, acluding the starting and stopping, or at the rate of 53.62 miles per hour. At full pace, the speed is as nearly as possi ble a mile a minute. The Great Western railway is built on a 7 feet gage, but many parts of the line have a third rail, al lowing narrow (4 feet $8 \frac{1}{2}$ inches) gage trains to run on it also.

LIGHTNING SHEEP SHEARS.

This ingenious apparatus, accordiag to the Ironmonger will shear six sheep in the time that it now takes to denude one of his fleece. Anybody can operate it and do batter

work than the most skillful shearer with the old fashioned shears. and without danger of cutting the flesh. Thehandle of the kaife is arranged with a spring, and the blade, by pressing the former, is caused to travel across the sharp e ${ }^{\circ} \mathrm{h}$, which are first imbedded in the wool. The movement resembles that of the ordinary sciesors blade. Whan the knife returns, it raises itself clear of the wool, allowing the samo to eacape uninjured by scraping.

