ull the Bessemer steel works of Great Britain, nearly one hundred being in use in the city of Glasgow alone. In all, about one thousand are in use in England at this time, and a large number on the continent. By the aid of one of these machines Mr. W. Ireland, the noted iron founder, made a 250 tun anvil block, probably the largest casting uver made melting the iron at the rate of thirty tans per hour, and completing the entire work in a little over eight hours.
This blower received the highest award conferred on machines of this class at the Paris Exposition of 1867. We untice that it is on exhibition in the American department a the exposition now being held in Vienna. It has also received the highest awards for three years suscessively at the Fair of the American Institute of this city, and also the highest premium at all the industrial expositions held in the city of Cincinnati, Ohio.
For further information address the inventors and propri For further information address the inventors and propri31 Liburty street. New York city.

Sinutifir Smaritan.

MUNN \& CO., Editors and Proprietors PUBLISHED WIEELY AT
NO. B7 PARK ROW, NEW YORK.

D. MUNK A.E. BEACH

TERIMI:

One cons, oue your....
ove cons, six nanths

VOL. XXVIIL., No. 26. [New Series.] Tioenty eighth Year
NEW YORK, SATURDAY. JUNE 28, 1973.

Contents

Illus: rated articles are marked with an asterisk.)

end of another half year.

With this issue a number of six months' subscriptions, which commen ed with the year, will end. We hope all such subecribers will renew, and it will gratify the publishers if each would send a new subscriber. It is just as easy to remit $\# 3$ for two names for six months as half the amount for one name, and it suits the publiahers much better. Re mittance by postal order is the safest and best. Address Munn \& Co., 37 Park Row, New York city.

NECESSITY FOR SANITARY REFORM.

In another column of this ifsus will be found a continuation of our series of "Sanitary Notes," a paper on the subject of "Sewerage and Sewage," devoted mainly to a brief de scription of the various projects for the utilization of re fuse filth, so as to transform it from a source of expenditure to one of valuabls profit. In large cities the question of ob raining the fertilizing matter from the material, though in itself one of no small importance, is, owing to the vast
quantitics of the latter pruduced, subordinate to the probquantities of the latter produced, subordinate to the prob
lem of disposing of the nosious substance in such a marner that it shall not breed disease or nurture pestilence in the narrow and confin -d limits of thickly populated districts It need not be puinted out that without an effective system of sewels, which not only convey away the filth but also form complete drains for every portion of the city, the re moval of this waste is impossible. Here, where the main conduits are on a level below the high water mark of the rivers into which they empty, or are distorted to convey thei contents (hypothetically) up hill, or where the branch sewer connect with mains set on a superior level, nothing else is t be expected than a stagnation of contents in the tubes, and in the former entering tides.
Bad as such a state of affairs is, and pressing as is the in vitation which it holds out to epidemic and zymotic diseases it nevertheless obtnins in New York and probably many other cities of which the growth has been proportionally rapid. Some of the daily journals, notably the World, have recently taken up the subject, and the information published is well calculated to arouse the citizens of the metropolis to n sense of the insidious dangers to whte they are constant ly exposed. The death rate from zymotic alseeses alone averages 9,000 a year within the corporate limits, and the cases of sieknoss aggregate from the same period at least

100,000 . It requires but a casual ftroll through certain por tions of the city to determine the reasons for this fearfu mortality.
Probably the action of the tides, as above described, for cing the fillh back and often out of the street culveris, is a prolific source of the miasm of the lower lying districts. It is but a few days siace that, in passing through a street contiguous to the Hudson river, we oureelves observed that after a heavy rain and at high tide, the gutters and road way in the neighbcrbood of the openings were flonded over considerable area, and to several inches deep, wit) a black, horrible liquid, in which, despite its disgusting odor, the street urchins were holding especial revel. For such glaring faults as this there is clearly no excuse, even if any in de precation be admitted for the negligence to which the more hidden defects of the uptown sewers must be ascribed. Cel lars are flooded, and the soil, permeated with filth, giving rise to deadly mephitic gases, makes the locality a hot bed for disease, criginating that scourge of children, cholern infantum, and also tbe rheumatism, scrofula, fevers, and in numerable pulmonary complaints of adults. In thenew and manufactured portion of the city, in the neighborhood of Central Park and above, the condition of matters, tbough less apparent, is not much better. Some years since Gene ral E. L. Viele published a map of Manhattan Island, show ing the lead of the natural water courses and ponds, the beds of which, like that upon which the Tomlis or city prison nowi stands, were quagmires and soaking bogs. This map disappeared, but was resurrected by the Citiznns' Asso ciation in 1865, and from its topography the origin of the maladies prevailing in certain quarters is readily traced Old marsbes, which, in the overwhelming desire to rais grades and make streets, were filled up with sand and stone have asserted their existence and converted the land iato a sponge, absorbing the flth which flows from the fiulty sew ers. In the upper portion of our city, even at the presen time, there are streets, raised far above the normal grade, en closing lots on the bottom of which stagnant pools still ex ist; and we can recall localities which, now thickly built up wele, hardly ten years since, sites of skating ponds of con iderable extent. This land, as well as whole districts indi cated by General Viele's map as the former beds of wate courses, is now covered with many of the finest residence in the city, the owners of which, though experiencing sick ness in their families, little suspect the hidden cause to which the prevaience of disease is due.
We notice with gratification a revulsion of opinion agains filling in, as a means of reclaiming ground from bogs and swamps. The health authorities of Brooklyn have already taken steps in another direction, and have appropriate funds to pump off the water from submerged land 1 efor raising the grade. This, we think, is the wisest course th Health Board can pursue. Burying a nuisance out of sigh is not abating it, and merely covering up so formidable a enemy to public lyalth renders it doubly dangerous by con cealing its existencs until it becomes recognized through it deadly effects. The pumping operations can be accom plished very expeditiously, while the filling up process take great deal of time; and the expensive nature of the latter for ma!erial, labor, and cartage, would cost the city or th owners a much freater sum than that for which the propert when filled in could be sold.
We need rapid transit, and our present system of docks is disgrace to any civilize 1 people; but great as are both our wants in this direction, they are exceeled by the urgent ne essity which exists for a thorough overhauling and, if nee be, entire alteration of our sewerage.

RENEWAL OF THE REWARD OF ONE HUNDRED THOUSAND DOLLARS.

The Legislature of the State of New York has recent enewed, for the period of one year, the offer of one hundred housand dollars reward for improvements in canal
The law mating the offer this large reward was The law making the offer of this large reward was origin號 6 in that was given in tb crencirci Amencan of May 6 in that year. It provide r the payment of one hundred thousand dollars to th introducer of a plan, for navigating the Erie canal in thi State, which shall prove on actual trial to be better and more economical than the existing method of towage by
horses. The following are the chief requirements of the more
horses
law:

A Board of Commissioners is appoiyted, consisting of George B. McClellan, Horatio Seymour, Erastus S. Prosser David Dows, George Geddes, Van R. Rirhmond, Willis S. Velson, George W.Chapman, William W. Wright, and John D. Fay, whose duty it is to practically test and examine al nventions that may be submitted to them, by which steam. caloric, electricity or any notor other than animal powe can be practically and profitably applied to the propulsion o be confined to the season of canal navigation in the year 1873, and the Commissioners are required to demand that the com peting inventions shall be tried practicaliy upon the canals at the expense of the applicants; that the boat shall, in addition to its weight of machinery and fuel, be able to transport at least 200 turds of cargo, be able to run at a speed of not less than three miles per hour, be easily stopped and backed by its own machinery, which should be simple, economical, and durable, and readily adapted to the present canal boats. Laids, the Iaw requires before an award is made that "the Commsssioners shall be fully satisfied that the invention or device will lessen the costof canal transportation, and increase the capacity of the canal."

Quite a number of boats were tried last year on the canal;
and in our paper of February 15, 1873, will be found a brief description of their construction and performances.
Individuals who propose to compete for the prize should bea n mind that it is not simply the propulsion of the boat ahead that is required. It is not only the propulsion, but the steerage, rapid and economical handling of the vessel when in the canal. It is easy enough to drive a canal boat in open water by steam power, faster and cheaper than by horse towage But to do so in a narrow canal, where the stoppages are fre quent, the water shallow, the delays considerable, the boat constantly passing or repassing or dashing into each other crowding together, jamming fast, etc., is a difficult prohlem Evidently the boat should b; provided with a variety of ap pliances to meet and promptly overcome the various esigen cies to which it is to te subjected. It abould bave power es whell as all comnander, and should have facilities for quickly anchoring and getting under way. Investors will do well, thereing and getting under way. Investors will do well, there-
fore, to turn their attention to other things besides the mere fore, to turn their attention to other things besides the mere
form of the propellers. These have been invented already form of the propellers. These have betn invented already
by the hundred, and little or no advantage has been cecured by the hundred, and little or no advantage has been cecured
from any of them. A velocity of only three miles per hour rom any of them. A velocity of only three miles per haus
is needed, and this the ordinary propelling devices wilh ansi y supply.
The dimensions and other particulars of the Erie canal are as folle ws: Depth, 7 feet; width at top, 70 feet; wir'th at bot tom, 56 feet; length, 345 milos; number of lecks, 72. The locks are 110 feet in length over all, admitting boat C feet long. The width of the locks at the surface of the water is 18 feet, and at bottom 17 feet $4 \frac{1}{t}$ inches. The larg eft boats used on the canal are 96 feet long by 17 feet 8 inch es beam, with a depth of 9 feet. Such boats draw 6 feet o vater, and each of them carries 240 tuns.

COMETS...-THEIR CHARAGTER AND SJURCE.

The spectrjscope showr us that comets consist of a mas of carbon dust, so diffus d as ti: make them bulky with lit he weight, and this explains at θ nce the cause of thetotal ab sence of refraction of the light freely passing between thos minute dust particles.
In regard to the question " whence these masses of dus particles came," Zöllner, whose observations and calculation ve mentionrd in a former article on the sun, holds that the solar eruptions throw up masses, consisting chietly of hydro en, rjected from the sun with a velocity of 133 miles pe econd. He comes to the conclusion tbat a a thrice this velociry would carry material entirely beyond the limits of solar at raction, a somewbat less velocity would throw it to distan es corresponding to those of the comets. He thinks, there ore, that comets originate from the sun, and are thrown ou rom that body finally to return thereto, just as volcanic ma terial is thrown out from the earth and carried through ou tmosphere, eventually coming down at remote spots.
Any doubt in regard to the possibility of the existence o uch enormous projectile forces is removed by the actua observations of Jansec n, Lockjer, and Respigbi. The latter ays: "The solar surface is the seat of movements of which no terrsstrial phenomenon can afford any idea; masfes of matter, the volume of which is many hundred times greater than that of our earth, completely changetheir position and form in the epace of a few minutes, showisg motion of which he velocity is measur-d by hundreds of miles in a single econd." Professor Young has observed a solar ex plosion of which the mean velocity, between the altitude of 100,000 and 200,000 miles above the solar surface, was 166 miles pe second; as this indicates an initial velocity of 200 miles pe second, it is sufficient to carry the projected matter beyond the orbit of tbe earth.
Schiaparelli, in the Astronomische Nachrichten, calls the comets "cosmical clouds." He says: "Cosmical clouds will always appear to us as comets when they pass near enough to the earth to become visible." The comparison is indeed triking; as watery clouds ascend in our atmosphere and foat around the earth, so the fiery clouds from the solar sur ace ascend into junetary space and float around as ccmet Brth are raised by solar heat and are afterwards cooled
It is possible that the hydro ren in the solar protuberance at first so abundant tha. its spectrum overcomes the spectra f the other materials which it may hold, as it were, in solu ion; and that while beingprojected, it expands by its gas ous nature in the planetary space, leaving the carbon and ther materials, as a mass of dust which slowly disintegrate by the disturbing infiuence of the solar heat, planetary at ractions, and adhesion of the different particles, forming nnally great numbers of small and dense masse?, which will Iy around the sun in the form of a belt; and when some of hem at last come down upon the earth, we call them mete ors. Schiapartlli further says: "Gradually tbe products of isintegration are distributed along the comet's orbit; and if the earth's orbit cuts this, th3 phenomena of sbooting star re produced.
Two interesting facts are connected with these views; one that the position of some well determined meteor stream coincides with the orbit of a comet; the other fact is that ecently chemists have estracted hydro-carbon from meteoric masses: indicating the hydrogen which the spectroscope sbows to exist in excess in the solar protuberances, and the carbon which the same instrument shows to exist in excess in the comets.

A PERFECT VACOUM.

The ancient philosophers who dofended the theory tha Nature abhors a vacuum" were greatly derided by their opponents; but modern research would seem to contirm heir views. There is an anecdote that Galileo, who, as our aders know lised in the yeventeenthcantury, on beine con

