safes and vaults.
egarding the relative merits of safes and vaults information ervation of papers or other valuables. The work of digging out safes from the ruins, which was begun as soon as the heat of the smouldering piles would admit, $\mathrm{r} \in$ sulted in prov under all circumstances, preserve their contents unharmed. under all circumstances, preserve their contents unharmed.
Those placed in wooden buildings, as a rule, held papers and books in good condition; the materials of which such build ings were composed burned so quickly and entirely, leaving nothing remaining to smoulder and retain the fire, that safes
did not become heated throu ${ }_{7}$ h. But in buildings of brick rid not become heated throu;h. But in buildings of brick
and stone, the result was more unfortunate. The safes fell and stone, the result was more unfortunate. The safes fell
among masses of material which burned steadily and gave forth intense heat for days after the first fire, and thwarted any attempts made at removal. 'The safes lying in the midst of such heaps of fire became intensely heated throughout and when efforts to remove and open them were finally successful, their contents were found in many cases to be ruined Books, papers, and bank notes still retained their form, but had changed to black in color, and, upon the slightest touch crumbled into powder. In almost an exact proportion to the length of time they had been forced to remain in the burning
ruins, safes were found to have preserved their contents un ruins, safes were found to have preserved their contents un-
injured or parially or totally destroyed. It is evident that, while a well constructed safe will hold, uninjured, books and papers, for a time, yet, if remaining in the fire for a long period, no one yet madewill fulfilits purpose.

With vaults the result proved entirely different. In near ly every instance well built vaults held their contents intact Bricks and mortar proved excellent non-conductors of heat; and upon the opening of large vaults which stood for some days in the midst of fire, their interiors were found scarcely warm.
"These discoveries will doubtless have the effect of intro ducing more largely the construction of vaults in building devoted to business uses; and the disasters resulting from their laulty construction, of which the one in the Custom House furnished a notable example, will perhaps induc more care in building. A vault badly built is worse than noor safe, for the latter does afford a degree of protection to
what is within it, while the former gives no protection at all. what is within it, while the former gives no protection at all.
It must not be inferred from the statements made above
hat the safes buried in the ruins of the late fire did not acthat the safes buried in the ruins of the late fire did not ac-
complish a great degree of good. Property of immense value was preserved through their agency, and, where not exposed to heat of the most intense character and for a long time, the safes generally stood the severest test well, and reflected where vaults exist; for, to secure perfect safety, valuable must be placel in a safe surrounded by a vault; and, for ordinary fires, safes have proved themselves equal to all re quirements. But for such occasions as the late fire, only

## DOWN IN THE CAISSON OF THE EAST PIER OF THE

 ST. LOUIS BRIDGE.From the Railroad Gazette.
The grand entrance is a brick shaft dropping vertically to thi iron girders, and thence is finished in iron through the air chamber. The steps descend spirally; you find yourself hommed in by the circular walls of the well. On each side of you are iron doors, about 18 inches square and 30 inches from the floor. The place is damper than a parlor, but drier than a well 60 feet below water surface should be. This you notice while a man who is sweeping the Hoor tells you that one of the doors will be open in a moment. There is a sound
as of a whistling of air through pipes, and soon a door does as of a whistling of air through pipes, and soon a door does
open, and a man within beckons yon to step through, which you ro. into an iron bandbox, say 6 feet in diameter and about 9 feet high, containing several pipes with air cocks upon them, and a seat. As your companion has a candle, you observe another similar iron door opposite to the one by which you entered. Your companion now closes the latter and turns one of the cocks, when there comes in, with a sharp, loud hiss, an atmosphere which is destined to arrive at a normal pressure of about 40 pounds to the square inch. Directly you feel a severe pain in one ear. Your guide asks you concerning it, and directs you to perform the motion of swallowing, which you do and are relieved. After this you swallow involuntarily. The guide now tells you, speaking in a key above the hissing of the entering air, that the
strength of 40 men could not open the door through which you have just passed, and that the opposite one will shortly be loosened. Soon this occurs, and you slip upon a floor of loose sand, which, illuminated by the candles of the work-
men, looks like bright yellow sugar just turned out fresh men, looks like bright yellow sugar just turned out fresh
from the hogshead. You walk through it with great freedom, and eien when passing through one of the log girders, whic divide the chamber into thref compartments, longitudinal with the pier, by an apertureabout 18 inches square, you step deep into a loose pile of it; you step out with little apparent effort. A little to your right and extending downwards from it and palpitating like the tongue of a hot dog. This and others around supply the apartment with air. E'pon your ieft a man is shorelling sand into a trough of water. Into this trough is encased the lower end of an iron pipe which drops from the ceiling. Near the top of this another pipe, which comes through the masomy parallel with it, turns in trs it and a little upwards. This is the sand pump. All the and which the man throws into the trough is sucked up by hif vacuum, created by a stream of water which comesdown hee serond pipe.and is projected upwards through the first.

And so this goes on regularly for days: the sand being excava ted, the caisson with its load of stone sinking, and the mason ry added continually until the rock is reached. Then men say that "another engineering epoch has occured. The east and largest pier of the St. Louis Bridge has safely reached the rock through a depth of ninety feet,"
Still walking around, you notice that the peculiar bright appearance of the sand comes from the fact, that although the air pressure has driven all the free water from its inter
stices, a film surrounds each grain, retained there by stices, a film surrounds each grain, retained there by an
adhesion superior to the pressure, which brightly reflects adhesion superior to the pressure
the yellow light from the candles.
Now talking of candles reminds us of the Chief Engineer's remarks upon the danger of fire, in this triply compressed air and his experiments thereon. These, moreover have been Frankland (Philosophic Transactions, 1861). As this subject must become of importance, in view of the increased use of compressed air in hydraulic construction, it may be well to lightly compare the two series of trials, and show that there is no discrepancy, but an actual agreement. Captain Eads plainly speaks of the danger of fire, and instances several cases where the clothes of the men had actually caught the flame, as showing the increased combustionarising from the ncreased supply of oxygen.
Dr. Frankland in the
Dr. Frankland, in the above mentioned memoir, on the con trary, shows that from the rarefied air upon the top of Mont Blanc to the laboratory condensation of three atmospheres, there was no more tallow consumed and therefore no more combustion in the one case than in the other, and that the quantity agreed precisely with the quantity of material consumed under the normal pressure. The discrepancy, how ever, is explained by the very reasons deduced from his experiments, which he gives as the decreased mobility of the atoms of oxygen arising from the increased condensation. It is plain enough that, other laws being equal, the mobility of the particles may be in exact inverse ratio to the density in which case the combustion will remain the same through all changes of pressure
But would Dr. Frankland's experiments, if, instead of being conducted in a bell glass practically air tight and the pump topped as soon as the desired pressure was obtained, mad with a bell glass leaking at every pore, so that the pump would constantly have to supply the deficiency, with moving
figures flitting from place to place, always in motion and firures flitting from place to place, always in motion and
constantly breathing, with the test object-the candle-conconstantly breathing, with the test object-the candle-con tinually changing its position, and sometimes blown upon
with a strong blast from the lungs, with the figures violently agitated when the fire touches them-would, we say, his ex periments have given the same result? It would seem not for then the mobility of the oxygen particles would not have been decreased with their density. The action of leakage, the effect of moving bodies, would have restored the mobili y, and we should have three times the oxygen with nearly the same, and not one third, the mobility, and consequently nearly three times the combustion.
There is, therefore, great danger from fire in compressed air, and a strong light, which could be retained in one place where the air is still, is a desideratum.
But we have now visited the subfluviatile chamber and
seen its wonders, and so returning through the air lock, seen its wonders, and so returning through the air lock, where the letting off of pressure does not affect the ear, we are at the foot of the spiral staircase.
Here comes the tug of war. Your strength which has been increased by the compression, has now feariully dimin You feel, indeed, as a wet ray might feel if suddenly bronght to a consciousness of its limpness. So with sloth you drag your weary way to the top, and finding the air still bleak, and wet, and Novemberish, and that when you get upon the streets your umbrella is twisted in every direction by the wind save the direction from which the rain comes, you wish you were back again deep under the river, with a plentiful
supply of tempered air, strengthened with oxygen, and a steady umbrella over your head capable of turning aside the northwest wind and the full flow of the Mississippi River.

## Sardines, Where They Come From and How

There are few delicacies so well known and so highly es eemed as the sardine. The delicious flavor of the fish when the tin is first opened, and the sweetness of the oil (always upposing a good brand), print their charms upon the memothat anything good in this way is exceedingly scarce this eason that and in way is exceedingly scarce this season. Unfortunately, it was the same last year. Then the destroying demon of war took away the fishermen from the villages, and, added to this, the fish were scarce, so that more
were contracted for than could be delivered. This year it is were contracted for than could be delivered. This year it is
worse. Few fish of any size have been caught (except some rery large), least of all those of the finest quality. The consequence is, that the French manufacturers are again unable o carry out their contracts.
The fishery, says the London Grocer, is carried on general 1 y from July to November, all along the west coast of France. Two of the largest stations are at Douarnenez and Concarneau. Fleets of boats go out some few miles and spiead out tract the fish. The nets are wigithed on one and and hav corks attached to the other so that they assume a vertical po-sition--two nets being placed close to each other, that the fish trying to escape may he caught in the meshes. Brought to land, they are immediately offered for sale, as. if staler by a few hours, they become seriously deteriorated in value, no
first class manufacturer caring to buy such. They are sold by the thousand. The curer employs large numbers of wo-
men, who cut off the heads of the fish, wash, and salt them The fish are then dipped into boiling oil for a few minutes, arranged in various sized boxes, filled up with finest olive oil, soldered down, and then placed in boiling water for some time. Women burnish the tins; the labels are put on, or sometimes enamelled on the tins, which are afterward packed in wooden cases, generally containing 100 tins, and hen are ready for export
It does not al ways seem to be remembered that the longer the tin is kept unopened the more mellow do the fish become and, if 1 roperly prepared, age improves them as it does good wine. But if they are too saltat first, age does not benefit them -they always remain tough. The sizes of tins are known as half and quarter tins. There are two half tins, one weigh ing eighteen ounces and the other sixteen ounces gross. The quarter tin usually weighs about seven ounces, but there is larger quarter tin sometimes imported. Whole tins, and ven larger ones still, are used in France, but seldom see even
here.
As i
As is well known, the sardine trade is an important branch f industry, very large quantities being consumed in France; nd the exportation to England and America is truly won derful.

Proposed Ship Canal in Russia
Under the heading of "Internal Navigation in Russia," Le Moniteur des Interêts Matériels, published in Brussels, give he following article, which we translate:

Since the completion of such immense works as the pierc ing of the Isthmus of Suez and the Mont Cenis, simply and easily done in a few years, none of the gigantic enterprises which our ancestors dreamt of, and for many years considered impossible, are likely to frighten engineers or capitalists. The union of the two seas in the south of Russia, has been, as is well known, ever since the time of Peter the Great, the "holy wish" of the Government of Russia. Of what im portance to the great empire would a canal, permitting her to send her fleets into all the ports of Persia, and giving a support to her power in the East, be! And what an acce ion of power would result from the possibility of carrying one destination, the united fleets of the Black and Caspia Seas!
"From"commercial and industrial points of view, we might predict a great future for such a canal; for a sea, hitherto closed, would be open to all maritime nations; and their vessels could, without discharging cargo, penetrate into the heart of Asia, and also carry to the West all the products of Persia and Central Asia. Russia has only too many reasons to favor such an enterprise; and accordingly the Czar instituted, in 1864, a commission charged to consider the feasibility of the project. The chief of this commission, M. Blums, believes the plan to be practicable; and, if we study the map with a little attention, the immensity of such an enterprise educes itself to proportions comparable to those of the Jsthmus of Suez Canal.

- The distance which separates the Sea of Azov from the Caspian is about 6500 or 700 Russian versts, or 700 kilometers (about 441 miles). The Isthmus of Suez is 150 kilometers
across. But two important rivers, the Manitscha and the across. But two important rivers, the Manitscha and the Kooma, both take their rise in the Caucasus, and empty their waters respectively into the two seas : and using their streams would permit a considerable abridgment of the labor. The engineering difficulties will probably be greater than at Suez, where the highest rise in the level was only 20 meters. It will be necessary to leave a much larger margin for contingencies, and it is well known to what an amount these came in the earlier work. Still other new problems present themselves. Here, however, are the figures given by the engineers of the abovementioned Russian commission:

A canal can be constructed from one sea to the other for $81,000,000$ silver rubles (about $\$(00,750,000)$. The measurement f the soil to be removed will amount to $550,000,000$ cubic meters (about $720,000,000$ cubic yards).

The Russian Government cannot, at present, hope to see other nations concurring in this enterprise. Foreign commerce will naturally prefer the shorter and better canal of Suez; but the junction of the Sea of Azov to the Caspian is of such importance to the Russian empire, both from political and commercial points of view, that the Government will not shrink from a considerable expenditure. And it would be in Russia itself that the greater part of the needed capital must be sought; and it would there be possible to obtain it, by insuring, as has been done to the railway enterprises, a sufficient interest for the money. It would be easy moreover to promote, in the countries which the canal is intended to unite, the creation of banks and other commercial establish ments, by the concession of lands and of facilities of transit, The question is of permanent importance to Russia, and from the present state of public opinion in that country, and from the spirtt at tributed to the (iovernment, it will probably b. answered in a sufficiently short time.

A square Toed Plan for Making Money.
A Boston boot and shoe firm, which has an extensive North ern reputation by reason of its loyalty, lately hit upon an ingenious plan to push their trade in the South. They invented a sort of a square toed boot, on the leg of which wasimprinted the likeness of Gen. R. E. Lee, and this was to go into the general Southern market. A finer boot was then made with the picture of Stonewall Jackson, also imprinted on the loot leg, and this was intended especially for Virginia dealers. T'le firm then applied for a patent on their trade mark. The Examiner to day decided that the application could not be granted on the ground that these trade marks tended to en courage disloyalty in the South. The firm have taken on ap peal to the Commissioner.

Comparative Nerits of Narrov and Reguiar Gage
Railways.
Mr. Silas Seymour, the well known consulting engineer, was lately applied to by Mr. Marshall O. Roberts for his opinion on the subject of narrow gages for great trunk lines of railroad. Mr. Roberts, as President of the Texas Pacific Railroad Company, had received from the chief engineer of that company, General G. P. Buell, a report in favor of the narrow gage of three feet six inches, the reasons for recommending it being, first, that, in the construction of the road
bed, the difference of cost will be 30 per cent in favor of the hed, the difference of cost will be 30 per cent in favor of the narrow gare; second, in the construction of the superstructure, the difference of cost will be 45 per cent in the same direction; third, with propec construction of rolling stock, a speed of thirty-five to forty-five miles per hour can be attained with perfect safety on the narrow gage; fourth, the construction of rolling stock will cost 50 to 55 per cent less; and, fifth, in loaded trains of mixed freight and cars on the ; foot 6 inch gage, the percentage of dead weight to load will be about 47.100 , while in a similar train on the broad gage it be about $41-100$, whill
will be about $75-100$.
Mr. Seymour does not agree with General Buell either in his premises or his conclusions, and proceeds to take up, his his premises or his conclusions, and proceeds to take up, his
"five reasons" and dispose of them one after another. After speaking of the difficulty of makiog any practical comparison he takes up the matier of the cost of the road bed. The side slopes and embankments, side drains, bermes, wings, end walls, and coping of culverts, he says, would cost the same in both cases, as would also truss bridging, as that used on the broad gage road is as narrow as wili allow of the requisite lateral bracing to keep the bridge in perfect line and adjustment. The difference in cost then he declares to be, at the most liberal estimate, only the cost of a strip in the middle about a foot and two inches wide, which would be less than to per cent of the whole. The saving in the cost of the suvalue of one foet and two and a half inches in length cut from the middle of each tie, a;s the same weight of rails is required in each case for trains of the same weight, and any quired in each case for trains of the same weight, and any
advantage, io be gained by multiplying trains and using light er congines is equally applicable to both kinds of road. In er engines is equally applicable to both kinds of road. In
the matter of cars, he claims that fully as much is lost by the the matter of cars, he claims that fully as much is lost by the
necessity of using a larger number as is gained in the lower cost of smaller cars. The cost of locomotives, providing the same power is used, will be no greater for the wide than for narrow gage; and if there is a difference, it will be in favor of the larger engines. In dealing with the third reason of General Buell, Mr. Seymour declares that he does not think that " thirty-five to forty-five miles per hour with perfect safety" ran be attained on any road, and that it is generally conceded that "in the ordinary condition of our roads and row
a wide gage is the safest for high rates of speed
Pacific in favor of narlow gace, is characterized st the Texa Pacific, in favor of narrow gage, is characterized as the weak est of ans, says his criite, for making any satisfactory test in this means, says his criiic, for making any satisfactory test in this
matter, but he ventures the opinion that a platform ten feet in width, of the same proportionate strength as one of the same length and five feet wide, will be found to be of less than twice the weight, and that less than twice the powe will move it. The same is true of box cars and saloon coxches: to a greater degree, and the conclusion is that the disadvantage of a greater proportion of dead weight is whol ly imaginary. Mr. Seymour declares that all the advantages claimed for narrow gage roads can be realized with greate economy and safety by using the same character of rolling stock on the 4 foot $8 \frac{1}{2}$ inch roads, and that the slightaddition al cost of construction of the road would be more than over balanced. The adrantages which he claims for the 4 foot 8
inch gage over that of 3 foot $(6$ inch he sums up as follows: inch gage over that of 3 foot 6 inch he sums up as follows:
1 . If commercial adrantages are to be gained by exchang ing cars with connecting lines, you would be in a condition to secure them.
2. A train, like a wagon, may be hauled much easier with wheels of large than small diameter. This width of gage :llows of considerably larger wheels, under its ordinary roll ing stock, than are admissible upon the narrow gage; but with this proposed reduced hight of cars upon the wider gage, the wheels may be made so much large: that a very material saving will be effected in power.
3. Having a greater base of track in proportion to the hight and width of your cars, the irregularities in the track wnuld be less apparent; and you would certainly make a fast time with greater safety, or faster time
cafety than you could upon the narrower gage.
4. The hight and width of train being less than that in atneral use upon the wider gage, the atmospheric resistance "ould also be proportionately less; and you could make fast ar time with the same amount of power than is made upon the ordinary 4 foot $8 \frac{1}{2}$ inch railroads.
$\therefore$ You woald relieve the entire question, or at least the wider gagenortion of it. from the enombus load of extra dead weight
which it has heretofore been confefled loy its adverarices to carry, because under this arrangement it would evidently be reduced to merely the weight due to the extra length of axles.
6. If time and experience should happen to demonstrate that your chief engineer is wrong in his prosent convictions upon this subject, you could correct the mistake hereafter at superstructure, rolling stock, etc., were all adapted to the superstructu

The subject, as presented to the mind of the engineer, na turally divides itself into four general propositions; First comparative cost; second, comparative facility and economy in packing or loading: third. comparative economy in hanl
ing; fourth, comparative advantage of a gage common to connecting lines. As to the first, he admits that the advanvantage is slightly in favor of the narrow gage, but to no-
thing like the extent claimed by the advocates of the extreme narrow gage theory. As to the second, he claims that the dvantages are so greatly in favor of the wider gage as to far outweigh the additional cost of construction. He believes hat rolling stock for the wider gage can be constructed cheaper and of less weight in proportion to its comfort and capacity than rolling stock of the same relative width, trength, and durability adapted to the narrower gage, and and that it can be used for equal rates of speed with greater safety. He believes that there is a great deal of unnecessary and non-paying weight carried, and a good deal of useless riction to overcome on all railroads, but does not think it al together chargeable to the width of the roads. He concludes by recommending for the Texas Pacific Road a 5 foot gage as better still than the 4 feet $8 \frac{1}{2}$ inches. Mr. Seymour fortifies his views by a liberal citation from the arguments of other eminent authorities on the subject

Chills and Fever.
Hull's Juluruch of Health, for November, ?:as the following seasonable article on the above subject. Chills and fever and bilious fevers have prevailed to all unusual extent in he vicinity of New York this season, as well as in many other parts of the country.
Dr. Hall says: It very $g$ g
Dr. Hall says: It very generally prevails in the fall of the year over large sections of country. Scattering cases are liable to occur anywhere. These arise from individual indis
cretions; but where large numbers of persons in communi cretions; but where large numbers of persons in communi ties are attacked, there some general cause must prevail. This cause has been attributed for ages to " miasm," an emanation from the earth so subtle in its character, that for more than a century the greatest skill of the ablest chemists was
not able to detect its nature or define its quality. A bottle not able to detect its nature or dufine its quality. A bottle of air taken from the most deadly localities was submitted tection of anything solid, gaseous, or liquid; nothing could be found in the bottle but air, thin air. But the microscope has come to the aid of the alembic, and has discovered in this, the miasmatic air, multitudes of living things. When bottles of this air were taken from the banks of a Souther Dr. Salisbury, he was taken with chills and fever in a few days, and these living things were found on his tongue and within his mouth; while not a single one was to be found all over the city, except in that one man's mouth, in his chamber, and in the bottles. Whether this life is animal or vege-
table, is a matter of dispute, yet it seems capable of productable, is a matter of dispute, yet it seems capable of produc-
ing chills and fever; but whether animal or vegetable, the laws which regulate the action of miasm on the human sys tem remain the same. and the mode of production, or the causes of the generation of this masm, remain unchanged ; and these laws have been determined and described with wondersul accuracy. This miasin results from warmith is not formed; vegetable matter will not decay unless there is moisture, it will dry up; it will remain under watera thousand years without decay, as witness the wooden piers of ancient bridges, as sound to day as when they were driven by Adam's grandson, or somebody else who lived a long time ago. The heat must act on the moisture before miasm be-
comes a product. This miasm, to be injurious, must be takcomes a product. This miasm, to be injurious, must be tak-
en into the system by breathing into the lungs, or by swallowing into the stomach. But cold, as the "first frosts" which are everywhere known to make it innocuous, condenses this miasm, makes it so heary that it falls to the surface of the earth, and can be neither breathed nor swallowed; on the other hand, heat so rarefies the air in which this miasm is contained, that it carries it up towards the clouds, where face of the earth. the disease-producing effects of miasm on the human body. To freeze it out is expensive, but to antagonize it by heat is possible, is everywhere practicable

- From an hour after sundown to an hour before sunrise, the cold causes it to settle on the surface of the earth. An hour after sunrise and until an hour before sunset, as a general rule, it is too high above our heads to injure us, in conse quence of the heat of the weather.
As the heat must be over eighty degrees for several days to generate miasm, it follows that the time, during which we are required to battle with it, is at sunrise and sunset during the spring and fall months. But to make it safe from the first blade of grass in spring until the killing frosts of autumm, dress by a cheerful blazing fire, and take breakfast before going outside of the door; come home before suncheerful blazing hearth, then go and do what you please Tou may sleep under a tree, or on a swinging limb, and defy fever and ague for a century, if you only keep warm, abun dantly warm.


## Val de Travers Asphalte a Failure.

We see, the London Building Nerrs saya, that the shopkeepers and others of the Strand and other parts of London are peitioning tolave certain thoroughfares paved with asphalte Now, considering the many advantages attending the use of
this material for paving purposes, we are not surprised at he growing feeling in its favor, and particularly just now after a summer's experience. But we entreat all who are asking for its more extensive application to pause a little
Let them bave the experience of winter as well as summer Let them have the experience of winter as well as summer
before they decide. When passing through leficester square
yesterday (October 19) about mid-day, we saw that hundreds of people had collected. We thought at first that some procession or other spectacle must be coming. We were, however, soon undeceived, for the horses while passing over the asphalte pavement were falling down so fast as to excite a great deal of public attention and curiosity. Though we were not present more than a few minutes, several horses slipped and fell during the time, and others that did not fall were in peril of falling while passing over the pavement Some cabdrivers as soon as they got on the asphalte cau tiously turned back again, others turned away at the very first turning, and all that passed over had to do so slowly and with extreme care. We don't know whether the same kind of pavement in other parts of London is so dangerous duing humid weather as that recently laid in Leiccster square: if so, the demand for tearing it up will very soon be stronger than that for laying it down. No doubt Val de Travers asphalte is very good for Continental cities, but for London and other large English cities, during winter, it will be found altogether unsuitable.

Lequesne's cominutator
The mements of an electric pile can be grouped according o three classes, that of tension, of quantity, and of series to three classes, that of tension, of quantity, and of series. When, with the same battery, successively different effect
are produced, or when the action lasts long enough to show are produced, or when the action lasts long enough to show
a sensible decrease of energy, the groupings of the elements a sensible decrease of energy, the groupings of the elements
can be changed according to the variations of power or of re can be changed according to the variations of power or of re
sistance. The change involves a marked loss of time when
it sistance. The change involves a marked loss of time when
it is necessary to produce it by manœuvring the wires of the electrodes. But one can obtain the commutations for ob taining various grouping by the simple movement of a han dle. M. Lequesne is the inventor of a commutator of this kind, and M. le Comte du Moncel states, in his report to the Societe d'Encouraycment, that it is more complete and more ef ficient than the similar apparatus already in use. M. Lequesne gives to his special commutator the name of Voltamereiste. It is composed essentially of a cylinder, to the surface of which is applied a series of metallic plates, divided up in a particular manner with regard to the various systems of groupings of the battery, and of two systems of rub bing plates, bearing on the cylinder and in contact with the divided plates and two different generators.
The one of this series is directly in connection by wires in the positive poles of the different elements of the battery, the other with the negative poles, and it is only necessary to turn the cylinder, in such a manner as to place under the ruh bing plates such combinations of the divided plates, to nb tain immediately the desired grouping of the battery.
To obtain the element of quantity in the battery, it will be sufficient to bring, under the two series of rubbing plates, two continuous metallic plates of a length equal to that of the two series of rubbers. The liattery will then work as if it were composed of a single element, with a surface equal to that of the whole of the elements.
Tho add all the elements in tension, it is nereesary to havera number of metallic plates equal to half the number of the elcments of the battery, all ranged on the same generator of the cylinder, and of a width sufficient for the plates of the wo series to be applied simultaneously, two by two.
Lastly, to obtain a series, that is to say, to obtain from a Jattery of 24 elements the current which should give, for example, a battery of 8 elements of threefold the surface, it is necessary that the divided plates alternate from the one to f elements, for instance, eight times, in the examples given above.
M. Lequesne constructs the apparatus for 24 elements, and combines them together when he operates with batteries of a greater number of elements. He places in his cylinder eight series of plates, permitting eight groupings by series, that form a battery of 24 couples.

## Speed of Carrier Pigeons.

The Newark Advertiser gives the following: The wondel ful flight of the carrier pigeon Tempest to Montclair, N. J., was noticed some time since. We have now to record the still more extraordinary time of two other birds sent bome. The following notes were found on them on their arrival:
Dear Father-Sept. 15, 1871-Lat. 27 deg. 10 N., long. 79
eg. 30 W., 1,004 statute miles from Montclair leg. $30 \mathrm{~W} .1,004$ statute miles from Montclair, N. J.,-I will let the male bird Tornado go with this note at exactly nine
o'clock A. M., New York time. I let the bird Tempest go on the 10 th . She rose up about 500 yards high, and then made one tremendous plunge to the North, and was out of sight about as quick as a flash of lightning.

Harky (. Blebcher.
Dear Father-Sept. ${ }^{2} 1.1871-$ Lat. $2(5$ deg. N., long, 93
deg. 5 W., 1,596 statute miles from Montclair, N. J.-I will deg. $5 \mathrm{~W} ., 1,596$ statute miles from Nontclair, N. J.-I will oclock A. M.. New York time. He is a powerful lird, but
he lias a fearful job on land. He must go through it or per he has a fearful.
ish. All well.
The bird Tornado arrived at Montclair the same day at three o'clock and seven minutes P. M., making over 196 miles three o'clock and seven minutes P. M., making over 196 miles
an hour. Tsphoon arrived the same day at three oclock and an hour. Typhoon arrived the same day at three oclock and
fifty-four minutes P. M., and fell dead on his arrival, but he fifty-four minutes P. M., and fecl dead on his arrival, but he
brcught the note in the unprecedented time of 202 miles an breught
hour.
Electric Ligitis for Ships.-M. Marten suggests the plan of attaching to sailing vessels a screw propeller, the motion of which shall be obtained from the movement of the ship. The author proposes to utilize the power so obtained, in giving motion to an electromagnetic apparatus, from
whici such vessels may be supplied with the convenience of whicin such vessels may be supplied with the convenience of
an electric light, thus dispensing with the use of oil, and an electric light, thus dispensing with the use of oil, and
gaining besides the advantage of the greatly increased illu. mination.

