A FORTY THOUSAND DOLLAR COW.

We doubt if more extravagant sums have ever been paid for fancy cattle than those lavished during a recent sale of the herd of the Hon. Samuel Campbell, at New York Mills, near Utica, N. Y., as reported on page 201 of our current volume. Representatives of the most prominent short horn breeders in the world were present, including a large delegation of Eaglish cattle tock buyers, consisting of lords and other titled persons.
The breeds which brought the largest sums were Duchesses and Oxfords; and the first animal sold, known as the 2d Duke of Oneida, a three year old bull, brought $\$ 12,000$. The cow represented in our engraving, sented in our engraving, Oneida, was next offered, Oneida, was next offered, rily exciting contest, was knocked down to Lord Skelmersdale, of England, for $\$ 30,600$. Subsequently other cattle of the same strain followed at $\$ 19,000$ and $\$ 35$, 000 , and the interest culminated with the sale of the 8th Duchess of Geneva, the dam of the animal in our engraving, which was bought by Mr. R. Pavin Davis, of Gloucestershire, England, Gloucestershic England, of $\$ 40,600$.
The Live Stock, Farm, and Fireside Journal, to which we are indebted for our illustration, says that there were, in all, one hundred and eleven animals presented, and that the amount realized was $\$ 380,890$. The Duchess herd was originally from England, imported in 1853, and has been since Eept in perfectpurity in Duchess county, N. Y.

HELICOIDAL CONCAVO.CONVEX PROPELLER.

The primary object sought in the construction of the propeller to which our engraving refers is so to form the blades as to impart to the water in which they turn a longitudinal motion in a direction coincident or parallel with the axis of the screw, while, at the same time, avoiding all lateral or tangential motion. To this end the blades are constructed of concavo-convex form, to give them greater efficiency, and are comhined with a helicoidal curvature, thus obtaining, in addition to advantages otherwist gained, the propelling power and easy rotation of the helicoidal bladed screw.
Fig. 1 is an elevation of the working face of the propeller, and Fig. 2 a section of one of the blades on the line, $x x$. A is the front or cutting edge of the blade, and B theback edge, considered in respect to its brward rotation.
Located nar the cutting edge, at C , is the center of concavity, or point from which the surfare has a curvature of equal pitch or radius in each direction, inward, outward, or rearward, as indicated by the radial lines shown. It is claimed that, by thus placing the point, C, pressure is prevented from being produced at the back of the blade either by the rotary movement of the screw or by the forward motion of the vessel through the water. The blades are perfectly connected to the hub by short arms, as represented, and may be two, three,
ber, and cast in as many pieces as desired.
The inventor informs us that his theory, claimed as true, has been fully demonstrated by practice. A 30 inch wheel was recently constructed at the United States navy yard, Washington, D. C., and tried on a steam launch; the usual, and best formed, helicoidal four bladed wheel used on the launch was of the same diameter, 30 inches. The pitch of the Eagle Wing was made as nearly as possible the same as the helicoidal, namely, 54°. The Eagle Wing had but three blades. Several experimental trial runs were made, placing the two wheels alternately on the same shaft, and, as nearly as possible, regulating the steam pressure so as to be alike for each trip. The fairest specimen of the trials was a pair of tripa from the navy yard ship house to Fort Washington and back. A lowpressure of 60 lbs . of steam, as nearly as possible, was carried.
The following are the data of the trial: Helicoidal: Average steam 60.35 lbs . ; number of revolutions, 41,920 ; time occupied, $2 \mathrm{~h} .54 \frac{1}{2} \mathrm{~m}$. Eagle Wing (or helicoidal concavo-convex): Average steam, $59 \cdot 7 \mathrm{lbs}$; number of revolutions, 32,660 ; time occupied, $2 \mathrm{~h}, 46 \mathrm{~m}$. Differences in favor of Fagl Wing: Revolutions, 9,260 ; time, $8 \frac{1}{2}$ minutes.
A trial run from the same starting point to Alexandria lighthouse and back (something over half the former distance), at a pressure of 80 lbs . of steam, resulted as follows:
Helicoidal: Revolutions, 25,130 ; time, 1h. 30 m . Eagle Wing: Revolutions, 21,200 ; time, $1 \mathrm{~h} .23 \frac{\mathrm{t}}{\mathrm{g} m} \mathrm{~m}$. Difference in favor of Eagle Wing: Revolutions, 3,830; time, 64 min. utes.

A higher pressure of steam revealed a gain in difference f time in favor of the Eagle Wing, but a proportionate loss in difference of revolutions. This, it is thought,proves the fact that, for rapid revolutions of wheel, the concavoconvexity of the Eagle Wing should be reduced and, pos sibly, its pitch of blade lessened
A form and pitch of blade proper for, say, 200 revolutions

THE CELEBRATED COW, FIRST DUCHESS OF ONEIDA.

The Siemens Steel Furnace as Described by the Inventor.
In the course of a recent lecture at Bradford, Eng., by Dr. C. W. Siemens, he gave the following description of his elebrated furnace for melting steel:
Taking the specific heat of iron at $\cdot 114$, and the welding Taking the specific heat of iron at $\cdot 114$, and the welding
heat at $2,700^{\circ}$, Fah., it would require $\cdot 114 \times 2700=307$ heat units to heat 1 lb . of iron. A pound of pure carbon developes 14,500 heat units, a pound of common coal 12,000, and therefore 1 tun of coal should bring 39 tuns of iron up to the welding point. In an ordinary reheating furnace a tun of coal heats ony $1 \frac{2}{8}$ tuns of iron, and therefore produces only one twenty third part of the maximum theoretical effect. In melting theoretical effect. In melting 1 tun of steel in pots $2 \frac{1}{2}$ tun of coke are consumed, and tak ing the melting point of steel at $3,600^{\circ}$ Fah., the specific heat at $\cdot 119$, it takes 119 by $3,600=428$ heat units to mel a pound of steel; and taking the heat producing power of common coke also at 12,000 units, 1 tun of coke ought to be able to melt 28 tuns of steel. The Sheffield pot steel melting furnace therefore only utilizes one seventieth part of the theoretical hea developed in the combustion per minute, if revolved 250 or 300 per minute, instead of Here therefore is a very wide margin for improvement, to per minute, if revolved 250 or 300 per minute, instead of
throwing the water back coincidently with the line of the vesthrowing the water back coincidently with the line of the
sel's motion goes further, and throws it across the line. In the trial tests referred to, it was especially noted that a quick and increased power was exerted by the rudder under the force of the Eagle Wing, the compacted water being thrown directly on the rudder
In summing up results under the trials made, from 22 to 27 per cent of superior efficiency is claimed for the Eagle Wing, and advantage thereof may be taken either ina speed equal to the best average with much less fuel; or, if the usual amount of fuel be used, a highly increased speed of ere, tberefore, is a very wide margin for improvement, to which I have specially devoted my attention for many year and not without the attainment of useful results.
Without troubling you with an account of the gradual im provements, I will describe to you shortly the furnace which I now employ for melting steel. This consists of a furnace bed made of very refractory material, such as pure silica sand and silica or Dinas brick, under which four regenera tors or chambers filled with checkerwork of brick are ar ranged in such a manner that a current of combustible gas passes upward through one of these regenerators while a current of air passes upward through the adjoining regen

HELICOIDAL CONCAVO-CONVEX PROPELLER, OR EAGLE WING. erator, in order to meet in combustion at the entrance into the furnace chamber. The pro ducts of combustion, instead of passing directly to the chimney as in an ordinary furnace, are directed downwards through the two other regenerators on their way towards the chimney, where they part with their heat to the checkerwork in such a manner that the highest degree of heat is imparted to the upper layers, and that the gaseous products reach the chimney comparatively cool (about 300° Fah.). After going on in this way for half an hour, the currents are reversed by means of suitable reversing valvos, and the cold air and combustible gas now enter the furnace chamber, after having taken up heat from the regenerator in the reverse order in which it was deposited, reaching the furnace therefore nearly at the temperature at which the gases of combustion left the same A great reversion of therature within the A renerative char is the result, and the re first mentioned higher degree than the latter. It is easy to conceive that in this way heat may be accumu lated within the chamber to an apparently unlimited extent, and with a minimum of chim ney draft. Practically the limit is reached at the point where the materials composing the chamber begin to melt, whereas a theoretical limit also exists in the fact that combustion ceases at a point which has been laid down by St. Clair Deville at $4,500^{\circ} \mathrm{Fah}$., and which has been called by him the point of dissociation. At this point hydroge might be mixed with oxygen, and yet the two would not combine, showing that combustion really only takes place between the limits of temperature of about 600° and $4,500^{\circ}$ Fah. To return to our regenerative gas furnace. It is evi dent that there must be economy where, within ordinary limits, any degree of heat can be obtained, while the pro ducts of combustion pass in the chimney only 300° hot Practically a tun of steel is melted in this furnace with 12 cwt. of small coal consumed in the gas producer, which latter may be placed at any reasonable distance from the furnace, and consists of a brick chamber containing severa tuns of fuel in a state of slow disintegration. In large works a considerable number of these gas producers are connected by tubes or flues with a num'jer of furnaces.

The Devil Fish.

T. L. P. writes to say that the Italian fishermen of San Francisco, who travel about the Farallon Islands and down the coast, not infrequently take devil fish from eight to ten feet across, and he has heard of one being taken of which the extended arms measured twelve feet. "Some montbs ago, I saw one (hanging at a door) which measured at least nine feet from tip to tip of the tentacles. I believe that the Italians here eat parts of these repulsive looking creatures, and call them quite good."

