IMPROVED CAR BRAKE.

The invention herewith illustrated consists of a brake so constructed and attached to a railway car as to exert a much greater pressure upon the wheel than is ordinarily obtained. This result is claimed to be effected by a system of levers and auxiliary brakes, causing the rotary motion of the wheel itself to contribute to the pressure upon its periphery.
The shafts of the brake wheels are connected by suitable means with a pivoted lever arranged under the car at A, and the latter, in turn, communicates with the brakes, B. These are arranged on an arm which is pivoted to a horizontal lever, C, which is also pivoted at its cente to the framework of the platform, and carries two brakes, D and E. If the car wheels revolve from right to left their peripheries, acting upon brakes B, pressed closely against them, tend to draw such brakes downward, there by tilting the lever, C, and causing one of the pieces thereon, in this cas D , to bind firmly against the wheels If, however, the latter turn in the op posite direction, the brakes, B , ar somewhat lifted, depressing the lever, C, so as to cause the piece, E, to act as an auxiliary brake. It is claime that, by this means, the power of th brake is doubled; and in cases wher steam is employed, it will give the same power with one half the strain upon the braking apparatus.
For further particulars address the inventor, Mr. George W. Crowe, 125 West 5th street, Cincinnati, Ohio.

IMPROVED ANIMAL TRAP.

The invention illustrated herewith is a device forcatching and destroying mice, rats, squirrels, and other smallanimals.
The trap is actuated by clockwork, and once wound up is self-setting. When sprung, a sharp toothed bar is rapidly setated, striking the animal, killing it, and throwing it out of the box.
The case is made with an opening of a size proportionat to the hight of the animal to be trapped. The vertical shaft, A, is connected with a coiled spring and toothed wheel, part of the latter being shown at B. When the shaft is turned by the key, it coils up the spring without revol ving wheel B: but when the spring is allowed to unwind, the said wheel is rapidly rotated. This motion by the cog teeth is transmitted to a similar wheel, C, the shaft of which extends above the case and terminates in a notched disk, D. Just beneath the wheel, C , and at E , is the toothed bar for destroying the animal.

F is a horizontal shaft, having at its forward end an up wardly projecting arm, G, which is caught and held perpendicular by the spring catch, H. At the middle of the same shaft is an arm, I, which passes down through a slot in the case, in such position that a stop on the wheel, C may take against it, and the motion of mechanism be thus arrested. At the inner end of shaft, F , is a cam or arm J, which is so arranged in connection with a projection, K (dotted lines), on the wheel, that said projection strikes it, thus turning the shaft, F, thereby raising the arm, G, so as to be arain caising the the a, H again caught by the in, be arrested, asalready erplained
The shank of the bait hook, which so placed that the animal cannot pass through the case without coming with in the sweep of bar, E, passes up through a slot and connects with a flai tened rock shaft which rests, as shown upon the horizontal arm of the bent lever, L, the latter being pivoted at its angle to the top of the case. The ver tical arm of the lever has a notch int which is caught the extremity of spring, \mathbf{M}, when the trap is set, B spring, M, when the trap is set. Be neath he end of this spring is a ben lever, N , also pivoted at its angle, and having a vertical anm, to accommoda which the notch is made in the disk, D. There is still another bent lever, 0 only a part of which is seen, as it ex-
tends under the top of the case. This has a projection directly under th and connects with the perpendicule end of the spring, M pushed down by the spring, M, it rai rod, P , so that when of the arm, G, and allows the shaft, K, to turn
The illustration represents the trap ook is a pitated it turns the rock shat down the horizontal part of the lever L, clearing the bear \mathbf{M}, from thenotch. The spring of , , clearing the spring, some force on the projecting upper end of the lever, 0 , there some force on the projecting upper end of the lever, 0 , there-
by, as above described, releasing the arm, G, of the shaft, by, as above described, releasing the arm, G, of the shaft,
F. This releases the wheei, C, allowing it to be rotated by F. This releases the wheei, C, allowing it to be rotated by
the wheel, B, acted upon by the coiled spring. By this the wheel, B , acted upon by the coiled spring. By this
means the toothed bar, M, is revolved with considerable means the toothed bar, M, is revolved with consider
force, killing the animal and tossing it clear of the box.

BARR'S ANIMAL TRAP.

cohol; while all the hydrocarbons, volatile oils, aniline etc, participate in this property and maintain the incandes cence of the platinum spiral. The fixed oils and sulphureted essences, such as the essence of garlic or mustard, are with out this effect.
Palladium has this property of remaining incandescent in hydrocarbureted vapors in even a greater degree than platinum; and with toluol, it similarly produces hydride if benzoyl. When it is plunged in an incandescent state into proto-carbureted hydrogen, it continues in the same condi tion without requiring to be brought to redness by the bat tery. With bicarbureted hydrogen, while the platinum wire gives frequent explosions, palladium causes none. It extinguishes itself when the gaseous mixture is no longer inv`luable. neap tides.

The disk, D, of course revolving with the wheel, C, the side of its notch strikes against the vertical arm of the lever, \mathbf{N}, thereby raising the other arm, now directly under the spring, M, so as to elevate the end of the latter once more into the notch on the lever, L, and, at the same time, allows the lever, 0 , to be withdrawn from the catch, H, by a small spring. As the wheel, C, revolves the projection, K, strikes the cam, J, which throws the arm, G, into the catch, H, and

CROWE'S IMPROVED CAR BRAKE.

lowers the arm, I , to catch and stop the wheel. At the same ist D, that the trap is thus reset
The device is quite ingenious and very sudden in operation. We should imagine that it would speedily clear a cel. lar or other infested locality of troublesome vermin.
Patented through the Scientific American Patent Agency November 12, 1872. For further particulars regarding sale of rights, etc., address the inventor, Mr. George Barr, Clatskanie, Columbia county, Oregon.

ction of PJatinum and Palladium on the

 Hydrocarbons.The recent experiments of M. Coquillon on the above subect take as a point of departure the fact that a platinum wire, rolled in spiral form and heated to redness, remains incandescent in presence of vapors of alcohol or ether, and forms different products of which the principal are aldehyde and acetic acid. All mono atomic alcohols, as well as their hers, act in analogous manner, and produce, in this incom plate combustion, aldehyde and the acid corresponding to the
aitable. Another curious peculiarity is that its surface be comes rough and wrinkled, and the spirals break, after a few days experimenting. The weight is also sensibly diminished.

Chioride of Iron obtained by Dialysi

It is now many years since the late Professor Graham dis.
covered that when a solution contained both crystalizable and uncrystalizable, or colloid, substances, the former would pass much more rapidly through an animal membrane that the latter. For performing this experiment, a hoop of hard rubber has a piece of parchment paper stretched over it, and the apparatus, which re sembles a sieve, is allowed to float upon the surface of water. The mixed solution is poured into the apparatus, and in a few days the greater part of the crystalizable body will be found in the water, while the uncrystalizable one will remain on the membrane. Professor Graham gave to this process of separa tion the name of "dialysis," and to the apparatus that of "dialyzer," which names have been generally adopted in all languages.
Since the discovery of dialysis, it has found many uses. It has been used with great advantage in analytical chemistry for separating crystaloid and colloid bodies, especially organic ones. Its greatest value has been in analyzing the contents of the stomach, when it is desired to show that poison has been taken. The presence of a poison in the slimy contents of the stomach would otherwise be difficult to prove. Recently it has, also, been employed in the arts, and Dr. Reimann describes in his Farberzeitung its use in the dye house for preparing iron salts: From mixed solutions of salts and gum, the salts can be separated while the gum remains behind. But not only so; when a salt alone is placed in the dialyzer, the crystalizable portion of the salt, which is usually the acid, passes through the membrana first, the base remaining on the dialyzer. Now there are a series of salts which require a proportionally large qnantity of acid to keep them in solution. Notable among these are the sesquiosides, especially that of iron. The very acid salt of iron is extensive! y employed in dyeing silk as an iron mordant for heavy black. An iron mordant which is very acid and which generally contains an excess of nitric acid, as well as some nitrous acid, acts destructively upon ihe fiber, so that very heavily weighted black silk loses a greater part of its strength, and sometimes can be pulled apart. Toavoid this dis udvantage, the iron may be used in the form of dial yzed oxide of iron. In preparing such a solution, oxide of iron dissolved in muriatic acid (perchloride of iron) is placed in a dialyzer After some time it will be found tha he acid is mostly gone off, while a so lution of the oxide of iron remains in the dialyser. Such a solution gives up its oxide of iron very readily to theim mersed fiber, which is thoroughly mor danted, while it cannot be attacked incethere is no acid, at least no exces of it, present. Such a solution is far more active than the ordinary iron mor dant, because the iron in it has a grea tendency todeposititselfupon the fiber while that in the acid mordant, being held by the acid, shows less of this ten dency. It seems, too, from what has been learned, that the mordanting of fibers in a solution of salt is really phenomenon of dialysis. The fibers may be regarded as a conglomerate of membranes, and hence it is natural tha the silk, for instance, should take ou the iron from a solution of its salt, and allow the acid to disseminate itsel through the bath. This tendency of the fiber to take up the iron is assis. ed by previous dialysis of the solution.
For technical purposes, especially for weighting silk, it is necessary to take away all the acid from the oxide solu tion. Here it is sufficient to obtain a solution containing but little acid and an excess of oxide of iron.
Fr. Oltmanns, an apothecary in Han over, has for years prepared dialyzed oxide of iron for medical purposes, and recently has also made it for use in dyeing. The dialyzed oxide of iron made by him contains 6 to 7 per cent of pur sesquioxide of iron in solution; a quantity which, because of the ease with which it acts on the fiber, is more than suffi cient for most purposes, For weighiing silk, and for many similar purposes in the dye house, especially for all cises where it is desirable to load the fiber heavily with the oxide of iron in mordanting, without attacking it, dialysed iron is

The building of dikes at the mouth of the Seine has been the means of causing high water to appear at Havre 36 min-號 14 minutes during the

