tion-apparently by diminishing the resistance of the liquiIf, too, we increase the quantity of the dissolved metallic salt, we get more than a proportional increase of deposited metal. Thus, in an experiment made with the difforent strengths of nitrate of silver on the table, the following re-
sults were obtained in ten minutes, all the circumstances be. sults were obtained In ten minutes, all the circumstances be.
ing the same except the strength of th $)$ solution: 1 percent ing the same ε \&cept the strength of th ' solution: 1 per cent
solution dise日lved 025 grammes copper; 2 per cent dissolved 078 grammes, and 4 per cent dissolved $\cdot 224$ grammes.
In fact, it had been found that, in solutions not exceeding per cent, twicethe amount of nitrateof silver dissol ved in wate gave three times the amount of chemical action; and this was true with other metals also in weak solution. It is liikely that this is not the precise expression of a physical law, bu it agrees at least very closely with the results of experiment
The power arising from this action of two metals on a bi narg liquid may be carried to a distance and produce similar decompositions there. This is ordinary electrolysis. Metals have been crystallized from their solutions in this way, and Mr. Braham has made excellent preparations of crystalline
silver, gold, copper, tin platinum, silver, gold, copper, tin. platinum, etc., by using poles of the same metal as is intended to be deposited upon them. Th forms thus obtained are precisely aualogous to taose pro duced by the simple immersion of one metal into the soluble
salt of another, and illustrate still further the essential unity of the force that originates the t wo classes of phenomena

(G0xrypotarn

2he Edutors ar
A Plea for the Classic
To the Editor of the Scientific American:
In your issue, dated May 25 , I noticed, in an article entitled "How to Conduct Scientific Investigations," this sentence " Not only are physics and mechanics more pleasaat studie than Latin, and chemistry more interesting than Greek grammar, but we assert that a man may make more money by applying a were superficial knowledge of these sciences than by a much more profound knowledge of the dead lan guages." From the above, ons would draw thl: conclusio that money making was the chief end of man. If that be so perhaps the writer is correct. But man was born for a higher purpose than the simple attainment of wealth. I tarintain that every man who comes into the world was put here to make humanity batter for his being in it, and not only for his own aggrandizement; and he who fails in this, fails to do his duty. Society demands some benefit from all, in order tha it may advance. And fine literature will cause this advance ment. I challenge any man to bring forth writings on any scientific subject whatever, chemistry or botany, natural history or mineralogy, and in them will be found derivations from the dead languages. Ask any eminent lawyer what advantage he has gamed from the study oi Lain und Greek the universal answer will be "almost every thing." Look
at his law books, and you will find nearly every alternate at his law books, and you will find nearly every alternate
word to have derivation in the ancient languazes Although word to have derivation in the ancient languages Although
I do not wish to depreciate Mr. Bryant's iranslation of Homer, yet I assert that no oue can fully appreciase the work until he has read the original Greek. A man may have the most "profound knowledge" of any science, and yet it
would be almosi impossible for him to deliver a lecture on that subject and not make somə stupendous grammatical mistakes, provided he is ignorant of the classics, thereby makiug himself the laughing stock of the commanity. No long since, a case came under my personal obserration, in which a young man who never had looked into an English
grammar, yet had a tolerable knowledge of thi \boldsymbol{c} chassics, was grammar, yet had a tolerable knowledge of that
placed in an examination on that suject (Eoglista grammar) with several who kuew nothing of Latin or Gree is, but had always studied Euglish; the consequence was that the one understanding Latin passed better than three fourtis of the rest. This ouly goes to prove how utterly dependent our own language is on the classics. When a boy or girl is striving to obtain an education, he or she should not only study what will be of practical utility, but what will pre pare tha learue for the battle of life. The study of these languages gives the brain a thorough drill that can be obtained in no other manuer; it compels the mind othink, and hiok correctiy mathematics and natural sciences give exercise ouly to the latter, which, too often, is fickle. Siep into the Senate cham ber of the United States, count the roses, and you will find that a majority of the members are classical scbiars and col lege bred men. From the fordgoing remarks, a, reasonable man can fall to see that, while the sciences have their uses they are still dependent upon language for their elucidation. And granting that unore money may be made by their imue diate use, nevertheless the classics lend intluance to the "pen," which rules the world, and which, as all men know, is to quote the memorable passage of Cicero: - Idem ego con tendo, cum ad naturam eximiam atque illustrenn accessit ra tio quødam conformatio doctrine, tum illud nescio quid pra
daram ac singulare solere existere."*

Testing Turbines

F'o the Editor of the Scientific Americun.
As a well writien communication by Mr. A. .s......ti., in the Solentipic Amerigan of June 1st, on the subject of tur bine wheels, pointedly alludes to a short article of mine, on page 223 of the current volume, and somewitt misconstru
me, I beg to say a few words in repiy, not deternitiv, for m "Similarly, I assert thit when reason adds, to an excentional and eniight.

impression is that such are not needed, nor co
I have not the time even if you had the space.
have not the time even if you had the space.
The inferences
The inference seems to have been formed that the test o which I spoke was made in raising water. I did not jutend is to rule, the sappose in every test, if iss commercial aspect the elements of calculation. In this case, the head was 110 feet, the water discharged by the hydraulic engine-not a ram-about 42 per cent of what the turbine used for the same ork in raising a weight. If there is a more simple method, more accurate one than this, I would like to know it. In Mr. Swain's communication, overshot wheels are iustanced. propose to follow them up as proof. If an ordinary over shot receives pressure earlier than at 45° a way from a vert al line through its shaft, it discharges it enough earlier, than the corresponding angle below the shaft, to render it next to certain that the full weight of the water utilized cannot e greater than what is due to the capacity of the bucket etween these points. This quantity would be represente by the 90° remaining between them, or 50 per cent of the weight of water the buckets would contain if the whole di ameter of the wheel were effective. How then could 70° of tail-race? And much less could it be done if taken from mine.
There is, doubtless, some "inaccuracy" about the process A parallel holds good as between an overshot wheel, using about 90° of its cirsumference, and a hydraulic engine. I each, if the instrument is withheld from movement, the power is retained; but with a turbine, a forcible total stop page only checks the How, and power is lost. If in the mos approved turbines, 8 per cent of water under pressure is inentionally freed, is it not done to give the best effect to the alance? And if so, does it uot go to show that my use o he word "speculation" was not loosely taken?
This loss by a turbine, I hold to be a fair representation of the disparity between the two systems; but it is very much understated in the 8 per cent; and the 12 per cent is demand ed as a reasonable allowance for other things. Wherever al lowances are asked, that have not been, perhaps cannot be proved to be precisely right, I must still call them specula tion. Only the weight of the water can be used as power and a turbine does not use the whole. I cannot say that 8 per cent of the power of water upon an overshot wheel ha
 passage the distance of the diameter of the wheel. Your correspondent, in speaking of the test I suggested, to wit that of forcing back to its head as much water as the powe would raise, has apparently overlooked the allowance I pro posed for every neeessary mechanical obstacle. This allow ace need not complicate the process; the difference bet ween the quantity discharged and that replaced would measur
the exhaustion of power; then ii the "necessary obstacles the exhaustion of power; then if the "necessary obstacles were or could bs measured, and added to the replacement ef
fect, raising it to its original condition in the reservoir, my case would be lost. I have no arguments against turbin wheels; they are excellent devicss and are doing immense sorvica; but I only do not believe that they have ever use percentage of power claimed.
R. H. A.

Baltimore, Md.

The Cherokee Tribe of Indians---A Subject Interést

 To the Editor $\bullet f$ the Scientific AmericanIf Im correct in memory it was near twenty yeara ago hen I met with Heary E. Colton in Macon county, North Carolina, and his business seemed to be an inquiry after the ancient relics, as well as traditional history, of the former in habitants of the country, to wit, the Cherokee tribe of Indi ans. Mr. Colton directed one enquiry to m."self: "Wha could have been the intentions of the Cheros.ee Indians in building so many large earth mounds that were met with in the low grounds of these mountain vaileys?" My reply was that " the Cherokee tribe of Indians disclaimed all knowledge of the origin of those earth mounds, as well as th purposes for which they were built; and, furthermore, that I had evi dence, satisfactory to mysel f, that these monntain valleys ha once been inhabited by some race of people antecedent to their occupancy by the Cherokee Indians; and that this fact nferred from the wide diversity in form, material and quali y of their pottery, as well as their edged or cutcisy utensils ut more particularly as regarded their mode of sepulture which, in all races, is permanently fised; and in parsuade of this subject, I related to Mr. Colton the fiollowiar incideut After the Cherokee Indians abandoned the wountry in the ear 1821, I, in a spirit of romance, became a small farmer in wild and picturesque valley in the country the Chrokee had left; and while plowing, in a low ground or botton fields pasciog over a certain spot the plow produced a rumbling hollow sound, and this led to digging-rather scraping away he earth-in quest of the cause; at the depth of fourteen inches I met with charcoal, and then a clay slab that had been so hishly indurated by burning that it hat the hardness of a brick. An effiort was made to take this slab up entire, a it was but seven feet in length and four in width; but this we failed to do, as it broke in turning it over. But what wa our astonishoment to find, on the reverse or under side, th omplete cast of a human body, not a vestige of which wa be found! From all the appearances, the opinions 1 forme that time (and these opinions have not changed) were chat at some renote point in the world's human history, some pe-
culiar race of people inhabiced this country, whose mode of sepulture was to piace the body of their dead in a shallow grave in a nude state and on its wact, with the limbs ex-
tended at full length, cover it with soft clay mortar, pile
wood upon it and consume the body with fire. Furthermore he problem was suggested: May it not be that this race, s ar back in the history of man, were the mound builders? In my farming, I found but two other of these burnt clay sep alchres. All of these facts I narrated to Mr. Colton, and about thirty years after their discovery, and after the abra sion of time and the wear of the plow share in farming my ands had reduced these casts in the clay slabs to fragments For the first time after the delivery of the above narrativ o Mr. Colton, I met with him at a Cherokee Indian ball play, and this was in the year 1860 ; and he addressed me, as I the hought somewhat rudely in these words. " Mr McDowell, ome years ago you described to me some peculiar India sepulchres you had found in your fields-have you, since then iscovered any more of these?" My reply was "I have not." He rejoined: "The reason why I now name this subject is this: I published yoiar narration, and archæologists and anti quarians give no credit to your story, because, they say, it contradictive of all the modes of sepulture yet discovere mong the various tribes of Indians on this continent, and i s due to your reputation as a man of truth to find and e hibit one other of these sepulchres." I was wilted by Mr Colton's words and manner, because, not knowing for why, felt as though I were half a villain. I made him, I fear, a umannerly reply that was more practical than fious, and have not seen Mr. Henry E. Colton since, nor have I searched or a uother sepulchre for the parpose of redeeming my lost eputation as a man of truth
And yet a kind Providence has saved me, from going down to my grave disgraced, in this way: The 16 th day of this month was the recurrence of my seventy-seventh birthday, ad a team of oxen werepulling a deep running plow through my field, when the point of the plow struck upon the side of ne of these burnt clay sepulchres and rent from it a smal portion of an arm. I had the plowing stopped, and the lo ality marked, and it shall remain intact until some scientifi ndivi lual arrives who can supsrintend the delicate proces of raising the sepulchral slab without injury to the cast of the human figure impressed upon it. I have intrusted the pocurement of the proper mau to direct this delicate opera tion t , Colonel C.W.Jenks of St. Louis, now superint ading, fo he American Corundum Company, the working of the Cul sajah corundum mines in this county
Frueklin, Macon county, N. C. Silas McDewell
P. S. Since the 25th inst., when Colonel Jeuks and myself coiversed publicly on the above subject, eleven of these sep alch

McD

Do Snakes Charm Birds

To the Editor of the Scientific American
In taking a morning stroll by a board fence, I discovered cat bird flattering along on the edga of the top board, wich was about one inch in thickness; and walking ciosely up to it, say within four or five feet, I discovered a black snake, bout four or five feet long, lying well balanced on the edg of the top board. Neither the bird nor his snakeship seeme all disturbed at my proximity; but the former, cryin nd with havging wings, would advance and retreat, eac ha.e seeming to approach nearer to the glistening eyes of it charmer. My sympatby was at once aroused for the bird, and fearing that in its next advance it would be taken cap. tive, 1 toos off my hat and held it on the fence about two or hree feet from the suake's head " to break the charm :" bu o my surprise, as before, here came the bird towards the hat; it Hew ever it and lit on the fencenear to the serpent tail. I then armed myself with a cudgel about two fee long, and stepped back about a rod from the parties to observe trategic movements. The bird contiuued the same move ments at the tail which it had done at the head, advancin ad retreating, drawing nearer each time, until finally it lit on the tail, then off on the fence, still fluttering, chirping and rying. His snakeship did not seem to fancy an attack i he rear, and slowly iowered about one fort of the tail end and let it hang down the side of the board. The bird, e couraged by this move, again and again lit on the back part of the body toward the tail and once struck it with its bill. The suake not being able to tura its head back and keep it balance on so narrow a base, it retreated from the bird, com ing towards me (it seems that I was not worth its notice) moving slowly along until it reached the post, passing it fa nough for the middle of its body to rest on the post. I bega o thiuk that it had given up the chase; bus not so, or, with W the wistom ot the s-rpent and the calculations of a civ ngineer he turned his head, ioubling himself until his ead wis with sbout sis inctus of the end of the tail head slifhty elevated, and seemed to say: "Now, birdie, come n." Sure eoough, it came, flattering and crying as before. dvanced to withia about th:ee feet of the saake, stich in band, rady for the "clash of arins." The bird approached near before retreating, I feared to let it advance anotne ime, and immediately made battle in its behalf, and ao sle the "sarpint." A darkey, witnessing the contlict, took the sake, saying: "I will hang him up wid his belly to d clouds to make de rain come." And now I cannot tell whethe or not a suake can charm a bird; can you?
h. L. Eades.

South Union, Ky.

The Nebular 隹ypontiens

Th the Editor of the Seientific American
Your comment on the "Nebular Hypothesis," page 345, arrent volume Scientific American, are very interesting, but I differ from you. I am ennfident that the equatorial oue cooled first and that the mighry firce of that shrinking
too light and powerless; we cannot rotate an infiated bladder and burst it by the weight of air contained therein, as the air would escape through the pores of the bladder, but we can burst it by the weight of the bladder itself.
If any portion of the nebulæ was left behind, it was the lighter portion, which, owing to that irresistible shrink, spiralled to either pole and like smoke from a pipe streamed on the solar orbit. True, the action of gravitation would be greatest a the poles, but the spiral would reduce it to a minimum, as in a jack screw. Nebulous rings could have formed in no other manner; spheres could havt been formed by shrink ing belts.

Tres.

Paris Green and Potato Hugs.

To the Editor of the Scientific American

Much has been said, and a great deal written, concerning the use of Paris green for the destruction of the potato bug. Many advise the use of it dry, mixed with flour. Last year, I tried another way, which I think is safer and cheaper; and it proved very effectual. As it may be a benefit to many, give it as follows:
Take one large table spoonful of Paris green and mix it with ten table spoonfuls of flour. These must be mixed very thoroughly, till the mass is of one shade ofc olor throughout Take of this mixture, two table spoonfuls, and put it into a gallon of water. Stir this till it is all well mixed through the water, and stir it occasionally to keep it from settling, for if it is not kept stirred, it will settle. Put the water thus prepared into a sprinkler, and apply when the plants are dry and the larvæ are at work. In a very few minates, the larve will have gone to " that bourne whence no traveler re turns.'
The liquid applied this way, twice or three times during the season, will be sufficients to protect the plants. Used in this way, waile it will destroy the insects, there is no danger of its hurting the plants; nor does sufficient go into the ground to do any harm.
X. Perry Mentor Sans Souci, Ohio.

the new state capitol at albany, n. y.

After three years labor, and at a cost of two millions of dollars, one third of the new capitol at Albavy, the design for which we illustrated on page 242 of Vol. XXIII., may be considered complete. The foundations are laid, and the water table, and four feet of the first story walls, is in position. The structure covers about three acres of ground, it width being three hundred feet, and its depth, four hundred The cellar is excavated 26 feet and its floor is covered with a solid bed of concrete tour feet in thickness. On this rest
the piers of massive brickwork which, surmounted by groined arches, bear the weight of the structure. Long vaulted passages are thus formed which, intersecting each other, traverse the entire cellar, some leading to apartments in the corners of the building, others to the large hall in its center. The last mentioned division of the cellar is designed for an engine room, and is to contain four large furnaces and two engines, to be used for warming and ventilating the edifice. The ceiling of this apartment is, like those of the passages, formed from 11 to 20 . These a their spans varying from 11 to 20 feet, and are considered the
The foundation of the main tower is the heaviest piece of solid etone work in the building. It is pyramidal in shape, solid etone work in the building. It is pyramidal in shape,
its base being 150 feet, and its top, 80 feet square. It is sunk its base being 150 feet, and its top, 80 feet square. It is sunk
six feet, below the surface of the cellar, and its extreme six feet, below the surface of the cellar, and its extreme
strength is necessitated by the immense superincumbent strength is necessitated by the immense superincumbent
weight of tower which will be constructed entirely of stone and iron, aud will reach a hight fifty feet above that of the dome of the Capitol at Washington.
The exterior foundation walls are 20 feet thick; their lower courses are built of a species of blue limestone of great hardeess, ontained in Esser county in this State. The upper portions, which are more liable to be affected by frost, are constructed of Saratoga granite, and the lintels, of a very coarse granite from Fall River. The water table is built enstone having hranite, the company supplying that part of the structure. On the completion of the water table and the consequent expiration of the Dix Island Company's contract, new proposals were invited from other quarries to supply the stone for the rest of the building. Sixteen com petitors entered, and, in the end, the work was a warded to a company in Yarmouth, N. H., who agreed to furnish the stone at 75 cents per cubic foot delivered at Albany. It seems, howevtr, and the fact will account for the delay in the progress of the work which the daily press have lately made the subject of unfavorable comment, that the Yarmouth Company failed to carry out their contract, sending only some eighteen or twenty carloads of stone around by land at
considerable expense. The Keene quarry, of Keene, N. H. considerable expense. The Keene quarry, of Keene, N. H.,
offering to supply their stone at 85 cents per cubic foot, the commissioners have agreed to take the balance of the mate rial from that source.
Of these three varietios of granite-the Dix Island, the Yarmouth, and the Keene-the Dix Island is mach the coarsest in texture; the Yarmouth and Keene stones resemThe Keene, bowever, is found to be slightly the most brittle The Keene, however, is
under the cutting tool.
under the cutting tool.
The stone is quarried in enormous blocks, some weighing as much as thirty tians. They are so cut as to make all the angles of the building solid, or, in other words, there is no angle on the out.ide of the building where two stones meet and form a joint. The manipulation of these ponderous
masses was, of course, at first a matter of no slight difficulty,
but lately a form of derrick has be an devised by which they can be raised or transported from place to place with the utmost facility. The apparatus consists of a heavy platform mounted on trucks and resting on a track, the rails of which are some sixteen feet apart. On this platform is a ponderous crane, secured by strong wooden stays. To the crane, heavy tackles are attached, the falls leading to a hoisting ap paratus worked by a five horse power engine, situdted on the rear end of the platform. Tnis engine, being geared to the stoue can be lifted by the crane and the whole machine moved bodily to any desired point.
bodily to any desired point.
Seven hundred men are
Soven hundre men apon the building the majority being engaged in sting the stone, which is supplied in the rough, into the zuywired forms. Two large sheds serve as workshops, movable derricks running on tracts
transporting the stones to any required locality. The work is systematized with the greatest care. Each man is required to work his stone through from beginning to end. The stone is numbered and the wort measured, so that it can readily be seen whether the full day's work has been properly performed or not. The hands are paid by the hour. They struck some time since on account of some workmen from another State being put to work with them, and at the same time d:manded $\$ 4.50$ for eight hours work. A short time had elapsei, however, before the union in this city informed them that it could support them no longer, and con an agreement to find no more fault either in their wages or in the fact of non-union men being put to work with them. When the present excitement commenced, a committee eudeavored by threats and other means to induce another strike, but on the wages being raised to 50 cents per hour, the men
declared themselves satisfied and refused to resort to any declared themselves satisfie
further coercive measures.

A Monster Cannon.

The Russian government has lately constructed and tested an immense smooth bore cast iron cannon, made after the method of the American Rodman guns. The Engineer say that the weight of this weapon in a finished state is $44 \frac{2}{62}$ tuns. The weight of the projectile to be employed-a cast iron spherical one-is 900 lbs . In trying the gun, in all 31 rounds were fired, the normal charge of prismatic gun powder
being about 117 lb . The experiments of firing were con ducted on the river Rama, the high bank across the stream serving as a butt, which was at a distance of about 1,400 serving as a butt, which was at a distance of about 1,400
yards of the gun. The weapon was place under an iron plated covering of a peculiar construction. On the discharge of the piece, the concussion of the air was so great that in the village of Matoriloro, situated at a distance of one third
of a mile, the chimney stacks fell in when the wind was blowing in that direction. The sound itself: alibough loud was not deafening, and persons standing even under the icon plated covering were able to support both the ncise and con cussion of the air. The iron gun carriage weighs $6 \frac{1}{3} \frac{1}{2}$ tuns. The breech of the gun is elevated and depressed by means of a screw ratchet key. For facilitating the running forward of the gun, a system of cog wheels is introduced, and for the diminution of the recoil and the hoisting of the charge and projectiles, special appliances are provided. Tie moving of this
After the introduction into the military art of rifled cannon the conviction became established of their unconditional superiority over the smooth bores. As regards guns of small caliber, this opinion may very likely be correct; but with respect to naval guns of the largest calibers, it would be
difficult to give the preference either to the one or the other system. Without going into particulars of the merits or demerits of the one or the other description of weapon, we will point to one important difference in the effect of the spherical projectiles of the smooth bores and the oblong ones of the rifled guns; the latter will lit an iron plated target at a greater distance than the former, and, so to say, pierce it through ; on the other hand, the former will pro rivets of the greater amount of concussion, shaking loose the plates and cracking them. Besides the difference in the destructive action of these weapons, there is an enormous difference in the cost of production. Thus, for instance, ac cording to a statement of Mr. Grasshof, the price of a 20 in smooth bore gun will be, when produced in quantities, about $\$ 8000$, whereas an 11 in . steel rifled piece corresponding to the same could not be produced under $\$ 30,000$.

New Fishing Smack.

A marine novelty worthy of attention was lately exhibited in Giasgow. It was a model of a welled fishing craft, 4 ft . long, with 19 in . beam, clinker built and neatly finished The exhinitor was Mr. Dewpster, of Kinghorn, who is well poses for his advocacy of deep sea fishing, and who prowell decked boats, by laying well caulked ang smacks from stem to stern, at a hight of $2 \frac{1}{2} \mathrm{ft}$. from the keelson, the space beneath this deck forming the well, which is filled with sea water from several small circular holes in the bottom of the boat. At a hight of 5 ft . or 6 ft . above the well deck there is another deck, which rises to within a foot of
the gunwale, and which, bing water tight and conifortable, is adapted for the quarters of the crew. Mr. Dempster has proved the advantages of this styie of fishing craft by actual results in practice; and he daims for his system the advantage that, no matter what seas the boat may ship, it is impossible for it to be swamped, as the water immodiately

New Theory of Atiansiocic Elecarictit. A correspondent, Mr. © Wright, of , inds Fills, whitey a ollows
"The earth is surrounded by an electrican aten herewich is subject to the law of gravitation, now is consequeat'y more deuse near the surface of the earth, ad more rare in ine higher regions. All the phenomena of electricity are due to the disturbance of this electrical abolosphere, in coin nection with the resistanco of diffe ent substances to the passags of the elf. :ric fluid. When any substance has more electricity than auother substance near it, it is in a positive or charged condition; when it has less, it is in a begative condition, and the attraction which negative subatencess exhibit for the positive is only the tendency to restore the equilibrium.
If a bladder be filled with air near the surface of the earth, and then elevated to a considerable distance, the confined and then elevated to a considerable distance, the confine which surrounds it in these higher regions is of less density which surrounds it in these higher regions is of less density.
So if a metallic ball, having the elec rical condition natural o if a metalic ball, having the elecirical condition natural eiectricity becomes a charge, which may ba drawn off by a spark. This fact can be demonstrated, on a still day when the air is free from moisture. Now, what better evidence do we want to prove that the earth is surrounded by an elec rical atmosphere, more dense near the surface of the earth, and that the charge on the ball which was elevated is dus to the lesser density of the electrical atmosphere which there surrounds it? When we add to this the chain of evidence which results from the explanation, of electricity in the clouds, the causes of aurora polaris, the daily variation of the magnetic needle, and every other electrical phenomenon, on this hypothesis, the proof is as positive that the earth is surrounded with an electrical atmosphere as that it is sur rounded with an aerial one. I have spent several years in experiments and observations to demonstrate the truth of this hypothesis, and upon it to establish a theory that shal be applicable to all electrical experiments and phenomena an am astonished at the facility with which all questions pertaining to this subject can be solve $\mathrm{s}^{\prime \prime}$

Refractory Clays.

Bischoff finds that the analysis of a clay gives a distinct in dication as to its power of resisting extreme heats. The tem peratures were measured by keeping the clay at a white heat till wires of iron or platinum were fused. The value of a refractory clay is found by the proportion of the alumina to the fusible matter, and again by that of the alumina to the silica. The more alumina a clay contains in proportion to the fusible matter (iron, alkalies, etc.,) the more refractory is it. Silica, on the contrary, augments its fusibility. Of two clays contain ing aiumina and fusible matter in the same proportions, tha which contains least silica is most repractory. Save in cer tain determinate cases, the clays containing alumina, silica and fusible matter in equal proportions have an equal power of resisting fire. If we give to clays the general formula$\mathrm{mAl} \mathrm{l}^{c} \mathrm{O}^{3}+\mathrm{nSi} \bullet^{2}+\mathrm{RO}$, the degree of resistance to fire is measured by $\frac{\mathrm{m}}{\mathrm{n}}$. The higher the value of this fraction, the more refractory the clay.

Put up Your Jam while Hot.--It is said that ordinary jam-fruit and sagar which have been boiled together for jam-fruit and sugar which have been boiled together for
some time-keeps better if the pots into which it is poured some time-keeps better if the pots into which it is poured
are tied up while hot. If the paper caa act as a strainer, in the same way as cotton wool, it musi be as people suppose If one pot of jam be allowed to cool before it is tird down litttle germs will fall upon it from the air, and they will re tain their vitality, because they fall upors a cool substanco they will be shut in by the paper, and will soon fall t, wosk decomposing the froit. If anether pot, perícetly si milar, ba filled with a builing hot misture, and immediateiy corcred over, though, of coarse, some of the outside air must be shut in, any germs which are foating in it will bo se.tiot, ard in place.

 like componad. sn I that it is pery diticult wo reators thi from a phatinum iebri. lu-ise siveni nse may be ar sided by mixing with the flwe spar ab ut shing wal whof copg-
sum and the proper quatity of sul, hatic aci i. Atur the sum and the proper quantity of sulpinare aci i. Attur the kydrofluoric acid has been exp iled oy heat, the nasas in the retort is found to be of a pasty parave, and is easily removed by water.

Father Cleveland-Charles Clevelaad, a rebpected clergyman of Bostou, Mass., widély known for his useful and faithful labors, died recently in that city, at the remarkable age our oue huudred years-less sixteen days. He retined his faculties up to the moment of his death, and cominued in the exercise of his peculiar ministrations da city missionary until within a fer weeks. After attaining his majority he spent forty years in mercantile pursuits. His work for the past forty years has been remarkable. He devoted his whole time to ministerieg to the poor, and his labors were highly appreciated.
Srretcuin ef Chains-Professor Trowbridge, of Yale College, has stated that at the Novelty works, N. Y., he once made a chain one thousand feel long, to be used for pulling a load of ten tuns up an incline five hundred feet long and
one hundred feet high. In one year he took out, little by little, sixteen feet of slack caused by stretching. The chain got stretched out in time, though, and then did not alter.

