C. E. H. asks: Is there any way of remov
ing coail tar from the bottom of a sail boat, the boa having collectedit by laying in a dock near the gas
works? Scraping will not answer. Answer: After scraping offas much tar as practicable, try naphtha as solvent for the remain
P. asks: What is the best cheap prepara
tion for preserving pine shingle roofs, to be applied either betore or after laying the shingles? Answer:
The articleadvertised as slate paint may answer your purpos
J. B. S. E. asks : Is amorphous phosphorus
soluble in any of the ethers? If so, what listhe process? soluble in any of tho ethers? If so, what isthe process?
If not, what is it soluble in? Will the addition of another substance, not deleterious, make it soluble? An-
swer: Red or amorphous phosphorus is insoluble in the ordinary solvents of common phosphorus. Accordnggto Möhler, red amorphous phosphorus may be rendere
colorless and perfectly transparent by fusing it in a con centrated solution of bichromate of potash mixed wit sulphuric acid. After this treatment it usually re-
mains liquid after cooling, but solidifes instantly when touched by a solld body.
E. L. Says: Suppose four canals, each one
mile long and thirty feet wide, to be six feet deepat discharge end, with water below,level with the bottoms.
At the entrance ends, the depths are $5,6,7$ and 8 feet respectively, with full supply of water at these depths, and regulargrades bet ween inlet and outlet: Howmuch will each canal discharge in 24 hours? Answer: You
can find approximately the velocity of discharge in feet per second, and from this the quantity discharged per
second, by the following formula: $\mathrm{V}=$ velocity in feet per second, $\mathrm{f}=$ total fall in feet, $\mathrm{A}=$ cross section of canal in feet, $l=$ length of canal in feet, $\mathrm{p}=$ length of wet perimeter in feet. $V=\sqrt{(10,000 \times f \times \mathrm{A})} \div(\mathrm{ll} \times \mathrm{p})$
discharge in feet per second is equal to the square root of the product of 10,000 by the total fanlin fedend the area of cross section, div
length and wet perimeter
J. D. W. asks: Does the term steam engine Include a boiler, or can an engine be complete without
a boile? I do not refer to portable engines. Answer: A steam engine dit
stated expressly.
of? Ans wer: Magilp is a mixture of pale linseed oil of? Answer: Magip is a mixture of pale linseed on
and mastic varuish, , sed by artists a a vehtcle for therf
colors. The proportions vary according to the work It is thinned with turpentine.
$\underset{\text { leaf to keep. itscolor? Answer: Trya varnish composed }}{\text { C. M. Lilver }}$ J. W. H. asks: Is it true that, the warmer
water is, the more gas it will absorb? I mean any gas water is, the more gas it wil absorb? 1 mean any gas
that can be absorbed by water. Answer: The general
law is that the colder the water, the greaterthe quantilaw is that the colder the water, the greater the quanti-
$t y$ of the gas taken upand retained by it. Hydrogen is ty of the gas taken up and reta,
an exception, about the sameam
all temperatures of the water.
H. H. M. asks: What is the name of some how is that article manufactured? Answer: Carbolic
acid $1 s$ made from coal tar. The tar is distilled until anthracene comes over. The resulting ofl 1 s rectified, $302 \circ$ and 392° Fahr. This oil is mixed with saturated potash ley and powdered hydrate of potash, by which it is converted into a white crystallized mass. This sub-
stance is dissolved in hot water; the oil which rises stance is dissolved in hot water; the onl which rises to
the surface is removed, and the lower alkaline liquid is neutralized with muriatic acid. Impure carbolic acid
now rises to the surface as an oll. This car be purifled by washing with a little water, digesting over chloride of coling to 14° Fahr., when pure crystals of carbolic acid separate, from which the remaining flutd portion it
poured off. We know of no treatise on the subject.
H. C. L. asks: Will a register placed in a ascheaply as one placed fifteen inches or less from the
floor, and why? Answer: Yes: for whether the regis. floor, and why? Answer: Yes: for whether the regis
ter is placed near the celling or the floor, the warm air will ascend to the former at once, unless some obstruc tion intervenes. Wherea a lower hall way connects with
an upper one by stairs, and the register is in the lower an upper one by stairs, and the register is in the lower
hall, the warm air will net atacend to the upper one, be tion of aggregation which subsists between the particles of the warm air; but in an ordinary rectangular room such obstruction does notexist. The properplace
for a register for warm air, however, is at or near the for a register for warm air, however, is at or near the
floor, for convenience in warming the feet, etc., in very
cold weather. All rooms intended to be warmed by the cold weather. All rooms intended to be warmed by the lngress of warm air should have a ventilation flue, hoom, to insure a proper inflowing of the warm air, and rom the warm air flue
C. A. H. asks: By connecting a 2 inch hose 112 inch? Answer: The friction of the water will b decreased by this arrangeme
large hose will be the least.
K. asks: Is a mining $\operatorname{lamp}_{\text {losed in finely perforated orass as in wire cloth? An }}^{\text {an }}$ ane if en wer: Yes.
E. C. G. asks: 1 . Is, there any way of re
lacing the gllt on a frame, and what in it?
2. How can I galvanize wrought iron? Answers: 1. You could
scarcely do this work, 信 you have hadnopracticalexpe rienceln the matter. We would advise you to entrust
to some one who makes aspecialty ofthiskindof bus iness. 2. Dip the fron intomuriate of zinc, and afte
R. A. P. asks: What is the formula for ascertaining the proper hight and diameter of a marin greatly, and the best rule woul cal one based on data obtained from successful examples. For an approximate rule, the following is a very one pound of coal per minute ; and having combustio iameter for the chimney, and the number of pounds of coal to be burnt per hour, it will, be easy to ascertain The amount of air required per hour, and the consequen hight of the chlmney in feet necessary to pruduce this
velocity is equal to one eighteenth of the square of the velocity in feet per second. More accurate method are given in Professor Rankine's "Tr
Steam Engine and Other Prime Movers."
J. S. says, in reply to T. H., who asked if a
par of white pine could be used as a float for deep sea soundings: At the depth he mentions, namely, 5.000
fathoms, I amalmost certain his spar, once down, would ever rise again, for the following reasons: Dry wood of which varies from $1 \cdot 25$ to $1 \cdot 5$; and were it not for th cellular structure of wood, it would not float at all, a is practically shown when it becomes water-logged. At foot. I do not think white pine could resist such enormous pressure. The use of a mixture to generat gas at the bottom of the sea 18 not impossible, but
should sayit is highly impracticable. Seawaterisabout 50 times heavier than atmospheric air; but at a dept and therefore would become heavier than water. An sas of a greater density than air, such as carbonic aci
is of course out of the question. Hydrogen is the is of course out of the question. Hydrogen is the onl
gas that could be used. 1,000 cubic inches of hydrogen at 60° Fahr. and barometer 30 inches, weigh $21 \cdot 379$ grains
at the above depth 1000 cubic inches would be compressed to 1 cubic inch. The weight of 1 cubic inch of
sea water is 258.264 grains. C sea water is $258 \cdot 264$ grains. Consequently 1,000 cubi
inches of hydrogen would have a lifting power (at th abovedepth) of about 232 grains; or to 1 lift 10 lbs. ,
T. H. wants to do, it would require 170 cubic feet of h. drogen. This scarcely requires comment. T. H. could
easilyaccomplish his object by using as a float a flexible waterproof bag containing some liquid lighter than water, say a hydrocarbon oll of specific gravity 0.7 . A cylindrical bag, 6 inches diameter and 2 feet long, thus
filled, would have a ifting power in sea water of about 3ibs, All liquids beingnearly alike compressible, the dif

would be very minute. As the deposit at the bottom of the sea is in some places, I belleve, of a tenacious nature,
T. H.'s sounding rod might possibly stick there, unless his float was inconveniently large. It mighi be advisathe apparatus represented by the engraving. Fig. 1 is a tube with a slot, S , on eitherside, containing a loosely fittingpiston, P , with two lugs projecting through the
slots, also a strong spiral spring. Fig. 2 shows the slots, also a strong spiral spring. Fig. 2 shows the
spring held compressed by a catch, C. Fig. 3 shows spring held compressed by a catch, C. Fig. 3 shows
weight and catch disengaged; the lugs of the piston,
striking the weight, jerk the tube clear of everything. striking the weight, jert the tube clear of everything.
The disk, D , prevents the possibility of end of tube The figin the bottom, without disengaging the weight.
$\underset{\text { with red ante in his sugar: My sugar bucket contains }}{\text { A. T. A. }}$ about twenty-flve pounds of sugar, and I am frequently
roubled with these same red ants; but when so troubled troubled with these same red ants; but when so troubled
I get three or four large black ants and put them in the I get three or four large black ants and put them in the
bucket; and in less than three hours, not a red ant is to beseen, the black ones eating themup. As a means of preventing ants from getting on to a table, I put a
prece of tobacco under each of the feet, and keep the lece of tobacco under each of the
R. S. H. says, in reply to C. Fo. B., who say evel on the front or cutting side of the tooth than on he back side : This is correct. He further says that the difference in the bevel is caused by the taper of the flle
In this, I think, he is not correct. The difference o bevel on the two opposite sides of the tooth is caused by the position in which the file 1s held. If he ruas his
le level, while the saw is held plumb, he will flad the evel so nearly alike on the two sides that it will be dif
cult to cult to decide which side has the most, showing tha Dropping the handle end of the flle and elevating the
point will and does produce the effect which he lays to he shape of the file. Moreoverit producesa deepercut,
and a longer and more pointed tooth, which gives ha lorger and more pointed tooth, which gives
harpercutting point, and furnishesmore space in whic o carry the sawdust.
S. S. Says, in reply to F. F. A. S., who asked
or directions for constructing a stove to dry fruit, etc. without changing the color: He should have the drye with a porouslining, and never allow the heat to get below 1000 as the color changes in proportion to the
time tt takes to dry the fruit. If he intends to dry large the green fruit may not be put in with that which is par
dill dry
A. H. says, in reply to J. C. S., who asked
bout the dimensions of a belt per horse power: A 1 inch belt at a velocity of 750 feet per minute is a perfectly afe rule to calculate for one herse power. [Ther forbelting, and we shall be glad to hear from any of our readers who have made experiments. A rule by Mr
Rider, lately published, states that a belt one inch wide ond bearing on at least one third of the circumferenc pounds, at any velocity. Applying this rule to the pres
ent case, we find that, with a velocity of 750 feet per ent case, we find that, with a velocity of 750 feet per
minute, the belt would transmitt $(19.25 \times 750) \div-33,000=0.431$ horse power-EDs
T. M. G. says, in answer to a querist who ny father once imported a lot of iles, many of whic
arrived broken. He tinned them on the clean broke ends and "sweated" them together. In order to tes the strength of the foint so made, one was struck across
something, and the flle broke within an inch of the joint.
 cast iron box with carbon mande from ivory chnps, and
keep the box at a dull red heat for 4 or 6 hours, then dip the rolls in water, or saltand water. Theymust b andled quickly fil
spolis the surface.
A. S. G. Feplies to R. B.
's query as to pass with elght cars, leaving the other elght on main track Lngine B then runs past, pushing the eight cars befor , atter which h regains 1 sp place on the maln track the siding, runs by them, and pulls them again on to the main track. The trains have now passed, an nothing remaning but for A to pick up its cars, and go on
its way. No problem of this sind is is insoluble, as long sthe siding can hold at least one car with its engine Answers simllarly correct nave been received fron
. D.C., E. L. W., T. M. W., G. E. K.,H. R. R., H. C.B. - B. A. S., E. R. .and J. N. P.-Eds.]
B. B. says, in reply to R. B's query as to
rains passing each other: Two trains cannot pass eacil ther under the circumstances described.
$\underset{\text { Sked for a cement for a leaky cast iron furnace: clean }}{\text { J. S. B. }}$ borings or turnings of cast iron 1 lb., sal ammoniac,
ozs., flowers of sulphur, 1 oz. Mix them well together and Seep dry. When required for use, take of the mixtur
part, clean borings 20 parts: mix thoroughly and add sufficient quantity of water. A little grindstone dus added improves the cement.
with water in his boller: I. guess you have no drain
 In your engine while cooling oft. Any engtnets harde
to start aftercoolling, partly because of the water ot condensation and partly because the engine is cold A.P. says that when he uses a small quantity of water
in his boiler, he doess not have the trouble; hence it does not probably o
inders only,- Ens.].
D. B. says in answer to A. B. F. who asks qually well whether the flame is blue or red with sparkling blaze? 2. Does the burning in the two dit
ferent ways produce same kind of gas? 3. What wil

 course, gives rise to the bleaching property. 3. Nillde
can be prevented by the use of powdered sulphur.
G. W. W. Says, in reply to E., who asked
now io utilize several hundreal horse power running to Waste at a distance of 3 miles: Puta water wheel at the
fall, and attach air pumps lay the factory, or sultable size, then connect to your en gine the same as with steam. Start your pumps and
compress the air in your pipes, and with it run your en Eine, without steam, fuel or boiler. You will have no
 converyed any distance.
J. H. W. says, in reply to A. K., who asked
or arecipe for inv, sible ink: The following rectipe is a good one: No. .1. 1 dram sulphate of copper or of iron,
1oz. water; put into a bottle.
No. 2.1 i dram prussiate
 the fuld on the writing, whenit will be perfectly visibe The writing will be of a dark blue color. This is calle $\underset{\text { asked how to remove ink spots: Use cyanuret of potash }}{\text { J. H. W. Say }}$ or oxalic actid. After the removal of the spots, wasi
well with water; and if the color of the cloth is taken out, apply ammonia, when it will be instantly restored.
 eror later, go home with a load, and then return for
more. Hence, if the vessel contanining sugar or other
 loads and depart. Those returning will be like an Iris? Triend of mine, Who, seeking a foot briage which had
once been ladd acrosse astream, exclaimed : "Here it is an' 'tis gone, sure! !" The very last ant will leave in the
course of few hours, but tit may be necessary to move course of a few hours, but it may be necessary to move
the package several times, to prevent those which have the package several times, to prevent those which have
found therer way home from reurntig with therr rriends.
In
G. W. F. says: E., in a recent question, waste," etc. It seems to me to be a problem, well
worthy of the most serious consideration how to make the most of water po wer, particularly where it exists,
ne your querist states, to the extent of several hundred as your querist states, to the extent of several hundred
horse power. The most perfect key to this matter, con ceivable, seems to be that mentioned in your last issue as practiced In Belgdum, namely, the transmission of
power by means of compressed air. The letting of power by means of compressed air. The letting
excess power to run anybody's factoryreadily suggest

Minerals, etc.-Specimens have been re eived from the following correspondents, and xamined with the results stated
R. J. says: 1. I send a specimen which completely
puzzles me. Recently I had given to me several very puzzles me. Recently Thad given to me several ver
then specimens of geld ore. I extracted the gold by pouring on it $11 / 2 \mathrm{parts}$ of hydrochloric acid to one part f nitric. My object in putting in a larger quantity o yhich was in the ore. I left them together antilve fervescence ceased; I Ifquid, which I evaporated until it got gummy ; this
put into a crucible and heated to a white heat, and the put into a cructile and heated to a white heat, and the
pecimenherewith was the result. 2 . What is the best vou have been decelved in the appearance of the or which you imagined contained so much gold. The residue sent us consists largely of the red oxide of iron; an from your account, there is little doubt that you hav
been trying to extract gold from the bright yellow sul. phide of iron, or iron pyrites. The effervescence wa caused by the decomposition of the nitric acid, nitrou
umesbeing evolved. The sulphur was oxidized by the itric acid into sulphuric a cid, which combined with th
ron oxide to form sulphate of iron, some sulphur bein separated. It was this sulphur which caused the liquid
to become gummy when evaporated and heated. Th
played a minor part. The solution tinally contained
sulphate of iron, free sulphur, free hydrochloric acid, and perhaps some chloride of iron. The white heat, to
which the solution (evaporated to dryness) was finally submitted, decomposed the sulphate of iron, driving of the acids or decomposing them, and there was finally
left the red oxide of fron. There may have been some rains of metallic gold, however, as there generally is in ron pyrites, though seldom enough to pay for extrac
ion. The gold can be extracted by the followingmeth od: Thepyrites is rcasted as thoroughly as possible to
drive off the sulphur. It is then reduced to powder and gitated with mercury. The mercury combines wit the gold present, forming an amalgam of mercury and
gold. This amalgam is then submitted to the action of heat, by which the mercury is driven off and the gold
recovered in the metallic state. The mercurial vapor is course condensed, and the metal used for anothe E. B. G.-The stone you send is a hard fine graine , but che specimen is too small for u o judge accurately of its value. A good lithographic tone is of a yellowisn gray color, and uniform through nakes an impression on it with diffculty, and the splin ters broken off by thehammerhave a conchoidal frac ters br
ture.
E. L. by a lead ocher; but it is too small for complete analy

communications received.

The Editor of the Scientific American acknowledges, with much pleasure, the re eipt of original papers and contribution pon the following subjects:
On Crank Pins. By W. A. S.
On a Balloon Experiment. By D
On Pressure and Space. By J. A.
On Air and Steam Engines. By F. A. W
On Perpetual Motion. By J. W. S
On Traction Engines. By H. M. S.
On the Art of Inventing. By J. E. E.
On Street Pavements. By W.H. B
Also enquiries from the following
E. G. de W. \& Co.-J. S. B. - D. M.-C. W.-J. J. H.-

Correspondentswhowrite toaskt headdress of certa manufacturers, or where spectifed articles are to be had also those having goods for sale, or who want to fin
partners, should send with their communications a amountsuaflicient to cover the cost of publication unde
the head of "Business and Personal." which devoted to such enquiries.
Correspondents in different parts of the country ask
Where can I obtain pipe clay for making lead pencill Who owns the patent rights for the various artifictal
tones? Who makes the best candle he vapor stove, using crude petroleum, work we practically? Who recently invented a processfortempering and preserving the elasticity of steefand bras prings? Makers of the above articles win probabiy pre
mote their interests by advertising, in reply, in the note their interests by
SCIENTIFIC.AMERICAN.
[OFFICIAL.]

Index of Inventions

FOR WHICH
Letters Patent of the United States were granted for the wrek miding September 9, 1873,
and each bearing that date,

