astronomical notes.

Observatory of Vassar College
For the computations in the following notes, I am indebt ed to students.

Positions of Planets for July, 1873

 Mercury.Mercury rises on the 1st of July at 6is. 18m. A. M., and sets at $9 \mathrm{P} . \mathrm{M}$. It is not at its greatest elongation from the sun until the middle of the month; but as it then has a lower altitude at meridian passage, it cannot be so well seen as earlier in the month.
On the 31 st it rises at 6 h .46 m . A. M., and sets at 7 h .48 m . P. M.

Venus.
Venus was at its greatest brilliancy on the 10th of June, at which time it was easily seen at noonday, and a glass of low power showed it as a beautiful crescent.
In the first half of July, it will pass the meridian a little before nine in the morning, rising on the 1st at about 2 in the morning, and setting at near 4 P . M. On the 3

Mars.

Mars rises on the 1st at 30 minutes after noon, and sets a ittle after 4 in the morning. On the 31 st it rises at 1 h .10 m . P. M., and sets at 11 P. M.

Mars is easily known by its ruddy light; it passes the meridian in July before sunset, and can be seen in the southwest after twilight. But little can be seen of its peculiarities with a small telescope, although a powerful one will show very decided markings on its disk.

Jupiter.

Jupiter is still conspicuous in the evening sky among the tars of Leo. On the 1 st of July it rises at 8 h .39 m ., and sets at 10 h .12 m . On the 31st of July it rises at 7 h .12 m ., and sets at 8 h .28 m .
It is much less favorably situated for observation than in the winter, and very few of the phenomena of its satellites are visible in this locality for the whole month.

Saturn.
Saturn is more favorably situated for observation, but it is so far south that it does not reach, when on the meridian, an altitude of much more than 27°. It will be best seen at midnight on the 22d of July. It is among the stars of Capricornus, rising on the 1st of July at 8 h .48 m . P. M., and setting at 6 h .14 m . the next morning.
On the 31st Saturn sets at 4 h .13 m . in the morning, and On the 31st Saturn sets at
rises again at 6 h .43 m . P. M.

Uranus.

Uranus is still among the stars of Gemini, and is very unfavorably situated for observation, rising in the morning and setting at 9 P . M. on the 1 st of July, and at 7 h .7 m . on the 31st.

Neptune rises between 12 and 1 A. M. on the 1 st of July, and sets a little before $2 \mathrm{P} . \mathrm{M}$. On the 30th it rises at 10 h . 39 m . P. M., and sets at 11 h .46 m . A. M., on the 31 st . Meteors and Sun Spots.
Meteors were frequent on May 1, buthave thus far (June 8) been rara in this month. It has also been a very remarkable period for the absence of sun spots. No spot could be found on the sun's surface (a glass of low power being used) from June 13th to June 17th. On June 18th a very small one was perceived.

New Planets Discovered in 1872

Since the beginning of last year, twelve small planets have been discovered, as follows
Peitho, discovered at Bilk, by R. Luther, March 15.
A not yet named planet, discovered at Ann Arbor, Mich. by Watson, April 3
Lachesis, discovered at Marseilles, by Borelly, April 10.
A not yet named planet, discovered at Ann Arbor, by Wat son, May 12.
Gerda, Brunhilda and Alcestis, discovered at Clinton, \mathbf{N} Y., by C. H. F. Peters, the two firston July 31, and the last on August 23.
A not yet named planet, discovered at Paris, by Prosper Henry, September 11, and two others, at the same observa tory, by Paul Henry, November 5.
A not yet named planet, at Ann Arbor, by Watson, November 25, a nd another at Ciinton, N. Y., by C. H. F. Peters, on February 5, 1873.

Railways of Massachusetts,

Massachusetts has today invested in railroads one hundred and forty million dollars, of which eighty-one million is stock and fifty-nine million bonds, and there is one mile of road to each four and three fourth square miles of territory. This is a greater development than in any other portion of United States, and equals the average of any country in Europe. The average cost per mile is $\$ 51,250$, and, adding eqiupment, $\$ 58,125$. The gross earnings last year were over $\$ 30,000,000$, and the cost of operating $72 \cdot 2$ per cent. The average dividend on stock of paying roads was 8 per cent.

A Cheap Fire Alarm.

J. N J. says: Take an old gun or pistol; put a heavy charge of powder in it, and put it in the most. dangerous place in a house or barn (near the rafters in the latter;) and if the building shonld take fire, it would immediately give the alarm, and thus might save many lives and much valuable property.

A steam wagon is to run from Nashville to Pulaski Tenn., commencing regular trips in October next.

NOTES FROM THE VIENNA EXPOSITION.

The bird's eye view herewith presented of the vast building erected in Vienna will convey as good an idea of the magnitude and splendor of the World's Fair of 1873 as is possible in so small a space. The site chosen is the Imperial Park or Prater, along one side of which extends the new channel of the Danube, while on the other runs the Danube canal, which separates the Park from the city.
The central rotunda, with its conical roof, occupies the most prominent position in the view presented. It springs from the ground, a circular façade of piers of no less than $426 \frac{1}{2}$ feet in diameter, with Roman-Doric columns at either side, and connecting arches filled with glass. Within this is a gallery 50 feet wide, covered with its own roof, while above rises the great arcaded circuit. The large lantern seen above the roof is 105 feet in diameter, and is surmounted by a second lantern and cupola fully 300 feet above the ground. The rotunda stands in the middle of the grand quadrangle, which is 755 feet square. The vast central gallery or spine is 2,985 feet long, width 82 feet, and its hight from floor to wall plate $52 \frac{1}{2}$ feet. The cross galleries are 250 feet in clea: length by 49 feet in width.
The machinery annexe is a substential brick building, shown in our illustration to the rear of and parallel to the central gallery. It is intended to be permanent, and after the Exposition will be used for mercantile purposes. The extreme length is 2,614 feet, and the width nearly 155 feet in the clear. The side walls consist of brick piers, running up to the roof, with segment arching between, at a level to suit the side buildings. Ample means of lighting and ventilation are provided. Boiler houses are constructed at various points along the length of the building, and steam and water introduced from end to end.
The building faces the southwest. The thirty-two transverse galleries are for the reception of the lighter articles of industry, and the assignment of divisions to the different nations corresponds to their geographical situation, the extreme right or eastern division being given to India, and that to the extreme left or west to America. The gallery to the extreme left and front is occupied by the United States, nd the gallery directly back of that by South America The Exhibition closes October 31, 1873.

He Exhibition water works

The arrangement, as carried out, is the design of Professor Grimburg, and has for its object the supply of the fountains, hydrants, and fire engine reservoirs, the feeding of the boilers and the kitchens of the different restaurants, and also the sluicing of the water closets and other sanitary conveniences. The plan is as follows: For the supply of the high pressure water necessary for the fountains, hydrants, and water closets, a water tower, 138 Austrian feet high, was erected, this consisting of a reservoir of riveted boiler work, 24 feet in diameter by 20 feet in depth, supported on nine cast iron tubular columns, each 105 feet in hight, which stand on an octagonal pedestal of brickwork, 15 feet ligh. The columns are bound together and stiffened by means of wrought iron rings and diagonals ; two of them serve as outlet pipes, while the third one, in center of the group, feeds the reservoir, which contains 8,000 cubic feet of water. This water tower furnishes about 18,000 cubic feet of water per hour, and supplies the fountains, nine in number, as well as 180 hydrants. It draws its supply from a well 18 feet wide and 22 feet deep, by means of a double cylindered horizontal steam engine of 100 horse power nominal.
Two of the larger fountains are fed by a separate apparatus, which serves also as a reserve to the water tower just described. The arrangement is rather peculiar, for there is no reservoir, the pumps forcing the water directly into the pipes which lead to the fountains. The plan is, says Engineering, an American one, and everything about it is original; the two engines, which are each of 50 horse power, work the pumps by direct action, without the intervention of cranks; as there are no crank axles, there can also be no eccentrics, and so the valves are worked by tappets. The well from which the water is drawn is in this case 12 feet
wide by 20 feet deep, and has to furnish 6,000 cubic feet per hour.
The boilers and condensers of the machinery hall are supplied by another set of pumps, which are quite different from the two sets already mentioned. The system in this case is a sort of Norton's tube well on a large scale. Continuous iron piping is driven into the ground till water is reached, and then the pumps are attached to the heads of the pipes; thus no well is needed, and the water is sucked
p through the pipes and delivered into a reservoir, which in this case is situated 18 feet above the level of the floor of in this case is situated 18 feet above the level of the floor of the machinery hall. It will convey an idea of the requirements of a large exhibition in the matter of water when it is
stated that the united length of the pipes connected with stated that the united length of the pipes con
the waterworks in the Prater is about 12 miles.

boiler engineering.

In respect to stationary boilers, the Engineer pronounces the display as disappointing and unsatisfactory. As regards size, the number of boilers of any importance is small. Notbing especially new is exhibited in this line, and little concerning the construction of the boilers shown can be learned, because they are so put up as to render it difficult and impossible to get at their dimensions with accuracy. Nothing is on exhibition to illustrate boiler construction, and this omission our cotemporary thinks is unfortunate.

the american flag.

The Austrians, in getting up a United States flag to adorn one of the transepts of the exposition building, left out all the stars, added two extra stripes, and set the flag as a signal of distress, that is, "Union down." So says a correspondent of the Boston Advertiser.

Clarke's Combination Lock.

We were recently shown, by Mr. W. F. Beasley, the agent of the Clarke Lock Company of Louisville, Ky., a very ingenious and novel form of combination lock, as manufactured by the above corporation. It obviates the necessity of a key, acrs as a secure fastering upon any object to which locks are applied, and also serves, upon doors, drawers, etc., as a convenient knob.
The device principally consists of a number of tumblers arranged in longitudinal slides on the periphery of an inner solid metal cylinder. Enclosing the latter there is another cylinder, within the inner end of which are radially disposed a number of small steel projections which take against the inner extremities of all but a certain number of the sliding tumblers, and thus prevent the acting of the fastening mechanism. The outer ends of the tumblers extend through an exterior small circular plate upon which are letters or other marks. By suitable means the tumblers can all be drawn forward at once; then by pushing in certain ones (previously known by the letters or otherwise distinguished) by means of suitably arranged notches in their extremities, permitting the projections to pass, the lock can be turned permitting the projections to pass, the lock can be turned
and the bolt drawn or withdrawn. It is impossible to open and the bolt drawn or withdrawn. It is impossible to open
the lock without pushing in the right tumblers. The comthe lock without pushing in the right tumblers. The com-
bination, or relative position of the latter, can be altered bination, or relative position of the latter, can be altered
by interchanging their positions in the slides of the cylinder, by interchanging their positions
The invention cannot be picked, as there are no orifices giving access to its interior, nor can the projecting lock be rotated by a wrench. The combination can be readily actuated in the dark, it being merely necessary to feel for the proper tumblers which, projecting, are easily distinguished. The mechanism is simple and not readily thrown out of order; and the device, as a whole, appears of considerable merit, both in design and construction.

A New Telegraph Instrument

Mr. G. M. Phelps, of the Western Union Telegraph Company has recently completed a printing lnstrument, for the use of the Gold and Stock Telegraph Company, which is really remarkable for its ingenuity and compactness. This instrument works on one line wire, without local batteries, has two type wheels, one for letters arid the other for numerals, with a device for shifting the impression instantamerals, with a device for shifting the impression instanta-
neously from one to the other, and is capable of working continually at the rate of forty words per minute. The continually at the rate of forty words per minute. The
whole affair is, perhaps, eight inches in diameter, and of whole affair is, perhaps, eight inches in diameter, and of
about the same hight. Mr. Phelps may well take an honest about the same hight. Mr. Phelps may well take an honest
pride in this creation of his mechanical genius, as it is, propride in this creation of his mechanical genius, as it is, probably, the most elegant printing instrument ever yet pro-
duced. It is probable that this machine will, in time; be duced. It is probable that this machine will, in time, be
exclusively used by the Gold and Stock Telegraph Company for their work, as its speed of transmission is nearly or quite five times as great as the one now in use by them.

A Useful and Interesting Picture.

Messrs. Kimmel and Voigh, of Nos. 254 and 256 Canal street, in this city, publish a neatly executed lithograph which will doubtless prove an acceptable ornament on the walls of the houses of those to whom it is dedicated, the mechanics and tradesmen of the Uuited States. The subject is a group of workmen engaged at their different occupations in the foreground, while the distance presents a view of a harbor with vessels, etc., and also of factories, railroads, bridges and other structures indicative of industrial pursuits. The picture bears the appropriate title "By industry we thrive-Progress our motto." It is of quite large dustry we thrive-Progress our motto. It is of quite large
size, and in execution is a fair specimen of recent advancesize, and in execution is a fa
ment in the lithographic art.

Hampton Normal and Agricultural Institute There has recently been established at Hampton, Va., an institution for technical education, where employment is furnished to colored students who are unable to bear the whole of their expenses; and thus they are enabled to help themselves. There are now 200 scholars of both sexes, whose ages range from 14 to 25 years. They are employed on the farm of the institute, and in the printing office, sewing room and laundry which are attached to the establishment. But these do not afford sufficient occupation, and it is proposed to add some light manufacturing business. Mr. S. C. Armstrong, the principal, will be glad to receive suggestions on this subject from any of our readers.

