portable frescoes.

The process of frescoing in oils, invented by Mr. Charles T. Kemmer, is a novelty in its way, and, we think, is likely to entirely auparsede the ordinary mode of freacoing. It i.: de signed to do away with the expense and inconvenience al. ways attentant on the usual processes, and, at the same time, to furnish artistic decorations of a most superior quality and durability.
We may describe the process brietly, as follows: Ordinary sheeting is dipped in soap and water and stretched upon a frame; it is afterward covered with a coating of gelatinous size, and allowed to dry. An oil painting of the nature re. quired is then executed on the prepared sheet, and, after it is thoroughly dried, the gelatinous sizing between it and the sheeting is moistened, and the painting removed, bodily, from the sheeting. The painting is then attached to the plaster by a liquid cement of appropriate character.
In the production of the painting, whether it be merely a plain tint, an ornamental design, or a gilded decoration, about five coats of the best linseed oil fresco paint are used. This produces a tough, tangible film, about the thickness of good writing paper, which will bear washing with soap and water and a sponge as often as may be desired. When ce mented to the plaster, it adheres with a tenacity entirely un known where the paints are laid directly on, as in ordinary frescoes, which are liable to peel off. Cracks occurring in the plaster do not affect the film unless they are of larg size.
In the manufacture of this portable fresco, plain tints, etc. are turned out in pieces 20 inches wide and 8 yards long, ready for attachment to the plaster. Where a ceiling or
wall is to b covered with a decoration specially designed for the purpose and complete in itselt, the painting is executed of the size required, and the film is cut into strips of a con venient size for cementing to the plaster: as the strips are cuttings from one piece, they of course match so accurately that no join is discoverable
Among the advantages belonging to this process are the facility with which frescoes for distant use may be designed and painted, and the very short time which is necessary to fix them on the walls or ceiling after they are done. As an illustration of the latter, we may state that the film can be applied in one day to a ceiling which it would take thre weeks to fresco in oil in the regular manner.
Mr. Kemmer has received patents for his invention both in his country and in Eurepe. Further information may b obtained by addressing Charles T. Kemmer \& Co., Passai avenue, East Newark, N. J., or at No 4 Warren st, New York

A Recent Tornado

Portions of our Western prairie country, by their compara tively level and unobstructed formations, present a fine field for the play of the win la, and for the formation of those.re markablespiral currents known as whirlwinds, from which great damage sometimes results. These spiral currents usually cover a very narrow pathway on the surface of the ground, but they operate with tremendnus force, and might not inaptly be termed pneumatic plowshares. One of tbese aerial giants made its appearance at Quincy, Logan county Ohio, on the 8th of June
A sultry day was followed by the appearance of a cloud, in he West at 5 o'clock in the evening, which increased in blackness and size with fearful rapidity. A heavy wind soon set in, ani ats 5.30 o'clock the whirlwind struck the earth five miles from Quincy, moving in a northwesterly direction. The tornado reached Quincy in about five minutes and passed through the town, making a clean sweep or houses, trees and fences along a path which fortuuately was comparative ly narrow. In this village 50 or 60 dwellings and stores, two churches, and as many more shops, stables and outbuilding were unroofe \exists, rocked from their foundations and demol furniture air was literally filled with flying weatherboard urniture, laths and plaster. A parlor stove was caught up woman and crushed her so that she died. The Eaptist and Methodist Episcopal churches were completely destroyed.
The tomado on its way to De Graff struck Bogg's flouring mill, five stories high, and containing 3,000 bushels of grain. mill, five stories high, and containing 3,000 bushels of grain.
The builoing was moved nine inches upon its foundation, The building was moved nine inches upon its foundatio, awey. The storm plowed its way through De Graff, carrying destruction in its path, but injuring fortunately fewer persons and a smaller number of buildings. After leaving De Graff it passed several settlements, and finally rose from the earth and was sr en for miles, carrying in its funnel shaped form timber, rails, and débris which it had gathered in its destructive march. The newspapers give the names of some fifty pereons killed and wounded by this tornado.

Car starter

William M. Stratton and William E. Stratton, of West Troy, N. X , have recently patented an improcement in ap. paratus for storing up, in a spring or springs, the power exended in arresting the motion of a car, to be used in setting is employed to wind the tension cord of the spring made is employed to wind the tension cord of the spring, made with such cevices and arranged insuch manner that may be locked and held after being detached from the gearing connected with the axle to wind it up, so that the car may be
allowed to run awhile before the power of the spring is applied; thus making the apparatus capable of retaining the power stort up in the spring while the car is going down a descending grade and using it on an ascending grade, the car unning free between the grades. The invention also consists in certain novel devices, for thus detacbing, holding, and locking the winding drum.

CINCINNATI EXPOSITION.

The commissioners announce in our advertising columns hat the third National Industrial Exposition will be opened in Cincinnati, September 4th, next. It will remain open un til October 5th, following.
The aid which such exhibitions affrd to business and th advancement of knowledge is of the most important charac ter, and fully entitles them to the interest of tho whole na ter, an
tion.
We

We would wish to remind intended exhibitors that they e reconmended to make immediate applications for space Extensive arrangements have been made for the transpor tion of visitors, at reduced fare, and it is expected that the arge attendance of last year will be very much increase this season.

THE UNIT MEASURE OF ELECTRICAL RESISTANCE.

Since the electric telegraph has been in existence, quite number of different units of electrical resistance have been roposed, but at the present time nearly all of these unit ave been adjusted to one standard, so that one of them may now be considered the basis of all.
Professor Wheatstone proposed, as a unit, one foot of cop per wire weighing one hundred grains.
Professor Jacobi proposed a co
and one millimeter in diameter.
Professor Matthiesen proposed a copper wire one statute mile in length and one sixteenth of an inch in diameter
Mr. G. F. Varley's unit is a mile of special copper wir ne sixteenth of an inch in diameter
Dr. Werner Siemens employed a glass tube filled with pure mercury. This tube was one meter in length and con tained a column of mercury baving a transverse section of ne square millimeter.
The German, French, and Swiss telegraphers used a cer tain length of their standard sized iron wire, such as was used for the construction of overland telegraph lines, as a practical unit of neasurement.
The British Association proposed and adopted a theoretical nit, of resistance, in which a certain amount of work or mechanical effect is produced by a givenamount of electric ity in a given length of time, and this theoretical res is copied or represented by a certain length of wire.
This unit is beautiful in theory but difficult and uncertain in practice. The principal source of difficulty lies in the ac curate measurement of the mechanical effect of the electri current. Since this unit has been adopted by the British Association, some of the most expert continental physicist have, by experiment, arrived at the conclusion that it is
about two per cent smaller than the copies distributed by about two per
The objection to the employment of copper wire of vari ous sizes as a standard arises from the fact that no two pecimens of copper, or of any other metal, possess precisely he same specific conducting power, and, therefore, measure of resistance thus define are liable to vary, and, in fact, do differ from each other very materially
This objection, however, says the Telegrapher, does not ap ply to mercury, which, in consequence of its fluid nature, is easily rendered chemically pure. In fact, experience has shown that resistances can be produced and reproduced by means of mercury, which do not vary among themselve more than two or three ten thousandths of a unit, or about s near as the finest set of silversmith's scales can be made o balance and weigh alike
In deciding upon a standard of measurement, the first and most important consideration is to select one which is leas likely to undergo cbange or variation, so that, when they be come multiplied and brought into general use, one of them will al ways correctly represent another.
If we suppose, for example, that a person should under take to construct a two foot rulef: He first selects a stand ard as nearly correct as possible, and copies it with grea care. Suppose he then destroys the first and makes a thir rom the second, and a fourth from the third, and so on un il he has made a thousand, and all of his measures, exce he last one made, have been destroyed.
Now, we will suppose that another person commenced ma King two foot rules in the same manner, and using the same original standard to copy his measures from, and in the pane way copied one from another to the number of a thousand f these two persons compared their final measures with eac difference-that is, they would not agree one with there than probable difference-that is, they would not agree one with the other In view of this disagreement, how could it be decided whic was the most correct, as the original standard is no longer in
existence? In some such condition would two persons be, each having British Association units of measurement. The cannot get at the original unit, because it never had a practi cal existence.
The mercury unit, on the other hand, has for its basis the meter measure, which is defired as the ten millionth part of he distance of the pole of the earth from its equator, The British Associan a sistance bears the same relation to the other conditions hat distance does in the definition of a horse power. hat distance dots foot in one minute. Similarly, a British Association unit is he resistance of the circuit producing a defined mechanical ffect or work in a certain time, with the other conditions of quantity and intensity defined as units. As before stated, the great difficulty lies in the correct measurement of this
mechanical effect. In order to accomplish this, the British Association made use of a magnetic needle, that is, a magnet
held in its position by the magnetism of the earth, which is never in itself constant, and is at all times in a state of pe urbation. It results from this that the force required to move this magnet equally, at different times, will not be the same. In addition to this, the magnet is affected by local auses, aud in no two different localities can it be said to be ffected precisely alike. From these and other reasons, Ger man scientists of the highest rank, as the result of their in estigations, have announced that the British Association unit, as distributed by their committee, does not approxi mate its true value within nearly two per cent
It was after careful consideration of the defects in the dif erent standards of electrical resistance, and with the desire o adopt the one which was least liable to objection, that the International Convention of Electricians, at Vienna in 1868, adopted the mercury unit as a standard, and all the European countries, with the exception of Great Britain have adjusted their resistance scales to it. Mr. Varley ha defined his unit, or "readjusted it to 25 mercury units."
Mr. Latimer Clark defines the B. A. unit, or Ohm, as "the esistance of a prism of pure mercury one square millimete in section and 1.0486 meters in length at 0° centigrade," so hat, in reality, the mercury unit is now the basis or standar of all the measures in use
The average resistance of a statute mile of good No. : galvanized wire, such as is generally used in this country, is bout 20 mercury units.

Masonry and Erickwork.

However gigantic may be the strides with which engineer ing science has advanced during the last few years, it canno e denied that, so far as regards the special art of building in masonry or brickwork, the present race of architects and ngineers are fecble in conception, timid in execution, and but dwarfs of utterinsignificance as compared with the giant: f former days.
It would be amusing, or more truly perhaps the reverse o note in what manner an average architect or engineer of the present age would deal with some of the problems pre ented to the old masters. for instance, such a one as that uccessfully solved by the Saracenic builder of the justly celebrated temb of Mahomet at Beejapore, India, which was as follows: Given a building 135 feet square on plan, and 10 feet high, required to cover the same with a circular dome 124 feet in diameter, and weighing some twelve or fourteenthousand tuns. It wou'd be curious to observe how many hundreds of tuns of iron our men would consider it mperative to throw into the work. Th: Saracen, knowing the capabilities of his material, asked for no ironwork, bu fearlessly trusted to his masonry, and skillfully corbelled ou the square walls at the top to meet and support the circuar dome, and to such a bold extent that, at the angles of the building, the projection of the corbelling measured no ess than 46 feet.
How infantile appear the greatest exertions of our modern building in comparison with such mammoth works as thes The traditions of the art have been lost, and science has pro ided no substitute. Our professors, if they do not avoi the subject altogether, treat it in a perfunctory, ignotum per notius, manner, which only serves to make the "darkne more visible," or the " little glooming light"-which ma already exist in the student's mind-" more like a shade. We may be taught, for instance, that the line of pressure in an arch must be included in the middle third of its depth, or the arch will tumble down, and we may be treated to many other equally shallow dicta based upon hypotheses evolved from purely theoretical considerations, which the bare existence of huadreds of buildings for hundreds of years
In recent times, no doubt, the introduction of iron vork has had much to do with the extinction or suppression of nearly all that is true and expressive in the art of building. It is o very easy to multiply the span and divide by the depth ad to perform the other elementary operations incidental to he determination of the strength of an iron girder; and hen, besides, the figures and diagrams look so clever as to induce, in the teo often shallow performer, a glow of self com placency, leading him to fervently believe that an engineer ng feat has really been achieved. But if such work const tuted engineering, the schoolmaster in the "Deserted Vil age" would b; an admirabla exp onent of the science:

The village all confessed bow much he knew;

Another advantage offered by ironwork as compared with masonry, and ove to indolent or incompetent men peculiarly seductive-is that of shirking responsibility. With iron girders, the designer may devote the few minutes necessary to the conventional calculations, specify iron of a given strength, and so rid himself lightly of any further sense of being responsible. But if, on the other hand, his first consid ration is his client's interest, and not his own ease, he will often be lex to discard ironwork in favor of masonry, and he will find no royal road to learning in that direction, but must honestly and laboriously qualify himself, by theoretical and practical investigation and by comprehensive analyses of works already executed, to form a correct estimate of the capabilities of the masonry or brickwork with which he may dealing, and to shape his design accordingly - Engineering.

Ozone in the Ageing of Alcoholic Drinks.-On run ning out wine drop by drop through a vessel filled with ozone, the essential oils and other substances which give the wine new" havor are destroyed, and the wine much improved in quality.-M. Loew.

