September 20, 1873.]
§rientific Ammutan.
Susine wand texymal
 Wanted-Adress of parties who mould and
finisn small iron castings. E. C. Bidwell, Savannah, Ga. Mechanic's best tool yet; strikes 12 in. Cir.
cle. Callper and Divieraln one, of Steel, by Mail, 75 cta;
 der and fnisher, capable to take charge of wor

 Wanted-Partner in a number of valuabl patents. Patent right salesmen and manufactu
aress, for 30 days, J. E. Garside, Hennepin , Ills.
A valuable patent for sharpening planing or the cylinder, or cylinder from the machine, ior sale. Ad
and R. R.-In Broughtons
thether Oil be thick or thin Cups, it matters teed in a moment to suit all purposes. For particulare apply to the manufacturer, H. Moore, 48 Center St., N. .Y.
Steam Yach for Sale 60 ft. long 55 horse
engtine. Beautifully ftted up. Aduress H.L. Steam and Water Packing Manufactured
by The Manhattan Packing Mrtg Co., 15 Frankfort St., Y. This Packing is superior to an y in the Market. No inconvenience is ever felt in wearing the
New Elastic Truss which retanns the Rupture, night and day, till cured. Sold c
Broadway, New Tork.

tie Creek Machinery Company, Bathle Creek, Mich.
Best Steam Fire Engine or Hook , Ladder
sid A Condensod Treatise on Siliceste or Soluble L. \mathbb{C}. W. Feuchtwanger, 55 Cedars treet, N . Y.
Chemicals of all
inds for
. to orider at our own Laboratory by addressing L.
W. Feuchtwanger, Chemists, 55 Cedarstreet, N. Y. The Olmsted Oiler is the best; it is self-
Mining, Wrecking, Pumping, Drainare, or

Buy Gear's New Emery Grinding Machine,

Key Seat Cutting Machine.T.R.Bailey \& Vail. Portable Hoisting and Pumping Engines-
Ames Portable Engines.-Saw Mills, Edgers, Burr Mills, Climax Turbine, vertical and Horizontal Engines and Boilers; all with raluable improvements. Hampson
Whitehill \& Co., Newburgh Steam Engine Works, Depo Cortlandt Street, New Yor
Lathes. Planers, Yrills, Milling and Indes
Machines. Geo. s. Lincooln © Co., Hartford, Conn. Scale in Steam Boilers. - How to Remove
nd Prevent it. Address Geo. W. Lord, Philadelphia, Pa. Williamson's Road Steamer and Steam Plow,
with rubber Tires. Adiress D. D. Williamson,32 Broad way, New York, or Box 1809.
Gear, Boston, Mass., sells the latest Im-
proved Macolinery. For Solid Emery Wheels and Machinery, All Fruit-can Tools,Ferracute, Brid geton,N.J. For best Presses, Dies and Fruit Can Tools Stave \& Shingle Machinery. T.R.Bailey \& Vai Five different sizes of Gatling, Guns are now
manufacturea at Colt's Armory, Hartford, Conn. The arger sizes have a rainge of over two
are ind ispensable in modern warfare.
are indispensabie in modern warfare.
Fine Machinery Oils.-We pe take pleasure in
caling attention of our Manufacturing readers to E. H. calling g ttention of our Manufacturing readers to E. H.
Kellogg's ad adertisement in another column, and saying that we believe his claims in regard to tine Engine, Spin. that parties who try his goods will not have cause to regrentr.
Machinists- Price List of small Tools free
Gear Wheels for Moele , Price List tree; Chucks and Drills, Price List free. Goodnow \& Wightman, 23 CornFor Solid Wrought-iron Beams, etc, see ad.
vertisement. Bookkeepers should try the Olmsted Patent
 To sufferers from batteries that get out of
order on Burglar Alarms, etc., the Leclanche Battery Co., 40 West 18 th st., New York, guarantee these batter-

 ${ }^{\text {tw }}$ Envelopes, by S . Kuh, Jefferson, Iowa.
Hydraulic Presses and Jacks, new and sec-
ond hana. E. Lyon, 47 Grand Stret, New York. Catalogue on Transmissicn of Power by
Wire Bolt Makers, send for descriptive cuts of
Abbe's Bolt Machine, to S . c. Forsaith \mathbb{C} Coo., Manches-
 Boring Machine for Prilleys no no limit to
capacty.
Brown's Coalyard Quarry \& Contractors' Ap-
paratua for hoisting and conveyingmaterial byironcabie W.D.A.Adrews \& Bro. 414 Water st.T.N. Y.

The Best Smutter and Separator Combined
 Steam Fire Engines,R.J.Gould,Newark,N.J. Gauge Lathe for Cabinet and all kinds of han-
dles. Shapting Machine for Woodworlling. T. R. Bantes

Fror Sale-An interest in a well established
prof table manufacturting business, capabale of great en

 permanent demand, the machinery used is simple, and
theright of manufacture exclusive. Any active man or cheright of manufacture exclusive. Any accive ana
company desirous of securing a good and substantial business and irst rate article for manuracture, win in
hiss a bena afiee opportunity. Addiress F. C. Beach, Boz 73, New York City.
 Peck's Patent Drop Press. For circulars,
ddress Nilo, Peck $\&$ Co., New Haven, Conn. Cabinet Makers' Machinery. T.R.Bailey\&Vail 2 to 8 H.P.Engines,Twiss Bros.N.Haven,Ct.

J. E. R. should try to blue his steel articles
on the process mentionea
p. 10 or, vol. 26.-C. H.D. will
 will in ina da decription of the horticultural fertilizer o
.401, vol. 28. It should be phosphate of ammonia, no iphosphate.-D. R. is informed that the published ac counts of phospho-bronze do not mention the propor
lion of phosphorus, which can doubtiess be ascertained bon experiment.-H.'.H.Hs quarery ys to the namese of the
steam engine is incomprehensible.-T. A. C. can find the roper welght of ball proportionea to length of lev
 mation.-. T. T. L.s s query is a trade matter; he shoule
consult an engineer. We are obliged to G . $\&$ C. fo
C. consult an engineer.-We are obilged to G . C C. .
their
therrection ; the mistake was not ours. - P. P. can bronze cast iron by using the process described on p. 58 ,
vol. $26 .-$. $\mathrm{L} . \mathrm{L} . \mathrm{B}$. 's equation is a catch; the answer mat be e ether 18 or 2 , as the data are not properly expressed.
W. B. . W. will in the the needed informm tion as to mold E. F. L. asks: Would two ste ther a horizontal and return tubular
 conomical, and what per cent will the one eave over
he other, and why? Answer: We suppose thehorizon tal boiler would be the most economical, because G. D. asks: Does it require more force t
rring a moving body to rest than it does to give it the notion? I should daynot; yet it would seem to be 8 ,
fI IIghtly understand your renly to I. B. T . page 77 the current volume. Treason that in an ensineer can
ump from his engine at the rate of 15 miles an hour, jump from his engine at the rate of 15 miles an hour, it
makes no difference so far a his relation to the engin

 think J. B.T. mistaken in thinking that "engineer train." It is true that they face in that direction, but they usually jump with a swinglig back wara motion
mating the heaad and body move as rapalily as possille
in the directo in the direction opposite to the train. If an engineer
jump backwarid with a velocity of ten milies an hourr, rate of 25 miles an hour, he strilkes the earth with the velocity of only 15 miles an hour, the force of which can
easily be resisted by an ordinary man. Active base ban easilly be reisted by yan ordinary man. Active base ball
players frequentil fall without infury when running
 the question of time plays an important part in many
cases. We will try and make this platin, by a few simple
. illustrations. Suppose a train is moving at the rate 30 miles an hour, and strikes against something whic
stops it instantly. Now if a man were standing up that train, faciog to the rear, the eftect would we the
same a fif he were to jump with a veloctity orf 30 mile
per hour ; and on our correspondent's theory, he ough to remain standing and uninjured. On the contrary, \mathbf{w}
know that he would perform $\begin{aligned} & \text { few }\end{aligned}$ involuntary somer saults, and the chances would not be very favorable fo
is eccaping with his life nis escaping with his 1 ife. This is because, though just
as much force was brought to bear to stop his motion as had been used in producing the motion, there was an
amount of work stored up that required time as well as orce to overcome it. A train moving from a station
tarts slowly, and gradually accuires speed, so that the
 iocity. But if the train started abruptly at a apeed or
30 miles an hour, couppligss would break, passenger
would be throw in would be thrown in all directions, and geterall havoc
would be the result, for the eame reason an before, that time is requirea to imparta a rapid motion to a a body, if 11 is to be done without shock. We might multiply these
llustrationsto any deesirea extent. Suppose we have iy wheel with a heavy rim and crank attachment, and
that a man working on this crank makes the wheel re
 Wheel ss suff clent to lift him off his feet, and throw hil to some distance. The case instancea by our corres.
pondent. of base ball players, will also serve as an illus tration. Probaly one of these players rarely runs fast-
er than at the rate of 18 miles an hour, and so many ac.
 stopping suddenly without injury that the rules have
been amendeal, anda p playeron reaching first base does not have to holl it, but may run over it and cannot be
put out , until the ball has been returnea to the pitcher put out , until the ball has been returneed to the pitcher.
our correspondentir right in remarking that persons
oum jumping from a moving train face in the direction of
the motion, and hold back. Some years ago, man min
 Who saw him by jumping from a train which was mov-
ingat the rate of 25 miles an hour. He may still display ingat the rate of 25 miles an hour. He may still display
his agllity and nerve, for aught we know, although it $\underset{\substack{\text { risey. } \\ \text { feet on }}}{\substack{\text { mus }}}$ likgy. His plan was to go to the rear platiorm, place e at
feet on the buffer and his handis on the railleaning back as far as this postion would allow. When he reached
the place where he desired to stop, he would dexter. ously release his hands and feet slmultaneously, and
reaching the ground in an uright position, would wall of to his work with an unconcerned air. We are not relating thisinincident to induce our readers to go and
do likewise. If they arevery desirous of experimenting
fallure will be a few bruises and the derision of the by sanders. We once knew a man who jumped from
canal boat, in a direction contrary to that in which was moving. colided with the ground, and he went home a wiseran asader man. We think there is one case in which a
person could jump back ward from a moving train, if verything were propitious. Let him start at the fron ena of a platiorm cor, and run backas fast as the trait
was moving for ward; then he could jump with safety. was mo
wat a
Bent.
 it not be the esciare of the dameter? Do you deduct
ind
nid anything for friction? 2. What books should a young
man reai so as to geta good idea of machinery in gen
and erral, and about what would they cost? Anservers :1. I.
hould be the square of the dlameter, of course. In cal culating the indicated horse power of an engrine, no de
de duction is made for friction. We endeavor to avoid
istakes of this character, and will thank our reader itases of this character, and will thank our reader,
o polnt out errors whenever noticed. 2 . Appleton', Dictionary of Mechanices," price 820.00 , will give you Dow in course of publication, by the same author, is late nd more complete
C. H. A. says: : Suppose a ball, \boldsymbol{a}, to be re
olving aroundan axis, b, say 60 times a minute; 18 it Dossible to draw a curve, from c to d, such that tits tan
gent shall be at right angles to the resultant of the orces of gravitation and centrifugation acting on the

ball at whatever point of the curve the ball shall be
placeal, say at e, f, org g the number of revolutions being
 solution of this problem (Which is quite simple) fiom
R. L. asks: Can a correct test of the the foot and in exact proportion to one of funsizize? An

F. P. Says: In constructing a pair of scales elative length of bean, and chanins or threads to whicl
he eups are attached? ach end of the beam, , d stralgh t linedrawn, how f a above the line in the eenter of the beam should the
pivot be, to make the most sensitive results? Will the cales be more sensitive with the pivot just as near the arther? s. Willthe knife-edgedpivot be as delicate mode as any? 4. A friend days that the index above
heplvot must be of a certain length and weight to nake the scalessensitive. I contend the index is mere Whichis right? Answers: 1. This does not affect the ensibility. 2. By placing the pivot as close to the cen ter of gravity of the beam as is practicabie, the sen
ty willbe increased. 3 . Yes. 4 . You are right. N. H.T. asks:
lass locomoilve?
2. What number of pound a strain willit produce in a rope or chain fastened to some imof a double engle be placea, to act to the best effect they betng keyed on to the shaft at right angles to one
nother? 4. Give a rule for compound gearing used on another? 4 . Glive e rule for ompound gearing used or
arge eng ine lathes with four change gears. Answer

 $F=$ teeth on 8rad stuad
heel. $G=$ teeth on 3 ra stua pinion, etc. $L=$ teeth in wheel
to one of cone spindle, $N=\frac{A \times C \times E \times G}{B \times \mathbf{M} \times F \times \Sigma}$. And if $M=$ num ser of revolutions of main spinale to one of cone spindile $a=\mathrm{N} \rightarrow \mathrm{M}$. To find M . $a=$ teeth in wheel on cone spinile
$=$ teeth in 1 st wheel on back speedshaft. $c=$ teeth in 2 na $=$ teeth in 1 st wheel on back speed shaft. $==$ teeth in 2 n
wheel on back spead shaft.
$d=$ teeth in whel on main spinale. Then $\mathrm{m}=\frac{\mathrm{a} \times \mathrm{c}}{\mathrm{b} \times \dot{d}}$. The accompanyingengravingwil robaily make the rules clear.
F. E. H. asks: What would be the average oadea? Answer: Weight, nine tuns empty, nineteen A. K. asks: 1 . Would itpay to own and run
grain separator where coal is cheaper than wod Coal 1 1888 per tunat the bank, distance to be hauled from to 12 miles. 2. How much coal would be consumed by
20 horien

W.H. L. asks: How can I get a grease spot
roma book? Answer: Apply refnea benzine with sponge or rag, to the grease spot.
H. F. U. asks: What shaped nozzle will sine, cateris paribus? Answer: The nozzle which has
he form of the contracted vein, see sticle whe he form of the contracted veln, (see aa
of steam," page 113, current volume.)

How much of an inch squar eb a terbarbe made, to support a weight ofs,00010 he formulas, if welght or the distance of the supports Will depend upon the form, and the distribution of the
weight. We willgive you tworules for a steel bar, and ou can assume different depths, weights and distance eet ween supports, to tind the various widtha requiree
under different clrcumstances. 1st. If the weightis sus. pended at the center the witth of the bar in inches is
equal to the clear span in feet multiplied by the weight in pounds, divided by the square of the depth in 1nche nultiplied by 1,000 . 2nd. If the weight is uniformly dis ength of width of the bar in divide of clear span in feet multiplied by the weight
dive square of the depth in inches multiplied y 2,000 .
A. B. asks: Why is it that a saw heats on
he rim in sawing hari timber. whei in soft timber it unsverywell? 2 . Ought a circular saw to be hollowin
on the log side, or perfectly straight? Answers: Yoursaw is undoubtedly what saw mkers call open o herim, or possibly it may not be in proper line with th arriage; generally board circular saws are line wit han the back part of the saw, in order to prevent the reeth cutting or scratching the timber; this causes the aw naturally to incline towards the log and bear agains he guide. The harder the timber, the more resistanc requires to keep the saw in proner position; conse
uently the greater friction, in sawing hard than sof timber, causesit to heat on the rim. If it is more open
at the rim than in the body of the saw, the least amount heat expands it, and causes it to heat still more. 2 . A It had better be a verylittle full or convex on the log ide, but in no case so much as to permit any portio
he plate to touch the timber.-J. E. E., of Pa. L. S. Says: I noticed in your answer to Davies' "Algebra" and Legendre; but you will ind that
although they were the beest in your day and mine, they are far behind Robinson's "Algebra," especially his
"University Algebra," and Greenleaf's "Geometry," which, on examination, you will find very practical.
However, the Legendre style ($\mathbf{w h i c h}$ they follow) never ound in Playfarr s "Euclid" or Potts' "Geometry." Th atteris an English work reprinted in New York. Answe We are quite familiar with the works you mention, and oentioned the most suiltable text books, according to the opinion of others. In an article recently publishe we have intimated that it was of more importance how N. D. H. asks: In building an engine t propel a bat with twin screws, would friction gear work
to more advantage than cog wheels? The latter are o more advantage than cog wheels? The latter ar
often used on such boats on the Western canals, and nake a rumbling and disagreeable noise, and are liable
to get out of order. Answer: Friction gear will wort o get out of order. Answer: Friction gear will work
very well, if properly constructed. It is well to have V
D. asks: 1. How can I make chloroform nd how is it administered to make a person sleep one
our? 2. How is acidulous mineral water made? How is lemon syrup made? . Whose work on chem-
stry would you advise me to get, that is, whose is the most complete? Answers: 1 Chloroform is made b is administered by means of a saturated sponge or hand erchief placed over the mouth of the patient, but w
would advise you in no case to attempt to experiment with reference to its anesthetic properties, as serious results might follow. Its administration should be left vater. with which the proper chemical ingredients hav previously been mixed, with carbonic acid gas. 3. By mixing lemon juice or citric acid with sugar
As an elementary work, Roscoe's or Blozam's
J. P. asks: : Is there any method of prepar
cloth orthin leather so as to render it impermeable to air without destroying its pliability? The ordinar rubber cloth is not, and fam told cannot be made, thor-
oughlyair tight. Answer: We should judge that the loth, fro are made might erve your purpose. Th cloth is prepared by coating two sheets of cloth on on side only with india rubber varnish and then pressing
the varnished sides together by means of rollers so as to make one sheet. Thin leather mig
R. C. asks: 1. What is the difference be
weengold-bearing quartz and common quartz? 3. How ss gold separated from quartz? 3. Does common san
ontain gold ; if so, about how much to a bushel ofsand What are crucibles made of? 5. How can I separat is phospho-tungstic acid made? Answers: 1. No diffe ence, except that one contains gold and the other doe
not. If gold is present, it can generally be detected he eye. 5. Gold is generally separated from quartz by rushing and grinding the rock into a fine flour ; the y means of water the quartz is washed away, leavin
he heavier gold in the vessel. There are other method of separation. 3. Common sand does not contain gold . Crucibles are made of black lead or graphite, also
clay. 5. By heat. 6. One of the best is Bloxams. ? We do not know what our correspondent means unle
it be a mixture of phosphoric and tungstic acids.
J. H. K. says: I have an orchard of apple
trees about 15 or 20 years old. For the last two or three years I have been greatly troubled by the ravages ofth canker worm; and unless a stopis put to them, I sha probably lose the trees in a year or two. Please inform
me if there is a remedy. Answer: The female of the canker worm is fortunately without wings, andis oblige to crawl up the trees to lay the eggs. If you can pre vent this, you can put a stop to the depredations of this
insect plague. Various methods have been devised for this purpose, such as the application of tar either a rectly to the bark itself, or on strips of cloth, paper,etc wound around the trunk, Melted india rubberhas been roughs flled with cheap ofl, fixed to and encircling th Fhole trunk, near the ground, would be a guod plan cale. When the worms are on the leaves, showering With a mixture of whale oil soap in water (1) lb. soap t
gallons water) will kill the worms without injurin eaves or frult. See Dr. Harris on "Insects Injuriou
F. T. H. asks: What will take nitric acid
stains from cloth? hartshorn. Apply with a small plece of sponge or cloth

