

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

DIAMOND CUTTING--A NEW INDUSTRY IN NEW YORK. |ted, only to be abandoned for entirely new inventions, also
Diamond cutting is an art, not merely an industry, re. quiring that certain degree of deftness of manipulation which, after a few years of apprenticeship, is readily attained in nearly every mechanical operation, but a fine art in the full sense of the term. It is labor which calls not unerring judgment, to be gained only by hard study and constant practice, extending perhaps over a lifetime
How diamond cutting was introduced in the united
We purpose, in the We purpose, in the
following paper, to following paper, to
tell the reader how tell the reader how this pursuit, now for
the first time in the the first time in the world's history followed in the western hemisphere, came to be established in the the United States, and then to trace the various processes of diamond cutting as practiced in the city of New York. It is a of New York. It is a matter of general information that the art, from time almost immemorial, has been confined to the celebrated lapidaries of Amsterdam, Holland, whither the rough gems were forwarded from all parts of the globe. At the time of the extensive discoveries in the diamond fields of South Africa, however, Mr. I. Hermann, a well known jeweler of this city and an expert in the and an expert in the art, became convinced that diamond cutting could be introduced in this country, both as a valuable accession to thenationalindustries and as a means of attracting large amounts of foreign capital within our borders. To this end he undertook its establishment in the fave of many serious lave of many serious obstactes. There was an import duty of ten per cent on the roughth sfitones, the repeal of which had to be secured (a matter no small difficulty, for the Government seemed un:able to perceive the advantage of thus increasing the wealth within the country), large capital had to be obtained to start the enterprise, and, finally, workmen had to be persuaded to leave Holland and try their skill in a foreign land. When these men, in sufficient numbers, could not be induced to \quad ever brought within the country, one of which weighed 80

SPLITTING THE DIAMOND.
ted, only to be abandoned for entirely new inventions, also
the work of the projector of the scheme; and thus at last staid old Amsterdam, to the dismay of herartisans, discovered that her long kept secrets were known across the ocean and her hitherto undisputed suprenacy rivaled in the metro polis of the West.
We have thus briefly mantiched upor. the New York Diamond Company, as a part of the history of the art in the United States, from which others in futur will trace its growth. Sucress, we are told, has been en

DIAMON POLISHERS OR SLYPERS.

 repaired or re-cut without undergoing the perils of an ocean earn, are received regularly each fortnight, while millions f dollars worth are yearly handled. The largest diamonds We recently were enabled to visit this establishment, situated in a small building in Fifteenth street, a few steps from Union Square, in this city, and there to follow the interesting operations which we are about to describe. As, in all descriptions, general explanations are first in order, we were at the outset informed that the business is divided into three that thely distinct bren entirely distinct branches-cleaving, cutting, and polishing. Also, that each class is a separate art, and that the workman finds the attainment of any one sufficient labor for the balance of his existence without troubling himself about the others. Hence, no one man can carry a stone through all the manipulations. A cutter cannot cleave, nor does a polisher know aught about cutting; and even further, a polisher or
bon, a combustible body. It is crystalized mostly in the shape of an octohedron (two four-sided pyramids united at their bases) or rhombic dodecahedron, the latter being the commonest. In its black form-as used for stone drilling or sawing-it is the hardest known substance, and in this state differs from the jewel, which hasfoliated passage, parallel to the faces of figure, in which directions it may be split. In the accompanying engraving (Fig. 4) is represented an enlarged section of the rough gem, showing the grain along which it may be as cleanly cleft as a piece of wood The resemblance to the latter substance is increased by th fact that there are so called knots, which cause a conchoidal instead of a straight clean fracture.
the cleaver.
This much im parted by way of preface, we were conducted to the apartment occupied by the cleaver, or klover, as he is called in Holland. This artist, we were in formed, must pos ess a greater de gree of skill than any other workman So difficult is his labor that probably there do not exist twenty five cleavers to every five hur dred polishers and cutters in the word The klover in Hol land is taught from boyhood, and is usu ally the son of the ally the son of the ishment outsid parties being rarely instructed. On a small table in front of the workman wa little box divided into two compart ments, the furthest containing a covered tray for the recep tion of stones. The other division was made deeperand had false bottom, be ing finely perfora
ing finely perfora countered, as jewelers and owners of gems necessarily pre-|table were a number of sticks like spindles, which, with fer sending their diamonds to a locality where they may be couple of knives (to which we shall presently allude), a解

Cutting the diamond.
migrate, Mr. Hermann sought for other artists among the cutter of a brilliant cannot produce a rose diamond, and a large pea. Some pieces were quite flat and closely reDutch already in the United States; and he tells us that he vice vers \hat{a}; so that, in fact, each individual has his specialty found them pursuing all kinds of callings, in order to gain the support which the art they had studied all their lives nd there stops his knowledge.
nature of the diamond. was here unable to afford them. Then machinery was impor-
sembled mica. Selecting a diamond from the heap, the ar tist glanced at it a moment and then secured it in a knob of cement (brick dust and rosin) on the end of one of his spinContinued on page 215.

[Continued from page 207.]

dles. Taking a fragment of a stone that had already been operated upon, he fastened it in a second spindle in similar manner. Next, with an implement in each hand, he brought the diamonds together, steadying the shanks of his tools against two metal projections on the edge of the box before him. Applying the second diamond to the rough gem, with a quick grinding motion he rapidly cut a notch in the latter; it was hardly the work of an instant, but the line was perceptible.
At this point our curiosity prompted us to ask explanation, and suspending his labor, the cleaver showed us that there
idea of the relative sizes, proportionate to the weight of th ${ }_{f}^{e}$ stones, may be gained from Fig. 1, representing diamonds of $1,2,3$, and 4 carats. Of course nothing is wasted; thedust that falls through the false bottom of the box, we shall find again in the hands of the polishers, while the odd scraps are cut into rose diamonds, orthe little sparkling grains used for inlaying initials and similar fine work in gold jewelry.

THE SHAPES IN which diamonds are cut.
Leaving the klover at his delicate labor, we were afterwards conducted to the cutter or snyder. Three workmen were engaged in shaping the diamonds after the rough forms indicated by the work of the cleaver. Regarding these
cut by No. 3, this by No. 4, and so on. Again the gems were handed to us for examination; all their mica-like sheen was gone; and, were it not for their form, they presented no different appearance from rough quartz pebbles. The fric tion dulls them, for they are ground together with considerable force, the workman being obliged to protect his hands by thick coatings against the rubbing action of the tool.

POLISHING THE DIAMOND-THE SETTER.
The polishing operation next claimed our attention; and ascending to an upper story, we found the polishers or sly pers at their work, each man with a machine before him, a represented in the large engraving on our front page. In

THE CLEAVER OR KLOVER

were flaws in the stone which had to be cut off and, besid other pieces to be removed to give the gem its proper shape so that probably, of the whole rough jewel, hardly one half would be available. We looked wisely for the flaws but utterly failed to detect them, a fact not be wondered at when we were informed by the artist that this ability constituted an important part of his art. "Indeed," he observed, " I have to know the structure of a diamond far more intimately than a physician that of the human body." As hardly any two s^{\prime} no:s arn alike, and no rule can be laid down for the woris, -ma : idea may be gained of the consummate skill which enables a $m \curvearrowright n$ to pick up a tiny fragment glance at it once, and instantly detect not only flaws or streaks bu', where they are located, in the heart or on the surface, to mak up his mind exactly what microscopic pieces must be removed, their size, and how they may be cut to turn them to best account, and, finally, how to so divide the stone as to produce the best color. And all this so quickly that, although we saw half a dozen stones operated upon,

Fig. 4
 we asked afterwards: When the workman had examined them? We had not noticed the single swift look given at each, as one after another was split by the artist as he con tinued his explanations. splitting the diamond. We left the diamond, to in dulge in the above digres sion, with a streak cut across it at the point at which it was to be divided. Placing the spindle containing the gem upright before him, the operator placed one of his knives directly over the cleft. The knife used was nothing more than a piece of steel, perfectly flat with a square edge, and about six inches long. It is ground blunt purposely, for if it were quickly turn the edge. Tapping the back of the blade light quickly turn the edge. Tapping the back of the blade lightmelting his cement and removing the parts, showed us a clean smooth cut (see Fig. 4).
"But is not this a very risky performance?" we almost involuntarily exclaimed. "Suppose that you make a mistake ?" The workman smiled superior, and explained that such is hardly possible, though he admitted that it would be a very easy matter to halve the value of a 'gem by a single false stroke. Imagine a $\$ 5,000$ diamond-and that is not a large one-thus treated; $\$ 2,500$ irretrievably lost by a single tap

of the hammer! But then, with good sized stones, the work does not seem so difficult as with jewels no larger than pin heads, so small indeed that, in some cases, they number as many as 300 to the carat in the rough, or 400 finished. An
shapes, a word is here necessary. The brilliant (Fig. 2) dis plays the luster of the stone to the greatest advantage, and is described as obtained by two truncated pyramids united ogether by one common base, the upper pyramid being much more truncated than the lower. a is the crown and e the collet, the two principal divisions formed by the girdle, . d is the table, and the opposite side below, the culasse The faces are called facets, and, including table and culasse may number sixty-four. The rose diamond (Fig. 3) has a Crown but no collet, that is, one side is flat; and it is usually made from stones and fragments which would not, without loss, form good brilliants. Then there are table diamonds
which are flat and have little luster, and bastard diamond

THE SETTER.
or those of mixed shape. The brilliant and the rose are the general types, and those with which we have in the follow ing description to deal

He cutters.
Our artist has graphically depicted the cutter at his work in the engraving. The same form of box used by the cleaver is before him, and the diamonds are fastened by cement, as before, in the ends of spindles. The cutter's labor is purely "diamond cut diamond." The stone to be cut is held in its setting firmly in the left hand, while the cutting piece is moved by the right. Both gems are of course affected by the mutual abrasion, but the attention of the workman is di rected to but one. Very slowly the faces are ground away; no measurements are taken or angles calculated. The eye is the only guide, and it seems to be a faultless one. As oon as the first stone was finished, the diamond used for cutting it is operated upon, so that diamond No. 2 is, in turn,

THE CUTTER OR SNYDER
addition to these workmen is the setter, and with him we have first to deal. At one side of the room was a small charcoa furnace in which a number of metal acorns seemed to be oasting. Each of the latter consisted of a copper cup about an inch and a half in diameter, provided with a stem of stout wire of the same metal and filled with plumber's solder. As hese rested on the glowing coals, the setter occasionall tried the hardness of the solder with his forceps until the metal became of about the consistency of putty. Quickly removing an acorn, or, to use the technical name, a "dopp," from the fire, he placed it upright in a small stand. Then he fixed a diamond exactly in the center of the plastic metal, and, with his fingers, coolly molded the latter in conical shape around it. Burning seemed to have no terrors for him, and although when the dopp was plunged in water it hissed at a preat rate he hand of the work ne ha the man showed no effect of he heat. Each brilliant, large or small, has to undergo this operation once for each facet; that is, the setter must reset it so that every one of its facets in succession may be exactly horizontal and

THE D@PP.
outside the holding metal, in order that each face may re ceive its proper polish-an operation requiring no small amount of delicacy and skill.

the polishers.

Again referring to the large engraving on our front page the polishers were seated before long tables, on which wer swiftly rotating horizontal disks fastened on vertical spin dles, the lower ends of which revolved in antifriction steps The disks, we were told, revolved at the rate of 2,000 turns

minute, and yet the bearings kept perfectly cool. The ma chine is an invention of Mr. Hermann's and an improvement pon the old apparatus used in Amsterdam, a specimen of which he exhibited to us. The construction of the latter
seemed very rude and primitive, being formed almost en tirely of wood; the bearings, it is stated, were continually beating and wearing out.
The disks or shives are circular plates of a composition containing both iron and steel, and are made and turned in the establishment. They are ground in lines, at an angle from center to circumference, so as to hold the oil and diamond dust used in the polishing operation.
Three diamonds, set as above described, are ground at once, by each polisher. The stem of the dopp is fastened in tongs or clamps, the extremity of the latter being supported by legs an inch or so high. Two thirds of the dust ground off in the cutting is allowed to polish each diamond, and this, mixed with oil, is applied to the stone by the quills which the men seemed to be phlegmatically chewing. The anjusting of the gem on the disk requires wonderful accuracy in order that exactly the proper facet be ground and no more; for the slightest mistake might cutaway an angle and produce serious damage to the stone. The reader will share in the astonishment we felt on learning that this extremely delicate work was done by feeling. So sensitive is the touch of the artist that he tells by pressing on the stem of the dopp
exactly whether it lies true against the shive or not, and by exactly whether it lies true against the shive or not, and by his fingers adjusts the stone over incredibly minute angles and distances. This goes on until each facet is brought to we saw, as the diamond was removed from time to time from the disk, the bright spot on its dull face gradually enlarge, as heavier weights were put upon the tongs to press the stone with increased force against the shive. Sometime the gem defies all efforts, the hard outer coating refuses to yield, and then it is passed from hand to hand, and for weeks
each workman tries to conquer it. Sometimes they fail; at each workman tries to conquer it. Sometimes they fail; at
others, a bright spot at length appears, and the difficulty is over.

Renewing injured stones.

It is to this portion of the establishment that injured stones are sent for repairing. We were shown a number of diamonds that had been through the Chicago fire. They had become intensely heated and then suddenly cooled. A white hard film had formed over them, necessitating as careful re. polishing as the unfinished gem. We were told that it is a common fault among jewelers to thus hurt the stones during the process of setting them. The difficulty can be easily avoided by allowing the diamonds to cool gradually instead
of plunging them at once into cold water. It is the sudden of plunging them at once into cold water. It is
transition and not the heat that does the injury.

about the workmen and their par

Our examination here concluded, for polishing is the last process. The workmen, numbering thirty-five in all, we learned, were all Israelites, and, with the exception of the cleaver, were paid by piece work. Their wages reach from
60 to 200 dollars a week, depending on the skill and experience of the artist. The greater number of carats manipu lated and the more diamonds there are to the carat, the higher the price paid for the work. The establishment is necessarily organized with great strictness, and every diamond is weighed, registered and fully traced throughout its entire course. Large and valuable stones, before being operated upon, are made the subject of a consultation between the head of the company, the cleaver, chief cutter and chief pol isher. Each gives his view, and thus the question of shape, color, etc., is carefully determined.

Where the diamonds come from
The diamonds are principally imported hither from Brazil. South African gems have caused no very marked effect in the market. They are fine, but, it is stated, moredifficult to cut than those from South America. The Arizona swindle created considerable excitement when the first "salted"
stones reached the trade, but of course the dismay of the diamond merchants was allayed when the fraud was exposed.
diamond cutting in england
We notice that diamond cutting has recently been introduced in Birmingham, England, where there 'is every prospect of the art reaching a Alourishing state. Recent advices also inform us that a huge diamond has been discovered and brought from the Cape. It weighs $288 \frac{8}{8}$ carats in the rough, and when cut will be half as large again as the world re nowned Koh-1-Noor.

PROSPECTS OF THE ART.
We see no reason why the art which we have described should not grow in this country to be an important branch of national industry. To Mr. Hermann, now the President of the New York Diamond Company, a corporation of wealthy gentlemen, founded by himself, belongs the credit of its establishment among us, and the consequent enabling
of the artisans of the United States, who may be instructed of the artisans of the United States, who may be instructed
in his atéliers, to compete with and successfully rival the in his ateliers, to compete with and successfully rival the
monopoly which, for centuries, has maintained an exclusive and undisputed supremacy in the old world.

The Shokometer.

We have heard of the idsa of laying oxygen in pipes through dwellings for purposes of ventilation and purifica tion of the air, of the scheme for similarly supplying car bonic acid for the extinguishment of fire, and of the ingenious proposal to supply milk to our dwellings through conduits leading from suitable reservoirs. Further still, we have perused the glowing prospectus of the electric piano
inventor,who proposes to give us the means of turning off or on a flow of music as easily as a stream from a water faucet, and we remember having read of the telephone by which and we remember having read of the telephone by which the choicest vocal efforts of celebrated singers the Bridget hailing us from the nether world through the speaking trum-
pet. But now we have found an idea which surpasses all-
According to the Virginia City Territorial Enterprise, a Professor Maulesel is going to erect extensive works similar to those of a gas company. In these, there will be large re torts in which tobacco will be burned, and the smoke thus produced will pass through proper pipes to a large bell shaped receptacle, similar to a gasometer, where it will be cooled and purified and so scented as to have the flavor of pipe will lead up into the From the smokometer a main branch pipes leading to all the principal houses and saloon in the town. In every house where the smoke is taken there will be placed a meter, similar to a gas meter but much more delicately constructed. Running from these meters will be pipes leading to all the rooms in the house, and connected with these pipes, at convenient points, wil be long flexible tubes, each tipped with a handsome amber mouth piece for the comfort and convenience of smokers.
When a man desires to take a smoke, he has not to go to
the trouble of hunting up tobacco and filling his pipe, then the trouble of hunting up tobacco and filling his pipe, then
of finding and lighting a match, and perhaps burning his of finding and ligbting a match, and perhaps burning his
fingers, and afterward getting fire and ashes upon his clothes hingers, and afterward getting fire and ashes upon his clothe of this trouble and vexation. He has only to place the am ber mouth piece between his lips, turn a small silver thumbscrew, and the cool, delicious, perfumed smoke glides into his mouth. By this ingenious and delightful arrangement all danger of fires from pipes and cigars will be obviatod, and danger of fires from pipes and cigars will be and millions in valuable property annually saved.
An india rubber receptacle filled with smoke is arranged the breast, inside the shirt bosom, for smokers to draw from while walking in the street; and ladies, with whom it
is conjectured the delicately flavored fumes will become very popular, are to have for their use elegantly carved ambe mouth pieces, hooped about with gold aid set with diamonds and other gems. When out walking their reservoir of smoke will be contained in the pannier, to which it will impart a much more symmetrical shape than can be attained by the use of newspapers; besides, by giving the rubber of the smoke tank a suitable thickness and strength, it will be found to be very convenient when the wearer desires to sit as it will serve as a cushion, a something which is often great convenience and comfort.
Maulesel is a name as yet unknown to fame; and it may be noticed, as a coincidence quite remarkable, that the gen eric name of the ingenious idea is contained in its last sylla
ble. The Professor, we presume, is somewise connecte with Professor Cantell A. Biglie, who recently aroused popular curiosity in this city by announcing, in widely distributed handbills, an aerial flight from the steeple of Trinit Church.

Three Hundred miles of oll Pipes.

The system of transporting oil, by means of pipes laid over moderate distances, has been in practice in the oil districts of Pennsylvania for several years, proving a convenient means for carriage and a profitable investment for large amounts of capital. While the success of the scheme has thus been demonstrated as applied to comparatively small sections of country, it remains yet to be deter mined whether the project can be carried out on a gigantic scale over more extended space. With the late discov tic scale over more extended space.
eries in Butler county, Pa., it appears that interest in the eries in Butler county, Pa., it appears that interest in the
plan, suggested we believe some years ago, has revived, and plan, suggested we believe some years ago, has revived, and
the idea of transporting oil through iron pipes, from Titusville over the Alleghanies to Philadelphia on the sea board distance of 260 miles, is now exciting considerable atten tion.
Mr. G. W. Platt, an engineer quite well known through out the country from the fact of having superintended the construction of the Holley waterworks system in various cities, gives, in a letter to the Titusville Herald, detailed specifications for the construction of a huge conduit of this de scription. He considers the scheme entirely practicable and estimates its costat $\$ 4,406,150$. It is proposed to lay a cast iron six inch pipe, in a bes line between the points above named, which at one locality of its route will be 3,000 feet above the sea level; 40 miles of pipe will be allowed for un dulations, so that the tube will, from end to end, measure fully 300 miles. Its contents will be 37,000 barrels of oil, and it is asserted that there will be no more difficulty in ensuring a flow through the bore than there now is in the
water mains of London or Chicago, both of which systems water mains of London or Chicago, both of which systems each aggregate 300 miles in length. Between Titusville and the summit, a distance of 40 miles, eight pumping stations
will be established, so as torelieve undue strain on the pipe. Each pump will have to raise the oil 300 feet. Water by the Holley plan of piston pumps is elevated to this hight, and the friction of eight miles (the space between stations) is overcome at the rate of a million gallons per twenty-fou hours, which is equivalent to 23,000 barrels of oil, fluid measure. The cost of the five pumps, machinery, etc., is estimated at $\$ 0,000$; in aldition to which, there must be as
many tanks of 25,000 gallons capacity, each costing $\$ 72,500$, and finally a huge 100,000 gallon reservoir, worth $\$ 50,000$ nore at the summit
Mr. Platt enters into detail regarding friction with the tube and other drawbacks, which, however, he proposes to
obviate at once by establishing, if necessary, more pumping stations: and he finally concludes that 23,000 barrels may be delivered every twenty-four hours, at ten cents per bar rel. He figures up the profits as follows: The pipe would deliver $7,300,000$ barrels of oil per anuum, which, at a trans portation rate of 50 cents per barrel, would yield $\$ 3,650,000$ amounts to $\$ 412,717$, giving, therefore, a profit per annum of
$\$ 3,237,738$, supposing the line to be run at its full capacity The pipe could be thoroughly tested with water and thu leakage obviated, while, it is believed that, it would be as ndestructible as an ordinary water main. The loss from other sources of waste during transport, it is further con sidered, would not be so great as is now the case in the regu lar tank cars.

word to Apprentices.

"Forfex" gives our youths the following advice: "Educa tion is the basis of all success in life. It is much to you interest to recognize this fact as early as possible. You hiftless, elder companions in the shop will tell you tha affluence and ease result from mere luck. With display of dignified independence, they challenge your admiration for their manliness by proclaiming themselves as good as those persons whose apparent leisure, luxury and dress awaken feeling of hostility, which they endeavor to intensify by the bitterness of comparison. As you have little intercourse with the world during the active hours of the day, unless warned by the voice of experience you are apt to imbibe these hurt ful impressions, which indicate vindictive jealousy, the con equence of dense, wilful ignorance. The senseless discord that destroys the identity of interest of capital and labor is born of such parentage. Persons advocating these sent ments are generally men who ridicule the efforts of young mechanics desirous of self improvement. They harangu dle crowds at strike meetings and demonstrations, which they are pleased to consider, in spread-eagle phrase, the efforts of downtrodden working men to achieve their inde pendence.' Drinking saloons are the chosen theaters of thei wordy disaffection. They crave applause, and endeavor, by mock heroism, to entice you to places where lost time and squandered earnings are not the only expenses ; for, unde their tuition, the root of false principles is made to flourish in the soil of intemperance. Such influences should be hunned as carefully as we avoid a loathsome disease. Ever an will gravitate to the sphere of life forwhich his acquire ments fit him, and neither higher nor lower. Those ster ing men round us, who represent the wealth and weight of great people, are butreaping the reward of timewell spent and could we retrace the course they have pursued, we woul find the student's lamp illuminating the hours that end day pent in exhausting toil. You may be told that many edu cated men achieve but little in the great struggle of life; ye would they not have done much less if they had been aided by the brute force of ignorance alone? We know of a man now occupying a position of responsibility under the govern ment, who, some years since, broke scrap iron with a sledge for a foundery and axle forge, day after day, unsheltered from the weather; yet he found time to read at least one hour per day, as well as to educate himself in useful bran ches of learning. His first expenditure for mental improve nent purchased a Webster's Dictionary, a year's subscrip tion to a leading scientific journal, and a daily newspaper He now owns a library which would do credit to a university and he is known to and esteemed by our most prominent citizens. A different course when a young man would have enrolled him in that army which stupidly drudges out a mere existence.
As you value your future happiness, dèvote as much time as you reasonably can to education. 'Throw away your box ing gloves, for the exercise which they afford can be had from other sources, without pernicious associations. Let your shop mates dub you 'a flat,' if they choose, because you re sign billiards, and know nothing of the mysteries of keno sign biliards, and know nothing of the mysteries of keno; knowledge, which brings length of days, and tranquillity unembittered by the experiences of the mere stnsualist."

New and Remarkable Cannon.

The German journals announce that the recent trials of new guns on iron plated targets, which took place at Tegel near Berlin, fully satisfied all expectations. The shot from the 11 inch ring cast steel gun penetrated an iron plate 12 inches thick, that from the 10 inch gun of the same pat tern an iron plate of 11 inches, and there was force to spare in both cases. At Krupp's works, at Essen,trials have been made with the newly constructed $30 \frac{1}{2}$ centimeters (12 inch) ring cast steel gun, and the result justifies the belief that this gun will pierce 14 and perhaps 15 inches of armor. Thus, the strongest ironclad now ex'sting, her British Majesty's ship Devastation, which is provided with an armo of 14 inches, will no longer be invulnerable if opposed to such guns.

Church clocks and Chimes.

W. M. says that the Church of the Holy Redeemer, on 3rd street, between avenues A and B, New York city, has a very interesting clock. This specimen of workmanship was made in 1869, by Edward Emrich, of Rochester, N. Y The movement is guided by an anchor escapement with solid jeweled pallets; the wooden pendulum is a 2 second one, its length being 14 leet; the weight of the move ment is 100 lbs.; the hour-striking part has a weight of 600 lbs . and the hammer striking the bell weighs 32 lbs
Thequarter striking part has 500 lbs . weight, bearing three lev ers for the three hammers striking the four quarters. Th wheels of the clock are made of fine bronze and are as wel finished as a watch. The dials are 8 feet in diameter and the figures are cast in composition. The same maker also fin ished in 1869 the clock and attachments to the great chimes of St. Joseph's Cathedral in Buffalo, N. Y. The chime numbers 43 bells, which were cast at Le Mans, France, and wer ordered and imported by the late Rt. Rev. Bishop Timon, of Buffalo, after being exhibited in the World's Fair in Paris, 1867.

Secondary Spectra

Professor O. N. Rood, of Columbia College, New York city, communicates a paper to the American Journal of Science and Arts, on the secondary or residual spectrum found on passing a ray of white light through two prisms of dif erent substances arranged to compensate each other for
color. This secondary spectrum is generally of small dimensions and peculiar appearance, and is due to the circum stance that the spacing of the colors in the two original spectra is not accurately correspondent. In dimensions, it varies with the amount of the disproportion of the original constituents.
The writer, after alluding to Sir David Brewster's investigations in the same direction, observes that, by proceedings of a different kind, he has succeeded in producing secondary spectra, comparatively gigantic in size, which display the fixed lines with a distinctness which allows the study of their peculiar construction by an ordinary spectroscopic mirror. The constituents used are one spectrum furnished by oil of cassia, bisulphide of carbon, or even flint glass, and
the other a normal spectrum obtained by the diffraction grating. Thusit is considered that a very near approach is made to the maximum difference of spacing attainable in the present state of optical science; and hence to the secon. dary spectrum is given its maximum dimensions.
The lines of the solar spectrum not being adapted for the study of the arrangement of the secondary spectrum, a number of chemical lines of easy identification were selected. The cases considered in experimenting were three. 1. Where the opposing spectra are of equal or nearly equal
lengths. 2. Where the spectrum from the grating predominates. 3. Where the prismatic spectrum is the longer of the two. Measurements are given, in each instance, of both primary spectra, also of the actual secondary spectrum due to the same in combination, and of the secondary spectrum obtained by construction. In the last case, Professor Rood finds that the distance of any two lines apart in the second-
ary spectrum will be equal to one half the corresponding ary spectrum will be equal to one half the corresponding ary spectrum, thus constructed, will always be half the size of the actual physical spectrum which it represents. From this, he deduces a formula by which, taken in connection with maps of the primary spectra, he is enabled to construct a correct map of the secondary spectrum in any case.
This construction furnishes a simple means of determin. ing the size and arrangement of the secondary spectrum furnished by two prisms of selected angles, placed in any desired positions relative to the incident ray and to each ther. The accuracy of the result depends on the exactnes with which the measurements on the primary constituents ful in dealing with the secondary spectra in optical instruments.
In order to reveal the nature of the secondary spectrum at a glance and permit of its study in a qualitative way, in stead of using the slit as a source of light, a pin hole is em ployed; and the refraction edge of the prism being vertical the diffraction grating is revolved in its own plane, some what so that its lines shall be no longer vertical. This pro cess reduces the secondary spectrum to a line which, on rotating the grating or prism, assumes various curves. It is considered, therefore, that a true secondary spectrum must be regarded as a resultant spectrum in which any two, even closely adjacent, ines are united; even although the actual union of different tints has not been effected and the general appearance still resembles that of one of the primary constituents.

A Trap to Cateh Lions.

In Algeria, there is annually a great loss of life and property, by the depredations of lions. The loss of property is estimated at $\$ 50,000$ a year. The inhabitants cut away the orests as a means of protection against the wild beasts. M. Cheret devotes himself wholly to their extermination As an assisting means in this, his life work, he has invented a lion trap, made as follows:
The frame and hars are of iron. It is 10 feet long, 6 feet 6 inches wide, and the same in hight. Mounted on three cast iron wheels of small diameter, it can be moved on difficult ground. The upper part opens with folding doors, like a wardrobe, which close of themselves at the slightest shock given to springs of steel. Catches retain the lids as they fall, and imprison the animal as soon as he touches the bottom of the trap. The plan is to place this trap, properly baited, on the ground frequented by the wild animals, and then, when the game is caught, to wheel the machine away then, when the game is caught, to wheel the
to some menagerie prepared for the purpose.

Fatalities from Lightning.

The human mortality from lightning is not generally on a large scale, and might be very much reduced by precautions on the part of builders; so thinks the Building News. Arago estimated that the number of deaths from this cause amount ed in France to about 70 in the year; Bondin calculated tha from 1835 to 1852 1,308 so perished; none in Novem ber, De cember, January, and February, but most in June and Au-
gust. The lowest rate is assigned to Belgium, and the next gust. The lowest rate is assigned to Belgium, and the next
to Sweden, the United States and England being about on a par. As a rule, however, these fatalities do not occur inside a structure of any kind. The peril, as experience shows, is less in a crowded town than in a village or in the open coun try, and, naturally, the more elevated structures are the most liable to be struck. Fuller, indeed, in his " Church History," assert; that there scarcely ever existed a great ab wholly or partially destroyed by lightning, and his citations taken in comparison with the records of our own times, ar
certanly remarkable. In all cases it is the spire, the tower and the dome which has been mutilated. As to ordinary of danger and safety. Some rely on thick glass in the winof danger and safety. Some rely on thick glass in the win-
dows, and some on register stoves; others recommend stone dows, and some on register stoves; others recommend stone
roofs instead of slate, and others tell timid people that they roofs instead of slate, and others tell timid people that the
should live in a hollow. It is contended on this side that there should be the least possible admixture of metal in the combination of an inhabited structure; and on that, that al the bells beneath the roof should be kept continually ring ing, just as, in obedience to an old superstition, cannon ar fired at sea. The mass of evidence upon this topic points, however, to the one conclusion already suggested, that good lightning conductor is the solitary safeguard; but that unless good, it is worse than none.

Cumberland Gap Cave.

A correspondent, A. L. S., says, in reference to this re markable formation, described in our issue of September 13 that, after General Morgan's retreat from that spot, the cave was explored for a distance of four miles by Confederate soldiers, and a new opening was discovered, 3 miles from the one mentioned by H. B. N. The place has never been thoroughly investigated, but chambers, far surpassing in grandeur that described by our earlier correspondent, have been found. In penetrating the rock, it is found that the new entrance leads for 6,600 yards through sandstone; and in this section of the cave, vast quantities of human bones
of gigantic size were found, some of the skulls being large of gigantic size were found, some of the skulls being larg the current month, to thoroughly explore the cave.

NEW BOOKS AND PUBLICATIONS.

Physical Geography. By Arnold Guyot, Author of
"E Earth and Man." New York: Scribner, Armstrong \& Co
This is a very excellent work on a most interesting branch of study, and
is a model school book, full of accurate information, placed before th
wood engraving
Catechism of High Pressure or Non-Condensing
Steam Engines, including the Modeling, Constructing Steam Engines, including the Modeling, Constructing,
Running and Management of Steam Engines and Steam Running and Management of Steam Engines and Steam Claxton, Remsen, \& Haflelfinger, 624,626 , and 628 Mar
ket Street.
Thisis yet anotherhandy book on the steam engine, and it containsmuc
needed general information, as well as descriptions of many America
Practical Designing of Retaining Walls. By Arthur Jacob, A.B., A. I. C. E., late of H. M. Bombay Service.
Price 50 cents. New York : D. Van Nostrand, 23 MurPrice 50 cents. New York
ray and 27 Warren Streets.
Inventions Patented in England by Americans. [Compiled from the Commissioners of Patents' Journal.]
From August 29 to September 4, 1873, inclusive. From August 29 to Septem

```
Blowre.-P. S. Justice, Philadelplia, Pa
cester, Mass.
```

Electrio Trlemraph.-J. B. Stearns, Boston, Mass.
Printing ers, New York city.
RALLWAY CAR SpRINe.-H. Gardiner, New Yorkity.
Separatina Metals.-S. W. Girk, Philadelphia pa
Sewing Machink. - J. Knous, Hartford, Conn.
SURFAOE Condensers.-J. P.Babs, Bangor, Me.

wecent gimcrixau amd torxign eatents.

Thomas L. Booker, Shady Grove, Va., assignor to himself and E. H. Book er, Donaldsonville, S. \mathbf{C}.-The object of this invention is to provide ready
and convenient means for adjusting and fastening hames on the collars of and convenient means for adjusting and fastening hames on the collars of
horees and mule s; and it consists in a connecting band, screw bolts, and orrees and mules; and it consists in a connectiong bana, screw bolts, and
clips at the ends of the hame. The invention is specially adapted for clips at the ends of the hame. The
draft horses, and for plantation use.
Improved Rotary Churn.
Willam H. Bunch, Windsor, \mathbf{N}. C.-The body of the churn is provided with a closely fitting cover, to the lower side of which, upon the opposite sides ofits center, are attached wings or stationary dashers. These wings
are made curved upon the side against which the milk dashes. -

Improved Picture Hangers.
Franklin W. Ely, Duluth, Minn.-The picture frame has a web attached the other near the top. The web, similar to suspender webbing, is doubled at one or both points. where it is attached to the frame ; but to outer por-
ton aring is attached, with which the suspending cord is connected. The tion a ring is attached, with which the suspending cord is connected. The
use of the slide is to vary the inclination of the picture or frame. Bymoring the slide upward, the web Is shortened, and the frameis brought nearer trary.
Samuel D. Hill, Downieville, Cal.-This Invention consists in arranging the socket of the candlestick for different sizes of candles, by making it in wo pieces connected by a slotted band spring.

Improved Metallic Lathing.
Timothy O'Callahan, Boston, Mass.-The object of this invention is to furnish an improved metallic sheathing for the inner walls of buildings.
The ceiling and side walls of a building mar be covered with sheets of cheap metal, having stamped, cast, or otherwise connected to its face dovetail shaped studs. The studs are in the shape of truncated pyramids, with face recesses for the firn adhesion of the plaster to be placed around and over
them. These sheets are to be nailed or otherwise secured to the wall. Much less plaster is required for flling the space between the studs than or covering the ordinary lathed wall, and the work is performed in less

Axle Box and Sleeve for Vehicle Whel. wood and the skein is fitted to the axle in the usual manner. The made of on tha outer end of the skein and the sleeve is made of sheet metal and tted on to the axle over the skein. A recess opens in this sleeve for the retention of the lubricating material. The interior of the pipe box is on a chill, to render it hard and durable. The sleeve may be made of sheet steel or composition metal, and not being confined.except by a lug or other device, to prevent its revolving with the wheel, it may be turned, when orn, upon one side, thus presenting a new surface for the bearing

Improved Advertising Lamp.

Francisco R.Warner, Paris, France.-Thisinventionconsists of a metalic frame of pecallar form, adjustably attached to a lamp post and provided
with removable glass plates, upon which the advertisementa are displayed.
lmproved Portable Steam Engine
Reinhard Scheidler and John H. McNamar, Newark, Ohio.
consists in the Improvement of the heaters of portable engines. The pump sarranged in a vertical position on one side of the boiler near the smok pine, attaching it to a vertical supporting plate having a concave side, fit ing the boiler and bolted to it; also having a bearing at the upper end for
countershaft for driving the pump, said shaft extendirg across the top of the boilers, in front of the smoke pipe, to a bearing on the other side, where t carries a pulley for turningit by a belt from the crank shaft at the front end of the boiler. The plate is detachably connected to the boiler, so that
It can be taken off readily for shipping. The portion of the shaft having then be taken off readily for shipping. The portion of the shaft having the crank for driving the pump connects with the other portion by a clutch
which is shifted by a leverer, so that the pump can be worked or not, at will. This arrangement is claimed to afford a simple, compact, and reliable con nection of the pump in a portable engine, so thatit can be stopped withou stopping the engine whenever it maybe required to do so, which often hap.
pens, and causes considerable unnecessary delay in all portable engines pens, and causes considerable unnecessary delay in all portable engines
having the pump directly connected to the cross head in the ordinary way. having the pump directly connected to the cross head in the ordinary way.
Moreover, it saves the unnecessary loss of power expended in running the pump when it is not required.

Improved Malle
Albert Holbrook, Providence, R. I.- The object of this invention is to fur ting together, taking apart, oxing, or adjusting metallic or wooden machi nery, and for all similar purposes. It consists in a mallet with one or mor rawhdde heads secured in a metallic socket, which is made of metal in on
solid piece. The handle is secured in the socket in the ordinary manner The socket or body has a recess at one or both ends which receives the heads. These heads are made of rawhide coiled up and dried, and then
turned to the desired size and shape, and secured by means of a screw turned to the desired size and shape, and secured by means of a screw insid the socket.
Apparatus for Preserving Beer on Draft. ame place.-This invention relates to means for in troducing and Meek, of to take the place of the liquiddrawn out ; and it consists in the combination, novel constre bag or air holder, of a valve and bellows mechanism of liquid that Ing a nozzle formed uovon its inner end, to which is secured the mouth o the bag, made of rubber or other suitable material, and of sufficient size an
elasticity to filthe cask when expanded. By this construction as the liquid is drawn out of the cask, the air will enter the bag through the hollow bung and expand said bag to take the place of the liquid drawn out.

Improved Extension Table.

Christian Rieger, Morrisania, N. Y.-This invention consists in extensio rails, hinged to the rails of the side table, and to extension legs. These ex tension rails are each made in two pieces, connected together by pivote strips on the bottom and top of the rails. When the rails are extended
they are held in position by means of knob buttons. These buttons a attached to one part, and turn on a central pivot over on to the other part thus holding the two pieces parallel with the rails of the side table, che cover of the table is in two parts, hinged together like ordinar
card tables. When the extension rail is drawn out, the half of th table top is turned over on to it, thus making a square table. When the extension rails are folded, they are in a position with the half of the top catch on the bottom refting on the other part of the top. There is a sprin side rail which holds the parts securely together. When the table is
extended, the ralls of the four sides present a uniform and finished Improved Corn Planter.
William Mull, Rantoul, Ill.-In this invention the seed hoppers are at tached to the frame of the machine. The ends of the dropping slide ente
the lower parts of the hopper through holes in their inner sides. A sprin has its upper end attached to a cross bar of the frame, and its lower end enters a hole in the drapping slide, to bring said slide back to its position when released from the device that moves it. To the slide, to ward on
end is pivoted the end of a connecting rod, the other end of which is ben at right angles, passing through a short curved slot in a wheel or disk, an is secured in place by a nut or other convenient means. The wheel or disk is attached to the end of a short shaft which revolves in bearings attached to a cross bar of the frame, and to its other end is attached a bevel gear
wheel, the teeth of which mesh into the teeth of a similar wheelattached wheel, the teeth of which mesh into the teeth of a similar wheelattache
to the axle, which revolves in bearings attached to the frame, and to it ends are rigidly attached wheels, so that the saitl wheels maycarry the sai axle with them in their revolution. In each end of the axle, at a little dis tance from the wheels, is formed a universal joint, so that the said wheels mayaccommodate themselves to the surface of the ground, however un-
even said surface may be. A further use of the joint is to enable the wheels even said surface may be. A further use of the joint is to enable the wheels
to be lifted by levers and rods when the machine is to be turned about, or the discharge of seed requires to be arrested.

Improved Door Fastener.

Henry Orcutt, Amherst, Wis.-This invention consists in applying a semi circular bar to a door and arranging a weighted lever to engage therewith
(the bar being notched or perforated for the purpose), so that the door ma be locked in any position, shut, open, or partly open. The contrivance is designed more particularly for stable, carriage house,
but it is alike applicable for doors of dwelling houses.

Improved Steam Generator.

HarryP. Wright, Bonaparte, Iowa.-This invention consists of secondary return flues, arranged in the masonry along the sides of the boiler, above the furnace, into which the heat is turned at the front of the boiler, instead
of discharging in to the smoke stack, thus economizing the heat by causing to pass along the boiler once mere than in other arrangements.

Improved Fireproof Shutter.

Jobn B. Cornell, New York city.-This invention consists of a door or
shutter composed of three plates of metalunited together side by side, the shutter composed of three plates of metalunited together side by side, th
two outersheetsbeingplane, and the middle one being bent in zigzag o other form, so as to form channels or spaces betweenitand the outersheet for the circulation of air or water to cool the door or shutter in case it is

Improved Earth Boring Machine.
Joseph Burns, Anamosa, Iowa.-In this invention the square auger shaf has a screw point fixed in it permanently. The lower part of the screw auger is fitted so as to be adjusted relatively to the poin t, to use said point
with it or not, and will have a set screw to fasten it where it is required to be. The upper part of the screwauger is arranged to slide up and down freely, and rests on the lower part when boring. By the bar or plate, in
which it is fitted to turn freely and in which it is confined by the collar which it is fitted to turn freely and in which it is conf ned by the collar
this part of the auger is connected to cords, which pass over pulleys under the platform to a drum, which is fitted loosely on the crank shaft, and clutches with it to be turned byit forelevating the borings when moved to heright by a lever, so that studs will engage, and it disengages them an lets the auger fall again when the lever is moved the other way. This shaft urned by a shaft, inion enployed to turn the shait power is applied to th shaft by a belt
turned by hand.
Improved Mold or Box for Brick Press
John McKEnna, Cambria, Pa.-The press boxes for making firebrick have
heretofore been cast solid and lined with steel. The steel facing soon wear way, so that the bricks are too large and untrue. The steel has then to be taken out and replaced with new, which can only be done at considerable expense. The object of this invention is to furnish a mold which shall ob
riate the difflculties experienced in the use of the usual press box Improved Plow Coupling.
Thomas L. Thrasher, Paris, Texas,-The invention has for its object to furnish an improved coupling for connecting two plows, to enable them to
be guided and controlled by one man; and it consists in the bent bars trengthened at their bends by extra rods, provided at their lower ends Withswiveled clamping plates and set screws
yes, slides, and notches to recelve the key

