sulted by some engineers of Florence who found it impossible to rase water in a pump barrel higher than thirty-four feet, told them that Nature's abhorrence of a vacuum ex. tended only to a hight of thirty f ur foet; and that beyond that hight, it ind no oljection to an empty space. Galileo's pupil Torric-lli finst demonstrated, by actunlexp-riment, the cause of water rising in a pump barrel from which air had been exhausted, and his theory was firmiy established by the e:periments of Pascal. Torricelli's experim-nt can be readily reproduced. Tuke a glass tube. more than thirty inches Jong, filled with hercury, from which the air has been expelled $P u^{+}$the open end of this tube into a cup filled with the same liquid, and the mercury in the tube will fali until it lias reached a night that can b.; balanced by the pressur. of the atmospliere. The space in the tube above the mercury is called the "Torricellian vacuum," and is the most perf ct vacaum that can be produced by mechanical means. I3y a perfect vacuum we mean empty space, and this space above the mercury is supposed to contain two substances:
1st. The vapor of mercury, which is there in vircue of the principle that evaporation takes place from the surface of all liyuids, at all tumperaturos ercept that of absolute zero 2nd. 'rue subtle and clastic medium of ether, which 's sup. posed to pervad ; all spate. Many plysicists have ت.ade ex posed to pervad; all spate. Many physicists, have ...ade ex
periments to delermine the existence of this cther, but its periments to delermine the exist nce of this ether, but its
effects are best observes in the motions of Encke's comet, effects are best observes in the motions of Encke's comet,
who e periods of return to its perihelion are constantly di-who-c periods of return to its perihelion are constantly di-
minishing. The undulating theory of light is also based on the existence of the cther.
It becomes int-resting, thev, to inguire whether a perfect vacuum can be produced in any manner. Admitting the existince of the ethor, which has some tension, even though it be too sirall to be measured by the most delicate instrument, it will be seen that the problem cannot be solved, uuless we can destroy the tension of this ether. There is a theoretical temprature, at which (if it could be produced) all rapors woald lose their tension. This is the point of absolute zers, at which all heat motion ceases. Tuis is a point which can never be reached in practice, but can rcadily be determined, and is marked on the thermometric scalc as follows: - $210 \cdot 3^{\circ}$ Réaumur's scale, -274° centigrade scale, -401:2 ${ }^{c}$, Fahrenheit's scale.
Before closing. we will explain how a degree of exhaustion can bo reached, which is almost perfect with the exception of the ether. In the use of an ordinary air pump, at cact stroke a pump full of air is removed, and the remaining air expands and filis the whole space. Heace, with the most delicate machine, there will always bo some tension in the receiver, untess other means are employed. L it tho pump and receiver bs filled with carb nic acid instead of oodinary air, and let this b: rathasted by successive strokes of the pump until the teusion is very slight. Then introluce potassa or caustic lime, which will absorb the rest of the car bonie acid, leaving a perfect vacuum. as far as can bo ascer ta:nel by a measuring instrament or gare.

TIME AROUND THE WORLD.

We hava rec sived cí late sundry queries from correspondents relative to the gain or loss of time in circumnarigating the globe. Those who have not found answers in the col-
umns devoted to such i-urpose will receive a general reumns devoted to such i-urpose will receive a general re-
sponse in the following rather amusing discussion recently carriel on between two grave and learned French stoants on the same rather paradoxical topic. M. Jules Veriae, of the French Geographical Society, has written a book entitled a " Tour around the World in Twenty-four Hours." What the nature of the contents of the volume is, we know not; but at all events it excited M. J. Bertrand, of the Academy of Sci-nces, to attempt to pose M. Verne with the following conundrum: " A person, supposed to be furnished with the necessary means of transportation, leaves Paris at noon on Thursday; he travels to Brast, thence $t r$, New York, San Francisco, Jeldo, etc., returning to his starting point aftrr
twenty-four hoars, thit is. encircling the glove at the rate of twenty four hocars, that is. encircling the globe at the rate of
15 of longitude per hour. Atevery station, as he passes on 15 ' of longitude per hour. Atevery station, as he passes on
this journey, he asks: "What time is it?" and he is invarially answered: "Noon." He then inguires " what day of the Treck is it "" At Brest, "Thursday" is the reply, at New York the same; but on his return, supposin. he $\mathrm{r}^{\text {asses }}$ Paris from the east and stops at Pontuise, a town some 10 miles to the northwest of that city, le will be answered
"Fritaf." Where does the transition happen? Or when, if our traveler is a good Catholie, shouid he consider Friday's abstinence from weat to bercin? "It is evident," continues the questioner, "that the rransition must be sudden, and may le considered to take place at spa or in a country where the names of week ditys are untrnown; but," he continuce, "suppose the paraliel at which it happens should fall on a continent habited by civilized people speaking the same lan. rruage, ard that there should be two neighbors separated, say by a fence, on this very parallel. Then would not one
ssy it was Thursday, at noon, while at the same monent the ss y it was Thursday, at noon, while at the same mone,
other would assert it to be Friday, at the like hour ${ }^{\prime \prime}$
M. Verne answers as follo " $^{\prime} \mathrm{s}$: It is true that, whenever person makes the tour of the globe to the cast. he gains a day, and similarly when traveliug to the west he loses a like period, that is to say, the t wrnty four hours which the sun in his apparent motion occupies in describing a circle around
the earth. This is so real and well recognized that the administration of the French navy gives a supplementary day's ration to vezsels which, leaving Earope, double the C.ape of Good Hops, whilu it rethins on the contrary a simi lar provision frona ships rounding the liora. It is also true that, it a parallol oxisted, such as abose described, across an tween the peqpie adjacent titeroto; bat this paraliel does not
exist, for Nature has placed oceans and deserts in our path where transiti,n is made and a day gained or lost unconsciously. Through an international convention, the poin Manilla. Captains of vessels, under the same rule, change tae dites of their log books when they pass the 18 th meridian.
Edgar A. Foc, if we are not mistaken, avails himself of this apparent puzzle, in one of his desultory sketches, to point the story of an individual whose would-be father inlaw refuses him the hatd of his adored, with her concomi tant of an agrecably large dowry, until that time shall happen when " two Sundays fall in a week." The luckless love in despair goes to sea, sails round the world, and returus to renew his suit exactly one year from his departure. In the course of ecents a discussion takes place hetw-en hims-lf and the stern parent relative to the present day of the week, in which he insists that it is Monday, and the old gentleman is equally positive that it is Sunday. The one produces his diary, kept since his departure; the other falls back upon the calendar. Finally it transpires that the traveler in sailing round the glove to the east has éained a day in his reckening; hence both disputants are right, two Sundays have come together, and the happy dénouement follows.

THE TEXAS PACIFIS RAILROAD.

The line of the Texas and Pacilic Railroad, which is one of the soungest of the great transcontinental routes now in process of construction, is, with its connections, to connect witl. San Francisco. In extent, the road toits terminus will be four hund red and fifty miles shorter than any line now conuecting the metropolis with $\operatorname{S} \wedge$ n Francisco, or, with its branch to the latter city, willnot exceed, in the distance passed over, any of the present routes.
The surveys across the continent, which have recently been made, indicate that the region chosen is especially
adapted to the construction. Among the adapted to the construction. Among the remarkable features, it may be not:d that the summits to be crossed are about thirty-two per cent less than those on existiag Pacific roads, while the grades and curvature will be about sixtytwo per cent less. The climate through which the line is lovated is so favorable that notrain need be delayed by anow or similar obstructions, common upon the northern roads; and an abundance of excellent coal for fuel is accessible at numerous points. The entire rail transportation between the waters of the Pacific and New Orleans will be less than 1,800 miles, and with ports in Texas, som-thing under 1,500 miles. Adding to these advantages the bordering Mexican States, with thcir great mineral wealth, together with the immensetraftic of Texas, California, New Mexico, and Ari zona, it certainly. seems that the enterprise will j,rove of great value, both nationally in opening to trade an almos unr. valed section of the country, and individually in the large profit which it must yield to its projector
As regards the progress of the road, we have before us tine
reyort of the Presid nt, Hon. 'Thomas A. Scott, in which it report of the Presid'nt, Hon. Thomas A. Scott, in which it is stated that nearly four hundred miles of the line have been graded, and the bricging so far ad vanced as not to retard the laying of the iron. T ie greater portion of the ties need ed have been distributed, and the rails. ctc., for three hun rapidly as possible. The labor has been accomplished since last October in the face of serious obstacles in the way of transpurtin! $y_{\text {material. Work has al o been begun at San }}$ Dieg., and is being rapidly pushed forward. The grant of six millions of dollars of bonds, made by the State of Texas, to the road was coupled with the condition that the line wast from Marshall, and west from Tesarkana, should be completed to a point of junction near Fort Worth. by Janu ary 1,1874 , so that by that date quite an extensive portion of the route will be finished
Pre ident Scott considers that, judging from past progress the entire road will be built within a period of five years and c nnsequently much within the time granted for its com pletion.

Fishing Tackie.

We were shown a few days ago a trout fishing rod, made for ε friend of ours by Mr. Thomas Tout, of Kingston, Mass. which excels in beauty anything we have seen in this line for some time.
It was made of lance wisol, and provided with a number of extratips of the same maturial and of bamboo. Th. pattern. The rod posscsser, in an unusual degree, that peculiar clastic quality which an expert fisherman readily understands by the handing, but which it is ditifult to adequately describe. It was very light, weighing only 8 ouncers, as flexible as a whip thong, and strong enough to land a grampus.

A Competitive Trial of Rock Drilling Machines It has been announced that a trial of apparatus used in quarrying and boring rock will be held at Pittshurgh, Pa., on July 8, 9 and 10 proxino. To this competition, owners and patentees of drilling apparatus, whether worked by hat:d, compressed air or steam, drilling bits and tools, electric and other fuses, and all other appliances used in rock cutting and mining are invited to send their inventions. Steam power will be furnished gratuitously, and the trials will take place in a quarry, so that, really practical results will be ob tained. These experiments are likely to be of great interest to the coal mining population, to whom the necessity of Farther particulars will be found in our advertsing columns.

SCIENTIFIC AND PRACTICAL INFORMATIGN

THE PROPER MOTION OF PROCYON.

M. Struve, director of the Russian Central Observatory at Pulkowa, has discovered a very small star, at a distance of about two sewonds from Procyon. The position which this body occupied during the observations accords perfectly with the hypothesis of Dr. Auwers that the irregular movement of Prucyon is dus to its movement around some small er and hitherto unknown companion, through a period of about forty yoars. 'The mass of this new star, it is con cluded, cannot be less than half that of the sun.
progress of tie st. gotmard tunnel
During the month of March last, the piercing of the St. dothard t ann +1 adianced to 806.4 feet. The total number of workmin employed is 813. Considerable ditficulıy has been experienced owing to the prrcolation of water through the micaceous rock. At one time, the flow averaged 75 quarts per second, greatly delaying the progress of the work.
russian observation of transit of venus
The Russian governinent has appropriated 70,000 roubles (about $\$ 55.000$) for obscruation of the coming transit of Venus. Twenty-four expeditions will bo dispatched to various parts of the globe.

a net blue color.

A new shade of blue of great beauty has been obtained by Springmühi from a recondary product derived from the manufacture of artificial alizarine. The color is consequently ex racted indirectly from anthracene, produced from tar. It is stated that, under certain conditions, it is superio to the aniline blues, but at present its cost is quite higia. casting tee standard meters.
The International Metric Commission, which met in Paris in October last, deciled that each of the States represented should be supplied with a standard meter made from iridia ted platinum, and that the manufacture of all the bars
should take place at the same time and from onc melting of should take place at the same time and from one melting of
the alloy. Before procrediog with this estensive and delicate operation, the French secti on of the commission, to which the work is entrusted, have recently caused to be made two type meters in order to test the processes which will be here after employed.in forming the standards. M. Deville liav ing succeeded in cbraining iridiated platinum in a perfectly pure state, the fusion and casting of the types recently trok place in his Jaboratory in presence of the President of the Republic and many other distincuished personages. Nineteen and four fifths lbs. of platinum were, by the action of the osyhydrogen flame, me!ted in 45 minutc's with $2 \cdot 2 \mathrm{Jls}$. of iridium, the latter, it may be here remarked, being by for the least fusible and hardest of the metuls which accompany platinum in its hatural state. The ingot was castin a mold formed from a block of carbonate of lime. the interior sur facs of which was brought to the state of caustic lime under the exressive temperature therrin developed. By the means all risk of fissures within was a voided. The metal cooled in the mold, retaining its brilliant surface, after which the bar wac su'tably roll-d and finished. The nperation was a com-
plete success, and will be repaated with the 440 lbs . of alloy plete success, and will be repated with the $440 \mathrm{lbs}$. of alloy
necessary to compose all the standar. allurgical process, says Lis Mf:ndes, far exceeding in magnitude anything of similar nature that has yet been attempted with these inalterable metals.

NEW HORTICULTURAL FERTILIZER.

Some time since we called attention to n new chemical for tilizer for horticultural purposes, suggested by Dr. Jcanr:/ of Paris. Les Mondes of recent date, in commenting on re sults obtained by its use, says that it represents the feriiliz ing principles of at least one hundred times its weight of concentrated animal manure, and supplics to the plants iiitrogen, phosphorus, potash, sulphur, and iron in a completely soluble state. The compound consists of 400 parts of nitrate of ammonia; 203 parts biphosphate of ammonir 250 parts nitrate of potash; 50 parts muriate of ammonia; 60 parts sulphate of lime, and 40 parts sulphate of iron. These ingredients are pulverized ind mixed. Onc dram of the powder (about a teaspoonful) is then dissolved in a quart of water and a wineglassful of the solution given two or three times a week, in accordance with the health and luxuriance of the vegetation.
The plants may be placed in any kind of carth, howerer poor, er en pure sand, or may not be potted at all. It is stated that certain flowers, the fuchsia, for example, may be cultivated withoutearth by simplyplacing the stalk in a jar at the hottom of which is an irch or so of water, just suf ficient to cover the ends of the roots. To the fluid a yroporcional quartity of the fertilizer is added, as abore specified, once in eight days. The foliactons development of plants treated with the substance is said to be truly wonderful, and yet the rapid growth of the leaves does not int rfere with the most Juxuriant flowering. To this we may add that quite recently we have tried a compound hastily composed of the majority of the substances above detailed, merely as an experiment, on a small and sickly fuchsia. Tho plant was crooping and little else remained than a half dry sialk. After two applications of the fertilizer, its effect was appar ent, and at the end of ten days, during which probably half a pint of solution had been supplied to the earth, new shoots had sprung out, leaves formed, and the entire plant became perfectly loaded down with buds.
T. J. A. says: The Sorevilfic Awericar is the most valuable paper within my knowledge, and I haro rend all the foremost papers in tho land.

